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Abstract: Hyperuricemia is a risk factor for gout. It has been well observed that a large proportion
of individuals with hyperuricemia have never had a gout flare(s), while some patients with gout
can have a normuricemia. This raises a puzzle of the real role of serum uric acid (SUA) in the
occurrence of gout flares. As the molecule of uric acid has its dual effects in vivo with antioxidant
properties as well as being an inflammatory promoter, it has been placed in a delicate position in
balancing metabolisms. Gout seems to be a multifactorial metabolic disease and its pathogenesis
should not rely solely on hyperuricemia or monosodium urate (MSU) crystals. This critical review
aims to unfold the mechanisms of the SUA role participating in gout development. It also discusses
some key elements which are prerequisites for the formation of gout in association with the current
therapeutic regime. The compilation should be helpful in precisely fighting for a cure of gout clinically
and pharmaceutically.
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1. Introduction

Hyperuricemia has been defined as serum uric acid (SUA) >6.0 mg/dL in women;
>7.0 mg/dL in men; >5.5 mg/dL in children and adolescents [1], and is an independent
risk factor of a strong non-linear concentration-dependent to the incident of gout [2].
Genetic variants contribute largely to hyperuricemia [3] with 43 genes so far that have been
identified in controlling SUA levels [4]. Gout, a common metabolic disorder with symptoms
of localized inflammation, is caused by chronic and/or episodic deposition of monosodium
urate (MSU) crystals in joints and soft tissues prompting a gouty attack/flare [5]. It has
not been viewed just as an articular disease with its broad definition, but as a complex
disease with interactive mechanisms of inflammatory and metabolic disorders displaying
its symptoms beyond the local inflammatory consequence of MSU crystal deposition.
Approximately up to 10% of adults have reported having gout [6], and 3.9% and 14.6% of
the US population have gout and hyperuricemia, respectively [7].

It has been well observed and puzzled for a long time that not all hyperuricemia
patients suffer from gout [8], only up to 36% of the patients develop gout [9,10], and not
all gout patients have hyperuricemia [11,12]. Up to 76% of asymptomatic hyperuricemia
patients could not find MSU crystal deposition [10]. This discrepancy has raised many
clinical and scientific debates on the role of SUA in the development of gout and the efficacy
of uric acid-lowering therapy (ULT) on the treatments of gout and other pathological
conditions, despite the risk of gout increasing dramatically with increasing SUA levels in
conjunction with additional factors [13]. The typical progression of gout could start from
hyperuricemia without MSU crystal deposition, to crystal deposition without symptomatic
gout, to acute gout flares and tophi, and to chronic gouty arthritis [14], but the correlations
between gout and hyperuricemia are loose. Recent studies postulate that gout formation
would be well beyond MSU crystal deposition with pathogenic mechanisms involving
overproduction of chemotactic cytokines, cell proliferation and inflammation [15], and
internalization of SUA induced pro-apoptotic and inflammatory effects [16].

Treatment of hyperuricemia in individuals without gout has been contentious partially
due to the interrelationship between hyperuricemia and gout being not fully understood.
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Exploring such a mechanism, therefore, would be helpful in guiding the establishment of
proper therapeutic regimes for both. This critical review aims to gather recently published
literature for the elucidation of the interrelationship between hyperuricemia and gout in
their pathogenesis, clinical evidence of the inflammation effects, MSU crystal formation,
and therapeutic regimes, and attempts to explain why hyperuricemia does not necessarily
induce gout.

