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Abstract

The spatial organization of different types of cells in tumor tissues reveals important information 

about the tumor microenvironment (TME). In order to facilitate the study of cellular spatial 

organization and interactions, we developed Histology-based Digital (HD)-Staining, a deep 

learning-based computation model, to segment the nuclei of tumor, stroma, lymphocyte, 

macrophage, karyorrhexis and red blood cells from standard Hematoxylin and Eosin (H&E)-

stained pathology images in lung adenocarcinoma (ADC). Using this tool, we identified and 

classified cell nuclei and extracted 48 cell spatial organization-related features that characterize the 

TME. Using these features, we developed a prognostic model from the National Lung Screening 

Trial dataset, and independently validated the model in The Cancer Genome Atlas (TCGA) lung 

ADC dataset, in which the predicted high-risk group showed significantly worse survival than the 

low-risk group (pv=0.001), with a hazard ratio of 2.23 [1.37–3.65] after adjusting for clinical 

variables. Furthermore, the image-derived TME features significantly correlated with the gene 

expression of biological pathways. For example, transcriptional activation of both the T-cell 
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receptor (TCR) and programmed cell death protein 1 (PD1) pathways positively correlated with 

the density of detected lymphocytes in tumor tissues, while expression of the extracellular matrix 

organization pathway positively correlated with the density of stromal cells. In summary, we 

demonstrate that the spatial organization of different cell types is predictive of patient survival and 

associated with the gene expression of biological pathways.
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INTRODUCTION

With the advance of technology, Hematoxylin and Eosin (H&E)-stained tissue slide 

scanning has become a routine clinical procedure, which produces pathology images that 

capture histological details in high resolution. Pathology images of tumor tissues contain not 

only essential information for tumor grade and subtype classifications(1), but also 

information on the tumor microenvironment (TME), such as the spatial organization of 

different types of cells. Cell spatial organization reveals cell growth patterns and the spatial 

interactions among different types of cells, which provide important insights into tumor 

progression and metastasis. A recent study by Cheng et al(2) developed an algorithm to 

segment the cell nucleus and extract the topological features for TME analysis in renal cell 

carcinoma (RCC), which improved the understanding of cell spatial organization and patient 

outcome in RCC. However, this study used an unsupervised approach that assigns an 

identified cell nucleus to one of the clusters without a clear definition, which hampered 

interpretation of the results. Recent studies(3,4) showed that the spatial organization and 

architecture of tumor-infiltrating lymphocytes (TIL) play important roles in the TME. 

However, these studies focused solely on recognizing lymphocytes and ignored other types 

of cells, which greatly limited exploration of the interactions among different types of cells. 

In this study, we developed a deep learning-based algorithm to examine standard H&E 

pathology images to automatically segment and classify different types of cell nuclei. This 

algorithm can be used as a tool to “computationally stain” different types of cell nuclei, in 

order to facilitate pathologists in examining tissue images and researchers in studying the 

TME from these standard clinical materials.

The major cell types in a malignant tissue include tumor cells, stromal cells, lymphocytes, 

and macrophages. Stromal cells are mainly connective tissue cells such as fibroblasts and 

pericytes. The interactions between tumor cells and stromal cells play an important role in 

cancer progression(5–7) and metastasis inhibition(8). Since the cell boundaries of tumor 

cells and stromal cells are often unclear in standard H&E stained lung cancer pathology 

images, we segmented and classified cell nuclei instead of whole cells. TIL are mainly white 

blood cells that have migrated into a tumor region. They are a mix of different types of cells, 

in which T cells are the most abundant population. The spatial organization of TIL has been 

associated with patient outcome and molecular profiles in multiple tumor types(9–12). 

