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Abstract

been reported in poplar.

Background: The bZIP gene family, which is widely present in plants, participates in varied biological processes
including growth and development and stress responses. How do the genes regulate such biological processes?
Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet

Results: In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains.
According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene
structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication
events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity
between these genes and the related genes from six other species. Evidence from transcriptomic data indicated
that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we
identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the
representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially
expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary
metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly
participate in the regulation of metal ion transport, and methionine biosynthetic.

Conclusions: Using comparative genomics and systems biology approaches, we, for the first time, systematically
explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays
significant roles in regulation of poplar development and growth and salt stress responses through differential gene
networks or biological processes. These findings provide the foundation for genetic breeding by engineering target
regulators and corresponding gene networks into poplar lines.
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Background

The basic leucine zipper (bZIP) represents a super gene
family that encodes transcription factors. This gene fam-
ily is widely distributed in eukaryotes. The bZIP pro-
teins, which are defined by the conserved bZIP domain
[1, 2], play significant roles in the regulation of various
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biological processes, such as plant growth and develop-
ment and salt stress responses.

Transcription factor proteins coded by the bZIP gene
family contain a highly conserved bZIP domain. The
structure is composed of 60—80 amino acids, including a
basic DNA binding region and adjacent leucine zipper [2].
The binding region contains nuclear localization signals
and an N-X,-R/K motif with constant precise intervals to
contact target DNA [3]. The leucine zipper region is com-
posed of heptad repeats of leucine or other large hydro-
phobic amino acids, and the number of repeats in

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-021-02879-w&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:boruzhou@yahoo.com
mailto:tbjiang@yahoo.com

Zhao et al. BMC Plant Biology (2021) 21:122

different genes may vary greatly [3, 4]. Leucine is located
at the seventh amino acid position of the heptapeptide se-
quence and may be replaced by isoleucine, valine, phenyl-
alanine or methionine [3]. The bZIP proteins usually
function by forming dimers through the leucine zipper
[4]. Plant bZIP transcription factors have a binding prefer-
ence for ACGT core sequences, such as A-box (TACG
TA), C-box (GACGTC), and G-box (CACGTG). In
addition, they also bind to other DNA sequence motifs [3,
4]. The outer flanks of the core element regulate specifi-
city of protein-DNA interactions [3]. Previous studies have
indicated that segmental genome duplications and whole-
genome duplication events may explain expansion of the
bZIP gene family [2, 5]. Regarding classification, re-
searchers initially divided the bZIP gene family members
into 10 groups in Arabidopsis, based on common domains
[3]. Then the Arabidopsis bZIP genes were updated and
further divided into 13 groups (A-M) [4].

The bZIP gene family plays important roles in biological
processes, such as growth and development, maturation of
flowers, and stress responses in plants. The Arabidopsis
bZIPI1 gene impacts root development by linking low-
energy signals to auxin-mediated control of primary root
growth [6]. HY5 encodes a bZIP protein, which is involved
in the regulation of Arabidopsis root and hypocotyl devel-
opment [7]. Overexpression of ZmbZIP4 in maize leads to
an increase in the number of lateral roots, longer primary
roots, and an improved root system [8]. The bZIP proteins
also regulate plant responses to abiotic stresses, such as salt
stress. Over-expression of SIAREB gene in tomato can im-
prove plant tolerance to water deficiency and salt stress [9].
Similar results were observed for the GZABF2 gene in Ara-
bidopsis and cotton [10], as well as for GmbZIP2 in trans-
genic soybean [11].