2. Uric Acid and Gout

Uric acid (UA) is the end catabolic product of exogenous and endogenous purine
nucleotide metabolism in humans. It exists in blood serum/plasma, cells, and tissues
with steady-state conditions of its production and disposal. Its production can be found
in almost all tissues, while its major disposal is via kidneys. SUA concentrations can be
reflected by the intake from diet, in vivo purine metabolism, renal secretion, and intestinal
degeneration [17]. In vivo, it may offer a neuroprotective advantage in the neurodegen-
erative Alzheimer’s disease [18], schizophrenia [19], Parkinson’s disease [20], multiple
sclerosis [21], and serves as a depression biomarker [22]. SUA concentrations are linked to
muscle strength and lean mass [23], although this was not shown in gastrointestinal tract
cancer patients [24]. SUA may serve as a risk factor to predict poor thyroid function [25] or
an indicator of malnutrition [15]. At a higher level, it activates inflammatory and oxidative
mechanism action events in healthy subjects [26] and is a protective factor against the
pathological decline of lung function [27] or an independent predictor for non-alcoholic
fatty liver disease [28]. Abnormal SUA levels, either higher or lower, could increase the
risk for mortality [29,30]. However, controversial reports have been presented: a slight
increase in SUA level was an independent risk factor for all-cause and cardiovascular
mortality [31,32], while another report did not find any relationship between SUA and
cardiovascular disease (CVD) mortality and morbidity [33]. UA is also a potent antioxidant
and an effective scavenger of singlet oxygen and free radicals [34], almost tenfold greater
than other antioxidants in blood [26] or accounting for over half of the free radical scav-
enging activity in vivo [35]. Supplement of UA in donor blood sustains the antioxidant
protection of the stored red blood cells [36]. The oxidant-antioxidant paradox of UA [37]
may suggest UA could have different molecular behaviors under various pathological
conditions. At the hydrophilic condition, it shows the protective effects of antioxidants [38].
Reducing SUA could decline its protective effect to radiation damage [39], and total bone
mineral density [40,41] or a protective effect on bone loss in rheumatoid arthritis [42]
(Figure 1).
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Beyond its role in protection, over-saturated SUA together with sodium could deposit
in joints, soft tissues, bones, skin, etc., as MSU crystals to form tophi and trigger gout



Biomolecules 2021, 11, 280 3 of 11

flares with episodes of severe pain. Gout is a common and complex form of arthritis with
a sudden attack(s) of pain, swelling, redness, and tenderness in the affected location(s).
Tophaceous gout has been defined as classic periarticular subcutaneous tophi, disseminated
intradermal tophi, an ulcerative form, and gouty panniculitis [43] and commonly appears
as firm, pink nodules or fusiform swellings [44]. Without clinical intervention, tophi can
become developed within affected joints and or tissues and progressively damage them.
Interestingly, the prevalence of gout flares, irrespective of SUA levels, has been linked to
mental disorders [45,46]. Chronic heart failure and diabetes mellitus are more strongly
associated with increased MSU crystal deposition in knees and feet/ankles than gout
duration [47]. As reducing SUA may not be the only way to eliminate gout flares [48],
the level of SUA, in essence, should be an indicator of oxidative paradox in vivo.

3. Distinct Reaction and Priming Pathways of Inflammation by SUA and MSU

The major symptom of a gout flare is the MSU crystal-induced sterile inflammation
with UA controversially being an intrinsic inhibitor of MSU crystal-induced tissue inflam-
mation [49] and a direct promoter in inflammation in vivo [50]. Hyperuricemia could
induce an activated status of inflammation [51] or autoinflammation [52]. It could instigate
inflammation by stimulating the production of inflammatory factors such as interleukin-6,
interleukin-1(beta), tumor necrosis factor-alpha and CRP [53], or enhancing reactive oxygen
species [54], or initiating systemic inflammation via the nuclear factor (NF)-κB signaling
pathway [55], or direct proinflammatory effects on macrophages [56]. Intra-articular injec-
tion of MSU-induced inflammatory arthritis could result from UA injection [57]. Although
both SUA and MSU crystals can stimulate immune responses, different pathways have
been demonstrated between them from epigenetic regulation, inflammasome activation
to transcriptional control [58], and the immune reactions created by them are different
inactivation and priming [59] through various proinflammatory pathways [60] involve in
circulating monocytes and/or resident macrophages. UA released from dying cells during
inflammation reactions could prime new monocytes and precipitate onto MSU crystals
leading to more inflammation and tissue damage. Co-existing gout with hyperuricemia
usually leads to higher systemic inflammation [61] and often with inflammatory psoriasis
arthritis [62]. MSU deposition causes the major symptoms of inflammation and deteri-
oration of the affected tissues with SUA playing a crucial role in a gout flare. This may
support the notion that patients with both hyperuricemia and gout induce a high systemic
inflammation with the greatest mortality risk [61]. Moreover, asymptomatic hyperuricemia
patients usually display less potency of inflammation with a lower number of NKG2D+