Macrophages are inflammatory cells, and inflammation in tumor niches has been reported as 

a prognostic marker and correlated with tumor progression(13,14). Other tissues and cellular 
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structures existing in the TME include blood vessels(15,16) and necrosis. In this study, 

blood cells and karyorrhexis are segmented to represent blood vessels and necrosis, 

respectively, in order to quantify blood vessels and necrosis and study their interactions with 

tumor cells, stromal cells, lymphocytes and macrophages.

In this study, we developed a deep learning algorithm, Histology-based Digital (HD)-

Staining, using the Mask Regional Convolutional Neural Network (Mask R-CNN) 

architecture(17). We trained this HD-Staining model using pathology images of lung 

adenocarcinoma (ADC) patients from the National Lung Screening Trial (NLST) study with 

the nuclei of tumor cells, stromal cells, lymphocytes, macrophages, blood cells and 

karyorrhexis manually labeled by expert pathologists. Through the training step, the HD-

Staining model automatically learned to identify different nuclei based on a wide range of 

feature maps, including color, size, and texture within neighborhood area. The model 

accuracy was validated in a different set of images. From the identified cell types and cell 

spatial locations, we derived cell spatial organization features to characterize the TME. In 

our analysis, we found that these TME-related image features were significantly associated 

with patient overall survival. Based on these image features, a prognostic model for lung 

ADC patients was developed from the NLST dataset. This model was independently 

validated in the pathology image data from The Cancer Genome Atlas (TCGA) lung ADC 

(LUAD) dataset, in which the predicted high-risk group showed significantly worse survival 

than the low-risk group (pv=0.001), with a hazard ratio of 2.23 [1.37–3.65] after adjusting 

for clinical variables.

Furthermore, the image-derived TME features significantly correlated with the gene 

expression of biological pathways. For example, transcriptional activation of both the T-cell 

receptor (TCR) and programmed cell death protein 1 (PD1) pathways positively correlated 

with the density of detected lymphocytes in tumor tissues, while expression of the 

extracellular matrix organization pathway positively correlated with the density of stromal 

cells.

In this study, we developed a HD-Staining algorithm for nuclei segmentation and cell 

classification as a tool to study the tumor morphological microenvironment using tissue 

pathology images in lung ADC. In order to facilitate usage of this deep learning tool, a user-

friendly web portal has been developed and can be accessed at http://lce.biohpc.swmed.edu/

maskrcnn/analysis.php. Although this tool was developed in lung ADC pathology images, 

our results showed that the HD-Staining method can be adapted and applied in head and 

neck cancer, breast cancer and lung cancer squamous cell carcinoma pathology image 

datasets. The web portal also provides functions to facilitate researchers in adapting the HD-

Staining model for other types of cancers.

MATERIALS AND METHODS

Dataset

Pathology images that support the findings of this study are available online in NLST 

(https://biometry.nci.nih.gov/cdas/nlst/) and The Cancer Genome Atlas Lung 

Adenocarcinoma (TCGA-LUAD, https://wiki.cancerimagingarchive.net/display/Public/

Wang et al. Page 3

Cancer Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://lce.biohpc.swmed.edu/maskrcnn/analysis.php
http://lce.biohpc.swmed.edu/maskrcnn/analysis.php
https://biometry.nci.nih.gov/cdas/nlst/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD


TCGA-LUAD). mRNA expression data for the TCGA dataset are available online at http://

firebrowse.org. The H&E-stained pathology images together with the corresponding clinical 

data were obtained from the NLST and TCGA Lung ADC cohorts: 208 40X pathology 

images for 135 lung ADC patients were acquired from the NLST dataset, and 431 40X 

pathology images for 372 lung ADC patients were acquired from the TCGA LUAD dataset 

(there could be multiple pathology images for a single patient). To refine our analysis within 

TME, a specialized lung cancer pathologist, Dr. Lin Yang, labeled the tumor Region of 

Interest (ROI) for each of the pathology images (Figure 1). Another lung cancer pathologist, 

Dr. Adi Gazdar, confirmed the labelling. Dr. Shirley Yan, another lung cancer pathologist, 

annotated the lung ADC histology subtypes for the NLST dataset. Clinical characteristics of 

the patients in this study are summarized in Supplemental Table 1.