Studies on the bZIP gene family in poplar have focused
only on its functions in root development and drought re-
sistance. For example, poplar PtabZIPIL is mainly
expressed in roots and can mediate the development of
lateral roots and drought resistance by regulating various
metabolic pathways [12]. Poplar bZIP53 is inducible in
gene expression by salt stress and negatively regulates the
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development of adventitious roots [13]. The poplar
AREBI can regulate drought responses and tolerance of
Populus trichocarpa by affecting histone acetylation [14].
The comprehensive analysis and characterization of the
poplar bZIP gene family and the screening of tissue differ-
entially expressed genes (DEGs) and salt stress response
genes using transcriptome sequencing can provide an im-
portant reference for gene function researches and genetic
engineering breeding. In addition, using bioinformatics
methods to reveal the biological processes that genes may
participate in will help to analyze the regulatory mechan-
ism of genes. In the present study, we performed system-
atic investigation on the bZIP genes in poplar, including
identification of gene family members; protein sequence
analyses and phylogenetic relationships; chromosomal dis-
tribution of the genes; genomic tandem duplications and
segmental duplications; and collinearity analysis across
species. Furthermore, based on transcriptome profiling
data, we also explored differential expression patterns of
the bZIP genes across different tissues, and their responses
to salt stress. Finally, we performed gene co-expression
and network analyses on the key genes, followed by gene
set enrichment analyses. Our systems biology approach
has shed light on differential gene networks or biological
pathways associated with varied biological processes.

Results

Identification and characterization of the bZIP
transcription factor family in poplar

In this study, we identified 86 proteins from the bZIP
family, by use of HMMER analysis (E-value <1 x
107°). We then used Pfam and SMART databases to
verify the results [15-17]. Evidence from verification
by Pfam and SMART indicated that the 86 poplar
proteins shared the bZIP domain, which is congruent
to our predictions. Thus we extracted the amino acid
sequences of the bZIP conserved domain from each
member and performed multiple sequence alignment
[18]. The results are visualized in Fig. 1. The bZIP
domain is composed of a basic DNA-binding region
and an adjacent leucine zipper structure. The basic

N Basic region

Leucine zipper C

Fig. 1 Visualization of multiple sequence alignment of the poplar bZIP family DNA binding domains. The total height of the letter piles at each
position indicates the conservation of the sequence at that position (measured in bits). The height of a single letter in the letter piles represents
the relative frequency of the corresponding amino acid at that position
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region contains an invariable N-X;-R/K motif, while tree, using the entire amino acid sequences of each
the ZIP domain is composed of heptapeptide repeat member from both poplar and Arabidopsis. The Arabi-
of Leucine (L) or related hydrophobic amino acid. dopsis bZIP family members are divided into 13 groups
The highly conserved leucine residues are occasionally  using letters representing some of their important mem-
replaced by isoleucine, methionine, etc. (Fig. 1). Com-  bers (A for ABF/AREB/ABI5, C for CPRF2-like, G for
pared to the previous studies in Arabidopsis [3, 4], GBF, H for HY5), protein size (B for big, S for small), or

our results are congruent to those. alphabetically [3, 4]. As shown in Fig. 2, we divided the
poplar bZIP proteins into 12 groups, based on previous
Phylogenetic tree and sequence structure analysis studies in Arabidopsis thaliana. The size of the 12

To explore the evolutionary relationships and classifica-  groups varies. The three largest groups have 19 (S
tion of the bZIP family, we constructed a phylogenetic  group), 17 (A group), and 14 (D group) members, while
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Fig. 2 Dendrogram of poplar and Arabidopsis bZIP members. The dendrogram was drew by MEGA7 with the Maximum Likelihood method and
JTT + G+ F model. Different groups are marked with different colors. The groups were named with letters representing some of their important
members (A for ABF/AREB/ABIS, C for CPRF2-like, G for GBF, H for HY5), protein size (B for big, S for small), or alphabetically
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groups J, B, M, and K have only 1, 2, 2, and 0 members, expected, members of the same group, especially some
respectively. close members, share similar gene structures. For ex-

In addition, to explore the sequence structure of the ample, out of the 19 members in the S group, 18 contain
poplar bZIP family, we analyzed the intron/exon struc- only one exon. All members in group C harbor 6 exons
ture and motif composition of each member (Fig. 3). As  and 5 introns. Out of the 7 members in group G, 6 have
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12 exons and 11 introns. Interestingly, many members
with a closer relationship also share similar exon lengths
(Fig. 3).

Using MEME [19], we found a total of 20 conserved
motifs (Fig. 3). Through the annotations of SMART and
Pfam databases, we found that motif 1 is a bZIP domain,
motif 2 and 4 are DOG1, and other motifs have no spe-
cific annotation information (Supplemental Table 1). As
expected, all of the poplar bZIP members share the
motif 1. In contrast, motifs 2, 3, 4, and 6 exist only in
the majority of members in group D. Similarly, motifs 7
and 9 occur only in Group A. Motif 8 presents only in
groups S, C, and J. Motif 10 rests only in group A and B.
Motif 11 is shared only by all members in group D.
Motif 14 exists only in the six members of group D.
Motif 15 exists only in all members of group F. Motif 16
occurs only in the 7 members of group D. Motif 17 ex-
ists only in the 5 members of group G and B. Motif 18
presents only in the three members of group G. Many
motifs exist in specific groups, which might be related to
specific biological functions.