(activating receptors of simulation of cytotoxicity) NK cells [63]. It could be speculated
that under hyperuricemia condition the UA paradox interrelationship of the contradictory
dual effects of inflammation [49,50] results from SUA “neutralizing” the inflammation
produced oxygen species to protect tissue damages. It has also been discovered that some
lipids from diet or alcohol consumption could directly trigger gout flares by activation of
NALP-3 inflammasome through binding to toll-like receptors [64] or alteration of glucose
and apolipoprotein metabolism [65], respectively. In conjunction with the aforementioned
evidence, it may be postulated that although hyperuricemia could stimulate the formation
of SUA crystals and prime immune responses in the promotion of gout flares, it goes along
with different pathways of inflammation in contrast to that of MSU crystals (details have
been reviewed on this topic [58]). Therefore, hyperuricemia may not be the only determi-
nant of a gout flare or flares especially in the form of inflammation and can be present even
without crystal formation in some patients [3]. Indeed, the differentiation in inflamma-
tion pathways may lay the foundation for elucidating the importance of eliminating any
inflammation factors other than hyperuricemia during a gout flare.

4. Factors Affecting MSU Crystal Deposition Other Than Hyperuricemia

It has been found that only about half of those with SUA concentrations of ≥10 mg/dL
developed clinically evident gout during a 15-year period [2]. Despite hyperuricemia
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playing a critical role in the formation of MSU crystals, other factors affecting MSU crys-
tallization in tissues to induce gout flare are also involved including but not limited to
temperature, pH, ion concentrations, proteins, and various connective tissue conditions as
well as secondary nucleation formation [66]. Additionally, white blood cell count (WBC) in
synovial envirofluid is also significantly associated with the formation of MSU crystals [67],
even though it is still been unresolved whether WBC induces MSU crystal formation or vice
versa. Reducing blood lipid levels with a lipid-lowering agent(s) could concurrently reduce
SUA level [68], suggesting a decline of the hydrophobic environment could enhance the
solubility of SUA to be easily excreted by the kidney instead of forming MSU. Further-
more, hyperlipidemia is more commonly seen in patients with gout in comparison with
asymptomatic individuals with HDL-C being a protective predictor of SUA levels [69].

In spite of hyperuricemia, it has been established that pre-biological fiber damage
could be a prerequisite for MSU crystal deposition [70]. In the predominated crystal-rich
areas of gouty tophi, new crystals add on the already formed crystals to form secondary
nucleation which puts pressure on surrounding cells and causes tissue damage [71]. Os-
teoarthritis could alter the cartilage surface to precede MSU crystal formation happening
at collagen-rich sites of damaged and exposed tissues [72], and surgical tissue damage
could also induce gout flare [73]. The altered composition of microbiomes could then
contribute to gout formation possibly due to stone or crystal growth in vivo [74]. All
of that evidence may suggest that the formation of MSU crystals to induce a gout flare
usually has an abnormal environment caused by a pathological condition(s) in addition
to hyperuricemia.