Nuclei segmentation using HD-Staining

Training, validation, and testing sets preparation—In order to construct the training 

set for the HD-Staining algorithm, 127 image patches (500 × 500 pixels) from 39 

pathological ROIs (Figure 1) were extracted from the NLST dataset. In these patches, 

different types of cell nuclei were labeled. All the pixels with tumor nuclei, stromal nuclei, 

lymphocyte nuclei, macrophage nuclei, red blood cells, and karyorrhexis were labeled 

according to their categories and all the remaining pixels were considered “other”. These 

labels, also collectively called the “mask”, were then used as the ground truth to train the 

HD-Staining model. The labeled images were randomly divided into training, validation, 

and testing sets. To ensure independence among these datasets, image patches from the same 

ROI were assigned together. More than 12,000 cell nuclei were included in the training set 

(tumor nuclei 24.1%, stromal nuclei 23.9%, lymphocytes 29.5%, red blood cells 5.8%, 

macrophages 1.5%, karyorrhexis 15.2%), while 1227 and 1086 nuclei were included in the 

validation and testing sets, respectively.

Training process—A deep learning model was developed using the Mask-RCNN 

architecture. A Keras version by Waleed Abdulla was implemented. (https://github.com/

matterport/Mask_RCNN, last accessed on Oct. 1, 2019). While the native structure of Mask-

RCNN was kept, we adapted the implementation for pathological image analysis by 

customizing data loader, image augmenter, image centering and scaling. The model pre-

trained with Coco dataset (http://github.com/matterport/Mask_RCNN/releases/download/

v2.1/mask_rcnn_balloon.h5) was fine-tuned on our training dataset from the NLST study. 

Images were standardized (centered and scaled to have zero mean and unit variance) for 

each RGB channel. To increase generalizability and avoid bias from different H&E staining 

conditions, we performed extensive augmentations on the image patches. In particular, 

random projective transformations were applied to images and their corresponding masks; 

each image channel was randomly shifted using linear transformation(18). For the training 

process, the batch size was set to 2, the learning rate was set to 0.01 and decreased to 0.001 

after 500 epochs, the momentum was set to 0.9, and the maximum number of epochs to train 

was set to 1000. In the validation set, the model trained at the 707th epoch reached the lowest 

loss. This model was selected and used in the following analysis to avoid overfitting. Python 

(version 3.5.2) and python libraries (Keras, version 2.1.5; openslide-python, version 1.1.1; 

tensorflow-gpu, version 1.8.0) were used(19).
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Segmentation performance evaluation—Since the HD-Staining model 

simultaneously segments and classifies cell nuclei, three criteria were used to evaluate the 

segmentation performance in the validation and testing datasets, respectively. First, detection 

coverage was calculated as the ratio between the detected nuclei and the total ground truth 

nuclei. Each ground truth nucleus was matched to a segmented nucleus, which generated the 

maximum Intersection over Union (IoU). If the IoU for a ground truth nuclei was > 0.5, this 

nuclei was labeled “matched”; otherwise it was labeled “unmatched”. Second, nuclei 

classification accuracy was determined for the matched nuclei by comparing the predicted 

nucleus type with the ground truth. Third, segmentation accuracy was evaluated by the IoUs, 

which were calculated for each detected nucleus and averaged in different nuclei categories.