Chromosomal location and collinearity analysis of the
bZIP gene family in poplar

Using poplar genome annotation information and
TBtools [20, 21], we visualized the chromosomal distri-
bution of the bZIP gene family. Results from Fig. 4 indi-
cated that the 86 bZIP genes are unevenly distributed on
the 17 chromosomes, and the number of genes on each
chromosome is irrelevant to chromosome size. For ex-
ample, the largest chromosome (Chr 1) contains only 5
genes, while the smallest chromosome (Chr 9) contains
8 bZIP genes. No genes were located on chromosomes
11 or 12.

Subsequently, using TBtools with the Multiple
Collinearity Scan toolkit (MCScanX) method [21, 22],
we analyzed the tandem duplication events among the
genes. Interestingly, no tandem duplication events were
identified. Then, we used TBtools with the BLASTP and
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MCScanX methods to analyze the segmental duplication
events [21, 22]. Our results are shown in Fig. 5 and Sup-
plemental Table 2. We identified a total of 31 gene pairs
with segmental duplication events, which occurred on
16 of the 19 chromosomes. These lines of evidence sug-
gest that segmental duplication events are the main driv-
ing force for the diversity of the bZIP genes in poplar.

Furthermore, we also explored the collinearity rela-
tionships between the poplar bZIP genes and related
genes from six representative species, including three
eudicots (Arabidopsis thaliana, Glycine max, and Sola-
num lycopersicum) and three monocots (Oryza sativa,
Zea mays, and Ananas comosus), to explore orthologs
(Fig. 6, Supplemental Table 3). A total of 55 poplar
genes have collinearity relationships with 11 Arabidopsis
genes, 74 soybean genes, 20 tomato genes, and 5 pine-
apple genes. However, there is no such relationship be-
tween poplar genes and rice or maize genes
(Supplemental Table 3). The number of orthologous
gene pairs is 16 between poplar and Arabidopsis, 127 be-
tween poplar and soybean, 34 between poplar and to-
mato, and 9 between poplar and pineapple. However, no
such gene pairs were identified between poplar and rice,
and between poplar and maize. These may be explained
by the closer phylogenetic relationships among the di-
cots relative to monocots.

It is worth noting that there was great collinearity be-
tween the poplar genes and the soybean genes, than
those found with the other five species. This may be re-
lated to the fact that both poplar and soybean belong to
fabids. In addition, we found that a large number of the
poplar bZIP genes have collinearity relationships with
three to four soybean genes, suggesting that these genes
may play important roles in the evolution of the gene
family. In addition, we also found that two poplar bZIP
genes (Potri.006G251800.1 and Potri.018G029500.1) are
collinear with pineapple genes. However, there is no
such relationship with the genes from the other five
plants, suggesting that these genes have been retained in
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Chro04

Fig. 5 Collinearity analysis of the bZIP gene family in poplar. Chromosomes 01-19 are represented by blue rectangles. The lines, heatmaps, and
histograms along the rectangles represent gene density on the chromosomes. The gray lines indicate synteny blocks in the poplar genome,
while the red lines between chromosomes delineate segmental duplicated gene pairs
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pineapple and poplar and have been lost in the rest of
the plants analyzed.

We also used TBtools to calculate the Non-
synonymous (Ka) / synonymous (Ks) ratios for each
gene pair, to explore the evolutionary constraints of the
poplar bZIP genes [21]. The Ka/Ks ratios of both seg-
mental duplication and collinearity gene pairs are less
than 1. This means that the poplar bZIP gene family
might have experienced strong purifying selection pres-
sure in the process of evolution.