5. The Causes of Hyperuricemia Irrelevant to Gout

An increase in UA concentration that exceeds the normal range might not be exclu-
sively linked to gout flares [75] as many factors causing hyperuricemia are not relevant
or significant to gout formation. Certain foods, status, or medicines could induce hyper-
uricemia. Under renal dis-function or cell damage, SUA could be suddenly increased by
changing renal function to cause hyperuricemia [76]. Drugs such as diuretics (thiazide), an-
ticonvulsants (valproate and phenobarbital), cyclosporine, theophylline, and pyrazinamide
have been reported to increase SUA levels [77] in addition to favipiravir (an antiviral
drug) [78]. Emotional stress [79], fasting [75], or dehydration [80] caused by physical
activity can also increase the concentration of SUA. Although occasionally an acute gout
flare may be linked with the medication(s) or condition(s), the enhanced SUA should be
only temporarily sustained and a gout flare is considered unlikely to occur if a longer
duration and higher dose treatment are avoided [81]. This may match with the fact that
most gout patients do not know the trigger(s) of their gout flares [82]. Contrarily, a sudden
reduction of SUA may also trigger a gout flare through the dissolution of MSU fallen off
from tophi [83]. Allopurinol, a ULT medicine, has not shown any efficacy in the prevention
of a first gout flare in patients with asymptomatic hyperuricemia [84]. Fundamentally, SUA
level is associated with physical capacity and muscle strength in healthy subjects [23,24]
and may only be a biological marker of non-gout conditions such as cardiovascular damage
but is not a risk factor for its development [51]. Controversially, pseudo-gout, which is
caused by calcium pyrophosphate deposition (CPPD), could have the same inflammatory
symptoms as gout without hyperuricemia [85].

Gout can be self-resolvable with symptoms disappearing within days or weeks when
hyperuricemia might still be sustained. Therefore, the symptoms might not be paralleled
with a reduction in SUA level. The immunoreaction generated anti-UA antibody could
also prevent or reduce inflammation conditions to release gout flare symptoms [62]. Under
hyperuricemia, apoA-I elevation [86] or neutrophil-derived microvesicles [87] may play
a role in the spontaneous resolution of acute gout arthritis.

The increased SUA after fasting for a long term may not induce any gout flares [75],
plausibly as fasting could reduce the signaling pathway of the mammalian target of ra-
pamycin (mTOR). The declined mTOR pathway could concomitantly inhibit cell growth,
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enhance autophagy and decrease activation of the NF-κB pathway as well as oxidative
stress [88], thus reducing inflammatory processes and preventing a gout attack. All of
those may be indicative that many elements inducing hyperuricemia could be irrelevant or
insignificant to a gout flare. This may also at least partially explain the existence of asymp-
tomatic hyperuricemia. However, longitudinal studies would be useful to understand the
evolution of hyperuricemia and gout further and highlight the need for different treatment
strategies [89].

6. Therapeutic Regimes for Treatments of Hyperuricemia and Gout

The traditional treatment for gout flares has been well established for the improvement
of quality of life (Table 1), although treatment with ULT alone may not be optimal for
patients [90]. The current recommendation is to additionally employ anti-inflammatory
therapy [91] to reduce pathologic MSU deposition [92]. Commencing ULT alone during
an acute gout flare has neither significant efficacy on localized pain, recurrent flares, or ad-
verse effects [48] nor been associated with the risk of gout flare [93], or able to ameliorate
gout associated diabetes incidence or reverse beta-cell apoptosis with significance [94]
or improvement of kidney function [95]. Given the recent safety concerns, gradually up-
titrated allopurinol remains the first-line ULT [96] together with concomitant colchicine or
nonsteroidal anti-inflammatory drugs for enhancement of efficacy [97]. Adversely, treat-
ment of hyperuricemia has raised attention besides gout, and current debates on whether
asymptomatic hyperuricemia should be treated are still ongoing [2,98,99]. This may par-
tially be due to both low and high SUA levels being associated with increased all-cause
and cause-specific mortality with a U-shaped association [100,101]. Adventitious reduction
of SUA with fenofibrate could not mediate the cardioprotective effect [68]. It may be
legitimate that reducing SUA may not rapidly be able to eliminate the local inflammation
that occurred upon a gout flare. Alternatively, targeting MSU crystals could be more useful
and efficient in controlling gout flares. Furthermore, as some comorbidities such as chronic
heart failure and diabetes mellitus are less influenced by SUA levels [47], UTL would not
be favorable to them. In spite of UA infusion improving endothelial function [102], quickly
lowering SUA could induce an acute gout flare [82], cardiovascular events [103], nerve
dysfunction [104], the risk of all-cause death in hemodialysis [61], vertebral fracture [105],
or heart failure in patients [106]. Additionally, it has been reported that in patients with
gout SUA is usually lower during acute gouty attacks than during intercritical periods [11]
possibly due to the slow systemic inflammatory response. Recent evidence demonstrated
that SUA was increased 3 months after starting treatment with TNFis (TNF inhibitors) in
inhibition of inflammation [107] with the pathogenesis remaining unknown.