Image feature extraction to describe nuclei composition and organization

In order to make the HD-Staining model more computationally efficient while retaining a 

good representation of each ROI, instead of applying the model to the whole slide, 100 

image patches (1024 × 1024 pixels) were randomly sampled and analyzed for each 

pathologist-labeled ROI (Supplemental Figure S1A). These 100 image patches provided 

good coverage of each ROI (Supplemental Figure S1B). Nuclei were then segmented and 

classified through the HD-Staining model developed from this study (Figure 1). In order to 

characterize the spatial organization of cells using a graph, we calculated the centroids of 

nuclei and used them as vertices to construct a Delaunay triangle graph for each image 

patch. The Delaunay triangle graph connects nuclei into a graph, and the number of 

connections and the average length (i.e. spatial distance) between two types of nuclei 

summarize the spatial organization of different types of cell. Since 6 nucleus categories were 

included in this study, the edges of the graph were classified into 21 categories [i.e. 6 × 

(6+1)/2 = 21] according to their vertex pairs. For each image patch, the number of 

connections (i.e. edges) for different categories was counted (which added up to 21 

features), the lengths of the connections were averaged for each edge category (yielding 

another 21 image features), and the density of each type of nucleus was calculated (yielding 

6 image features). In total, 48 image features were extracted. The image features were 

averaged across the 100 patches for each ROI in the pathology image. When 2 or more 

pathology slides were available for 1 patient, the features from the slides were averaged for 

each patient. Thus, in total 48 image features were extracted for each patient, in both the 

NLST and TCGA datasets.

Prognostic model development and validation

Overall survival, defined as the date of diagnosis till death or last contact, was used as the 

response variable for survival analyses. A CoxPH (Cox Proportional Hazard) prognostic 

model for overall survival was developed in the lung ADC patients in the NLST dataset and 

independently validated in the TCGA LUAD dataset. An elasticnet penalty was used to 

avoid overfitting for the 22 features selected in the final CoxPH model (Supplemental Table 

3). Given a set of the 22 image-derived TME features for each patient, the prognostic model 

will calculate a risk score for the patient by summarizing the products between features and 

corresponding coefficients, with a higher risk score indicating worse prognosis. The median 

risk score was used as the cutoff. The patients with a risk score higher than the median risk 

score were predicted as the high-risk group, and otherwise as the low-risk group. The 
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survival curves of the predicted high- and low-risk groups were estimated using the Kaplan-

Meier method. The survival differences between predicted high- and low-risk groups were 

compared using a log-rank test. A multivariate Cox proportional hazard model was used to 

determine the prognostic value of predicted risk groups (using image-derived TME features) 

after adjusting for other clinical characteristics, including age, gender, smoking status, and 

stage. R software, version 3.4.2, and R packages (survival, version 2.41–3; glmnet, version 

2.0–13; spatstat, version 1.55–1) were used(20,21). The results were considered significant 

if the two-tailed p value <0.05.

Association analysis between image features and gene expression of biological pathways.

Gene expression data of 372 patients from the TCGA LUAD dataset were downloaded and 

preprocessed: the genes whose mRNA expression levels were 0 in more than 20% of patient 

samples were removed. The correlation between mRNA expression levels and image-derived 

TME features was evaluated using Spearman rank correlation. Gene set enrichment analysis 

(GSEA) was performed for each TME feature. All gene sets from the Reactome database 

were used(22). For multiple testing correction, Benjamini-Hochberg (BH)-adjusted p values 

were used to detect significantly enriched gene sets. Gene sets with BH-adjusted two-tailed 

p values < 0.05 were regarded as significantly enriched. R packages Hmisc (version 4.1–1), 

fgsea (version 1.4.1), and gplots (version 3.0.1) were used(23).

RESULTS

HD-Staining simultaneously and accurately classifies and segments cell nuclei

The developed HD-Staining model segments and classifies individual nuclei at the same 

time (Supplemental Figure S2 A, B & C). Figure 2A demonstrates some of the segmentation 

and classification results. In total, the segmented cell nuclei were classified into six 

categories: tumor cell, stromal cell, lymphocyte, macrophage, red blood cell, and 

karyorrhexis, and all the remaining structures or spaces were considered background. 