Tissue-differential gene expression of poplar bZIP genes
To explore expression patterns of the poplar bZIP
gene family in different tissues, we used transcriptome
profiling data from RNA-Seq to analyze the bZIP
gene expression in poplar roots, stems, and leaves. As
shown in Fig. 7a, we divided these genes into 9
groups with specific patterns. For example, genes in
groups 2 and 4 are highly expressed in stems. In con-
trast, those of group 8 have higher expression levels
on roots.
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We then used the DESeq method to identify DEGs 7b-d and Supplemental Data 1, the majority of DEGs

across the tissues [23]. Our results indicated that there (18) were identified in roots. Among them, 4 and 13
were 30 DEGs between leaves and roots (8 and 22  genes were down- and up-regulated in roots relative to
down- and up-regulated in roots, respectively), 13 be- the other two tissues, respectively. And there is also a
tween leaves and stems (5 and 8 down- and up- gene that was up-regulated in roots relative to leaves,
regulated in stems, respectively), and 25 between roots  but was down-regulated in roots relative to stems. Simi-
and stems (15 and 10 down- and up-regulated in stems, larly, we identified 9 DEGs in the leaves. Among them,
respectively) (Supplemental Data 1). Subsequently, we respective 7 and 2 genes were down- and up-regulated
identified genes that are differentially expressed in one in leaves compared to stems and roots. Seven DEGs
tissue relative to the other two tissues. As shown in Fig.  were identified in the stems. Among them, one gene was
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(See figure on previous page.)

Fig. 7 Differentially expressed bZIP genes over tissues in poplar. @ Heatmap of poplar bZIP gene expression without treatment. b-d Number of
tissue differentially expressed genes displaying distinct and shared expression between pairs of tissues without treatment. The numbers in the
shared part of each figure are DEGs in one tissue relative to the other two tissues. DD and UU represent down- and up-regulated in the two
comparisons. DU stands for down-regulation in the left comparison and up-regulation in the right comparison. UD is opposite to DU. e
Comparisons of the shared genes from B to D. The shared five genes were differentially expressed in any tissue relative to the other two tissues. f
Heatmap of five genes shared in panel E. L(C), S(C), and R(C) represent leaves, stems, and roots without treatment

down-regulated and 2 genes were up-regulated in stems
compared to leaves and roots. Furthermore, four genes
were up-regulated in stems relative to leaves, but were
down-regulated in stems relative to roots. Finally, we
compared the three sets of genes identified above, and
obtained 5 shared genes, which were differentially
expressed in any tissue relative to the other two tissues
(Fig. 7e). We then drew a heatmap, based on the expres-
sion data of these 5 genes (Fig. 7f). It appears clear
tissue-specific expression patterns; that is, one gene
showed high, moderate, or low expressed in stems, roots,
and leaves, respectively. However, the rest of the genes
displayed a different pattern (Fig. 7f).

Gene expression in response to salt stress in poplar

To explore expression patterns of the bZIP gene family in
response to salt stress, we analyzed expression changes of
the responsive genes before and after salt stress, based on
the RNA-Seq data. As shown in Fig. 8a-c and Supplemen-
tal Data 2, we identified the majority of DEGs in roots (16
and 15 down- and up-regulated, respectively), followed by
19 genes in leaves (8 and 11), and by 10 genes in stems (4
and 6). We then compared the three groups of genes and
drew Venn diagrams (Fig. 8d-f). As shown in Fig. 8d, the
majority of genes (22) responsive to salt stress were found
to be specific to roots, followed by 8 genes to leaves, and
by 2 genes to stems. In addition, 5 genes were responsive
to the salt stress in both leaves and roots (leaf-root), 4
genes in leaf-stem, and 2 genes in root-stem. Among
them, 2 genes overlap between the three groups of DEGs
(Fig. 8d). Comparisons of down- and up-regulated DEGs
are shown in Fig. 8e, {.

Validation of DEGs by qRT-PCR

To verify the results of RNA-Seq, we used qRT-PCR to
quantify expression levels of the 23 DEGs in roots, stems
and leaves, before and after the salt stress. As shown in
Fig. 9, results from RNA-Seq and qRT-PCR are
congruent.