Table 1. Common medications for the treatments of hyperuricemia and gout flares.

Drug Brand Name(s) Action Mechanism Therapeutic Function

Allopurinol Aloprim, Zyloprim Xanthine oxidase inhibitor. Reduces uric acid production.
Febuxostat Ulonic Xanthine oxidase inhibitor. Reduces uric acid production.

Lesinurad Zurampic URATI inhibitor. Helps your body get rid of
uric acid when you pee.

Colchicine Colcrys, Mitigare Blocker of mitotic cells in metaphase. Reduces inflammation.

Indomethacin Indocin, Tivorbex Inhibitor of the synthesis of
prostaglandins. Relieves the NSAID pain.

Probenecid Probalan Inhibition of a renal tubular transporter. Helps the kidneys excrete uric
acid from your body.

Losartan Cozaar Inhibition of urate/anion transport in
kidneys. Reduces uric acid levels.

Corticosteroids Orapred, Prelone, etc. Suppressor of the multiple
inflammatory genes. Fights with inflammation.

Fenofibrate Antara, Fenoglide, Lipofen,
Lofibra, TriCor, Triglide Increase of uric acid solubility. Reduces uric acid levels.

Pegloticase Krystexxa Recombinant urate oxidase. Breaks down uric acid.
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Traditional Chinese medicine treats gout with efficacy and the fundamental strategy
seems to target specifically restorations of metabolisms and immunity as well as inhibition
of inflammation and peripheral nerve sensation [108]. This may support the notion that
gout is a systematic disease of metabolism, any symptom targeted therapy may not be the
optimal strategy for a cure. Hopefully, more pathogenic evidence on the interrelationship
between gout and hyperuricemia may facilitate a unified guideline globally. Fortunately,
lifestyle intervention significantly decreases the MSU deposit burden and intensive training
and supervision of patients with gout have resulted in very low numbers of patients not
reaching treatment targets [109].

7. Conclusions

Hyperuricemia is a main, but not the only risk factor for gout flares. Recent pub-
lications suggest gout formation would be well beyond hyperuricemia in MSU crystal
deposition with pathogenic mechanisms involving an activation of various inflammation
pathways with UA and MSU, the critical conditions of secondary SUA deposition, and
the degree of intact surrounding tissue(s). The differentiation may explain the existence of
asymptomatic hyperuricemia with the UA nature of the anti-oxidative stress, gout symptom
self-resolution, and some passive increase of SUA irrelevant to gout. Hyperuricemia could
only be accompanied by the aforementioned factor(s) to instigate a gout flare (Figure 2).
The pathogenesis between hyperuricemia and gout may support the current notion that
ULT together with other therapy(s) are recommended in gout patients but controversial in
asymptomatic hyperuricemia individuals, and facilitate a unified therapeutic guideline
globally for both.
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Figure 2. A summary of the prerequisite from hyperuricemia to gout flare. UA is involved in the
pathogenesis of hyperuricemia and gout formation. Hyperuricemia could only be accompanied by
the aforementioned factor(s) to instigate a gout flare. + Favorable; − Adverse; UA: uric acid.

Key taking home messages: 1. The role of serum uric acid (SUA) should, above and
beyond, be an exclusive indicator of a gout flare. 2. Hyperuricemia would not be the only
risk factor of a gout flare due to many irrelevant elements between them. 3. Monosodium
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urate (MSU) deposition requires a pathology environment with damaged bio-fiber integrity
other than hyperuricemia.
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