Different nuclei were colored according to the predicted categories (Figure 2A). For detected 

objects, the overall classification accuracy was 85% and 85% in the validation set and the 

testing set, respectively, while the accuracy for tumor nuclei was 88% in validation and 90% 

in testing, respectively (Figure 2B). The stability of classification accuracy was further 

evaluated and validated in the 5 major LUAD subtypes: lepidic, papillary, acinar, 

micropapillary, and solid (Supplemental Figure S3 A–E Figure S3)(24). It is noteworthy that 

the developed HD-Staining model can be applied to the entire digital pathology image to 

generate a cell spatial organization map across the whole slide, where tumor region and 

lymphocyte infiltration areas are clearly illustrated (Figure 3), hinting at its potential ability 

to assist pathologic diagnosis.

To further validate the cell classification accuracy, nuclei detection results on H&E images 

were compared with immunohistochemistry (IHC) stained images from the consecutive cut 

slides of the same sample (Supplemental Figure S4, S5, and S6). From these consecutive cut 

slides of the same tumor tissue, we observed consistent pattern between the predicted 

lymphocyte from HD-Staining model and the IHC-stained CD3, a marker for T cells. 

Similarly, we observed consistency between the predicted macrophage and IHC-stained 
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CD68, a marker for cells in monocyte lineage. These comparisons with IHC staining 

validated the cell classification accuracy of the HD-Staining model.

Prognostic value of nuclei composition and organization in the TME

A Delaunay triangle graph was constructed for each image patch(2) to extract topological 

features from nuclei spatial organization to characterize the TME (Supplemental Figure S7). 

The nuclei and edges were counted and edge lengths averaged to yield 48 image features 

(see Methods Section). Supplemental Table 2 summarizes the TME features that 

significantly correlated with survival outcome in univariate analysis. It shows that higher 

karyorrhexis density, more karyorrhexis-karyorrhexis connections and more karyorrhexis-

red blood cell connections were associated with worse survival outcome, which was 

expected as these features indicate a higher rate of tumor necrosis. Furthermore, higher 

stromal nuclei density and more stromal-stromal connections were associated with better 

survival outcome, which agreed with our current knowledge that more stromal tissues 

corresponds to better prognosis.

A prognostic model based on the image features was developed in the NLST dataset and 

then independently validated in the TCGA LUAD dataset. Figure 4 shows the survival 

curves of the predicted high and low-risk groups in the TCGA cohort, where the patients in 

the predicted high-risk group show significantly worse survival than those in the predicted 

low-risk group (log-rank test, p value = 0.0011). Furthermore, the risk group defined by the 

TME features serves as an independent prognostic factor (high- vs. low-risk, Hazard Ratio = 

2.23, 95% Confidence Interval = 1.37–3.65, and p value=0.0013), after adjusting for clinical 

variables, including age, gender, smoking status, and stage (Table 1).

Association between image features and transcriptional activity of biological pathways

GSEA was performed to identify the biological pathways whose mRNA expression profiles 

significantly correlated with image-derived TME features in the TCGA dataset. Figure 5 and 

Supplemental Figure S8 show examples of these biological pathways. For example, the 

transcriptional activation of both the T-cell receptor (TCR) and programmed cell death 

protein 1 (PD1) pathways positively correlated with lymphocyte density in the tumor tissue 

(Figure 5A). This observation is consistent with previous reports that genes involved in the 

TCR and PD1 pathways are expressed in immune cells(25,26). In addition, expression of the 

extracellular matrix organization gene set, for which fibroblasts act as an important 

source(27), positively correlated with stromal cell density in tumor tissue (Supplemental 

Figure S8A). In a negative control experiment where we randomly shuffled the patient IDs 

and repeated the same analysis, such correlation was no longer observed (Supplemental 

Figure S9).