Gene co-expression analysis

Co-expression analysis can help find genes with similar
expression patterns. These genes may be closely co-
regulated, tightly related in function, or members in-
volved in the same signaling pathway or physiological
process. In this study, we used the Weighted Correlation

Network Analysis (WGCNA) method and the RNA-Seq
data of 21 samples to construct a co-expression network
centered on the 5 tissue-differential expressed genes and
the 2 salt responsive genes described above [24]. As
shown in Fig. 10 and Supplemental Data 3, we obtained
a total of 7 co-expression networks. Among them, the
network centered on Potri.005G231300.1 is the largest
(855 genes). In contrast, the network centered on
Potri.002G090700.1 is the smallest (27 genes).

To explore the biological processes that these genes
may participate in, we then conducted gene set enrich-
ment analysis on the 7 sets of co-expressed genes identi-
fied above (Fig. 11). Four of the five tissue-differential
expressed genes (Potri.005G082000.1, Potri.007G085700.1,
Potri.007G019900.1, Potri.009G164300.1), share 17 signifi-
cantly enriched GO Terms. The shared GO Terms in-
clude secondary metabolic process, secondary metabolite
biosynthetic process, phenylpropanoid metabolic process,
and phenylpropanoid biosynthetic process. This suggests
that the four genes may play important roles in regulation
of poplar growth and development and stress responses.
Interestingly, the four genes have the same expression pat-
tern across the tissues (Fig. 7f).

Other genes involved in tissue differential expression
and the co-expressed gene network are significantly
enriched in cell wall biogenesis, cell wall macromolecule
biosynthetic process, xylan metabolic process, xylan bio-
synthetic process, hemicellulose metabolic process, and
other biological processes, suggesting that they may be
related to formation of cell walls.

Regarding the genes that respond to salt stress in the
root, stem and leaf tissues, Potri.002G090700.1 and its
co-expressed gene network are significantly enriched in
GO terms, such as regulation of potassium ion transport,
hyperosmotic salinity response, regulation of metal ion
transport, and hyperosmotic response. It is suspected
that these genes may respond to salt or osmotic stresses
by regulation of ion balance. Potri.005G231300.1 and the
genes in its network are significantly enriched in GO
terms, such as methionine biosynthetic process and me-
thionine metabolic process. The S-Adenosyl-L-methio-
nine synthetase (SAMS) in plants can catalyze the
reaction of methionine and ATP to produce S-
Adenosyl-L-methionine, which is a key enzyme that reg-
ulates the methionine cycle. Previous studies have shown
that SAMS is a key gene for organisms to resist adversity
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and stress [25]. Therefore, we speculate that these genes
might be involved in the processes of methionine syn-
thesis and metabolism, which are related to stress
resistance.

Discussion

The bZIP transcription factors are found in the plant
kingdom, which play important roles in regulating
growth and development and responses to biotic and
abiotic stresses [4, 26]. Previous studies on poplar were

constrained on only a few bZIP genes, which regulate
root development and drought stress. Thus systematic
studies on the poplar bZIP gene family have not been re-
ported. In this study, we used strict standards to identify
86 bZIP genes from poplar. Then we extracted the bZIP
protein domain sequences of the members. Evidence
from multiple sequence alignment indicated that both
poplar and Arabidopsis share the same bZIP domain.
Compared to Arabidopsis [3, 4], the poplar bZIP do-
mains also consist of a DNA binding region containing
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. J
the N-X7-R/K motif and a leucine zipper structure. We  motifs might perform specific functions. This

then divided these 86 members into 12 groups, based on
similarity of their protein sequences. It is worth noting
that many motifs exist in specific groups. Given that the
bZIP transcription factors have varied functions, these

phenomenon deserves further studies.

Previous studies indicated that in the evolutionary
process gene families usually undergo tandem duplica-
tion or large-scale segmental duplication, to maintain a
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Potri.009G164300.1

Potri.005G082000.1

and lines indicate that they have co-expression relationship
A\

Potri.002G090700.1

Fig. 10 TF-centered co-expression network of five tissue differentially expressed genes and two salt stress response genes. Dots represent genes,