Furthermore, GSEA analysis showed that the cell cycle pathway was significantly enriched 

with genes whose expression levels correlated with both the tumor nuclei density (Figure 

5B) and karyorrhexis density in tumor issue (Supplemental Figure S8B). To look into the 

relationship between tumor cell density and the gene expression of the cell cycle pathway, 

we grouped and sorted the patients in the TCGA LUAD cohort according to their tumor 

nuclei density. Figure 5C shows, for each patient group in the TCGA LUAD dataset, the 
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average expression levels of genes within the cell cycle pathway and whose expression 

levels significantly (p value <0.001) correlated with tumor nuclei density. Positive 

correlations between gene expression and tumor nuclei density can be observed for most of 

the cell cycle-related genes, except for one gene, POLD4, which showed an inverse trend. 

Most of the genes in the cell cycle pathway have higher expression in tumors with higher 

tumor nuclei density (may be a higher grade of tumor), while POLD4 shows the opposite 

pattern. This pattern of POLD4 compared with other genes in the cell cycle gene set is 

consistent with a previous study of lung cancer(28): while most cell cycle genes were 

upregulated in lung cancer, POLD4 was usually downregulated.

Webserver for publically accessible pathological image segmentation model

In order to facilitate usage of the HD-Staining model developed in this study, we also 

developed an online tool (http://lce.biohpc.swmed.edu/maskrcnn/analysis.php) for this deep 

learning-based nuclei segmentation and classification model (Figure 6). This tool requires 

only a pathology image (or a patch from the image) as the input (Figure 6A). Each uploaded 

input image will be assigned a job ID (Figure 6B). The segmentation results will be 

automatically displayed and the spatial coordinates of each nucleus can be downloaded as an 

Excel table (Figure 6C). In order to assist researchers in using this tool to study TME-related 

features for other cancer types, we also provide a function to automatically generate a mask 

for other cancer types. The newly generated segmentation mask can greatly reduce the 

manual work of creating the training sets for other cancer types, and thus accelerate the 

development of applications for pathology image analysis.

DISCUSSION

In this study, we developed a deep learning-based analysis tool to study the TME using 

standard H&E stained pathology images. This tool successfully visualized and quantified the 

spatial organization of tumor cells, stromal cells, lymphocytes, inflammatory cells, red blood 

cells and karyorrhexis in the tumor tissues of lung ADC patients. The topological features of 

cell spatial organization were used to characterize the TME. Our results showed that these 

features were associated with patient survival outcome and the gene expression of biological 

pathways. From these image-derived TME features, we developed a prognostic model for 

lung ADC patients and independently validated it in another lung ADC patient cohort. The 

prognostic model predicts patient survival independent of other clinical variables in the 

validation cohort.

Several previous studies have tried to analyze the TME and discovered prognostic image 

features. However, these studies involved time-consuming hand-labeling by pathologists(29–

31). In contrast, we developed a fully automated and objective nuclei segmentation and 

classification strategy. In addition, this deep learning-based method enables the 

segmentation of nuclei within a whole slide image, including small biopsy samples. Since 

the number of cells in a whole slide image could be tremendous (~2,000,000 on average), 

manually labelling all of them is impractical. Thus, this deep-learning method empowers 

quantification of the TME across the whole slide image. Furthermore, although developed in 
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lung ADC, this method can be easily generalized to other cancer types by retraining the 

model using the tools provided by our web portal.

In pathology image analysis, three-dimensional tissue structures are captured as two-

dimensional images, and the cell nuclei may “touch” and “overlap” each other in the 

resulting images. This is one of the major challenges for nuclei segmentation in pathology 

image analysis. In this study, we developed a HD-Staining model to segment and classify 

different types of cell nuclei in order to study the spatial interactions among different cell 

types and tissue structures. Compared with other image segmentation algorithms, the HD-

Staining method has several advantages: First, it segments and classifies nuclei at the same 

time, while traditional nuclei segmentation algorithms relying on color deconvolution cannot 

classify cell types(2,32). Second, by using extensive color augmentation during the training 

process, it adapts to different staining conditions, which makes the algorithm more robust 

and allows us to avoid the time-consuming color normalization steps(33). Third, compared 

with traditional statistical approaches, deep learning based approach does not require 

handcrafted feature extraction, can be highly parallel and saves time. With GPU-aided 

computation, processing (classifying or segmenting) a 1000-by-1000-pixel image usually 

takes less than one second for HD-Staining, much faster than non-deep learning-based 

image segmentation methods(34). Fourth, compared with other popular semantic image 

segmentation neural networks such as Fully Convolutional Network (FCN), SegNet, and 

Deeplab(35–37) that classify each pixel, HD-Staining is intrinsically an instance 

segmentation algorithm that detects an object bounding box first and assigns pixels as 

foreground or background within this bounding box(17). In summary, HD-Staining provides 

a new solution to segmenting closely clustered nuclei in tissue pathology images.

The associations between the extracted TME features and patient prognosis were evaluated 

in this study. Karyorrhexis, a representative of necrosis, has been reported as an aggressive 

tumor phenotype in lung cancer(38). Consistently, the density of karyorrhectic cells and 

numbers of karyorrhexis-karyorrhexis edges were shown as negative prognostic factors in 

this study. On the other hand, the density of stromal cells and the numbers of stromal cell-

stromal cell edges were positive prognostic factors, which is consistent with a recent report 

on lung ADC patients(8). These consistencies indicate the validity of this MaskRCNN-based 

deep neural network and the potentiality of using cell organization features as novel 

biomarkers for clinical outcomes. Currently, there are many lung cancer prognosis models 

using clinical data, such as nomogram models(39,40). In this study, we showed that the 

image-based model has the prediction power to separate patients with significant survival 

differences after adjusting for clinical variables. It indicates that a prognostic model with 

both clinical variables and pathology image-based risk score could better predict patient 

prognosis than using clinical variable alone. In addition, many genomic signatures have been 

developed in recent years for lung cancer patient prognosis(41). Comparing with genomic 

signature, the pathology image-based prediction model can be more easily integrated into 

the current clinical practice, as the pathology image based diagnosis is a part of routine 

clinical procedures. Thus, modeling using imaging data has advantages in the aspect of 

clinical practice. Furthermore, tumor genomic profile and pathology images provide 

complementary information and characterization of the tumor. Therefore, it will be 
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potentially powerful to integrate pathology images, genomic data and clinical data for better 

characterization of tumor and prediction of patient outcomes.

Gene expression patterns have been widely used to study the underlying biological 

mechanisms of different tumor types and subtypes(42,43); moreover, genes with abnormal 

expression could become potential therapeutic targets of cancers (44,45). However, 

traditional transcriptome profiling is usually done in bulk tumor(42,46), which contains 

multiple cell types, such as stromal cells and lymphocytes, in addition to tumor cells. This 

bulk tumor-based sequencing could blur or diminish the mRNA expression changes arising 

from a single cell type or from different cell compositions in the TME. Currently, the 

relationship between the transcription activities of biological pathways and the TME 

remains unclear. In this study, the image-derived TME features show interesting correlations 

with the transcriptional activities of biological pathways. For example, gene expression 

levels of TCR and PD-1 pathways positively correlated with the density of lymphocytes 

detected from tumor tissues. As genes involved in the TCR and PD1 pathways are expressed 

in immune cells(25,26), such correlation illustrates the contribution of lymphocytes to bulk 

tumor transcriptome profiling and thus validates the accuracy of both image-based nuclei 

detection and genetic sequencing of bulk tumor. This indicates the image-derived TME 

features may be used to study or predict immunotherapy response, since several promising 

cancer immunotherapies rely on activation of tumor-infiltrated immune cells and blocking 

immune checkpoint pathways(26,47). In addition, the gene expression extracellular matrix 

organization pathway is associated with the density of stromal cells in tumor tissues. Since 

traditional transcriptome sequencing is done in bulk tumor, accurate cell composition 

derived from pathology images could help to improve the evaluation of gene expression for 

each individual cell type. Moreover, the correlation between image features and 

transcriptional patterns of biological pathways hints at the potential usage of image features 

to study tumor bioprocesses, including cell cycle and metabolism status.

There are some limitations to this HD-Staining model. First, information on the individual 

nuclei, such as nucleus shape and size, was not considered since this study focused on nuclei 

organization. Morphological and intensity features of nuclei have been reported as 

prognostic factors, which can be automatically extracted using this nuclei segmentation 

algorithm(48). Second, some special structures, such as bronchi and cartilage, were not 

included in this algorithm. This study handled this problem by avoiding such structures 

during ROI annotation. However, a more comprehensive training set would be desirable for 

whole slide analysis. Moreover, to distinguish different functional subtypes of lymphocytes, 

stromal cells(49), and macrophages(50), tissue slides which are sequentially stained with 

H&E and IHC of specific markers would be needed as a training set. Distinguishing 

functional cell subtypes would further illustrate which subtypes play predominant roles in 

patient prognosis. Third, to represent whole tumor heterogeneity, more than one slide, such 

as tissue microarray, should be collected and analyzed per tumor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance:

Findings present a deep learning-based analysis tool to study the tumor 

microenvironment in pathology images and demonstrate that the cell spatial organization 

is predictive of patient survival and is associated with gene expression.
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Figure 1. Flow chart of pathology image analysis pipeline in this study.
Mask RCNN: Mask Regional-Convolutional Neural Network.
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Figure 2. HD-Staining model for nuclei segmentation and classification results in lung ADC 
pathological images.
(A) Examples of input lung ADC image patches and prediction results. (B) Confusion 

matrix (also called error matrix) between true labels and predicted labels, in validation and 

testing sets respectively.
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Figure 3. Nuclei segmentation and classification across whole slide image.
Upper panel: Original pathology image. Lower panel: detected and classified nuclei overlay 

on top of the original pathology image.
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Figure 4. Prognostic value of the TME feature-based prognostic model.
K-M plot of predicted high- and low-risk groups in the TCGA dataset. Log-rank test, p-

value = 0.001.

Wang et al. Page 18

Cancer Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Correlation between image features and mRNA expression in tumor samples from the 
TCGA dataset.
(A-B) Volcano plots of gene set enrichment analysis results correlating mRNA expression 

level with lymphocyte density (A) and tumor nuclei density (B), respectively. Thirteen 

interesting gene sets (Reactome) are highlighted. (C) To look into the significantly 

correlated gene sets, an example of a heatmap shows that most mRNA expression levels in 

the cell cycle gene set positively correlate with tumor nuclei density in tumor issue. Only 

genes with p value < 0.001 in Spearman rank correlation with tumor cell number are shown. 

Patients are grouped according to tumor cell density showing on the top row.
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Figure 6. An online tool for nuclei segmentation and classification in pathology image.
Nuclei segmentation and classification results can be automatically generated from 

pathology images. The spatial locations and cell types of individual cells can be downloaded 

as an Excel table. Step 1. Select an image (A). Step 2. Submit an analysis job (B). Step 3. 

Result page (C).
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Table 1

Multivariate survival analysis of predicted risk group adjusted by potential confounders.

TCGA dataset (n=371) HR (95% CI) p value

High- vs. low-risk 2.23 (1.37 – 3.65) 0.0013

Age (year) 1.02 (0.99 – 1.05) 0.097

Male vs. female 0.90 (0.55 – 1.49) 0.70

Smoker vs. non-smoker 1.09 (0.66 – 1.81) 0.73

Stage

 Stage I ref -

 Stage II 2.36 (1.28 – 5.30) 0.0029

 Stage III 4.59 (2.44 – 8.63) <0.001

 Stage IV 3.30 (1.30 – 8.41) 0.012

CI, confidence interval; HR, hazard ratio.
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