Potri.008G113400.1

large size of each family [27]. Unlike birch, which has
not undergo recent whole genome duplication [28], pop-
lar has undergone at least three rounds of whole-
genome duplication, followed by multiple segmental du-
plication, tandem duplication and transposition events
[20, 29]. Since the bZIP gene family is a relatively large
one, thus we analyzed both the tandem duplication
events and the segmental duplication events. Interesting,

we found that there were no tandem duplication events
in the poplar bZIP genes. However, a large number of
segmental duplication events occurred, which is consist-
ent with previous studies in rice [2]. These results indi-
cate that segmental duplication events play an important
role in the expansion of the bZIP gene family. Further-
more, we analyzed the collinearity between the poplar
bZIP genes and the counterparts from three eudicots
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and three monocots. The results demonstrated that
there were significantly more collinearity gene pairs be-
tween poplar and eudicots than between poplar and
monocots. Species with relatively close evolutionary rela-
tionships, such as poplar and soybean, appeared to have
more collinear gene pairs. We also identified many pop-
lar bZIP genes that existed either in multiple such gene
pairs or only in the collinearity with monocots. The cal-
culated values of the Ka/Ks ratios for all gene pairs were
less than 1, suggesting that these genes might have expe-
rienced strong purifying selection pressure in evolution.
We explored expression patterns of the bZIP genes
in a tissue-specific fashion. We have identified many
DEGs between tissues, of which five genes are differ-
entially expressed in any two of the three tissues.
These genes showed low expression in leaves and
high expression in roots or stems. We then mapped
these genes to the Arabidopsis genome to understand
their possible functions (Supplemental Table 4) [30,
31]. The best match for Potri.005G082000.1 and
Potri.007G085700.1 is AT5G65210.1, which is an es-
sential cofactor in BOP-dependent regulation of de-
velopment in Arabidopsis [29]. AT1G08320.1 is the
counterpart for Potri.009G164300.1, which is involved

in the Arabidopsis anther development [32].
AT1G75390.1 is the best match for
Potri.007G019900.1, which affects the germination
process of seeds [33]. Taken together, these tissue-
specific DEGs are likely to play important roles in
poplar growth and development.

Since little is known in poplar about the functions of the
bZIP genes in regulation of salt responses, we explored
their expression patterns in response to salt stress. Compar-
ing the expression data from samples both before and after
salt stress, we identified a total of 45 genes that respond to
salt stress in roots, stems, and leaves. We also mapped
them to the Arabidopsis genome (Supplemental Table 4)
[30, 31]. The homologous genes are involved in growth and
development of Arabidopsis, as well as in responses to abi-
otic stresses. For example, AT2G40950.1, a homologous
gene of Potri.006G034500.1 and Potri.016G032400.1, is a
transcription factor regulating cellular responses to salinity
through osmotic stress adjustment [34]. The best matches
for  Potri.001G020200.1 (AT4G35040.1) and for
Potri.003G204400.1 (AT2G16770.1) were reported to regu-
late adaptation of Arabidopsis to zinc deficiency [35].
ATI1G45249.1, the counterpart for Potri.009G101200.1,
Potri.014G028200.1, and Potri.002G125400.1, were able to



Zhao et al. BMC Plant Biology (2021) 21:122

regulate ABRE-dependent ABA signaling pathway related
to drought stress tolerance [36].

To understand their function, we performed co-
expression based gene network analysis, focusing on the
seven key genes we identified, followed by gene set en-
richment analysis. Our results from gene ontology ana-
lyses indicated that the DEGs across tissues and their
corresponding network genes are enriched in secondary
metabolic process, and secondary metabolite biosyn-
thetic process. However, the salt-inducible genes and
their corresponding network genes are enriched in regu-
lation of metal ion transport and methionine biosyn-
thetic processes. These suggest that different regulators
and regulated gene networks play important roles in spe-
cific biological functions.

Conclusions

In this study, we identified 86 bZIP gene family mem-
bers in poplar and characterized their conserved bZIP
domains. We then conducted systematic analyses of the
gene family. On the basis of the phylogenetic analyses,
these members can be divided into 12 groups and each
group has specific gene structure and motif composition.
The bZIP genes are unevenly distributed on the 17 chro-
mosomes of poplar. It is worth noting that no tandem
duplication events were identified between poplar bZIP
genes, however, we detected a large number of segmen-
tal duplication events, which suggest that segmental du-
plication events are the main driving force for the
evolution of the bZIP gene family in poplar. In addition,
we investigated the collinearity relationship between the
poplar bZIP genes and the homologous genes from six
representative species. These will benefit future com-
parative gene functions studies. Furthermore, we identi-
fied tissue-specific gene expression patterns, as well as
salt-inducible gene expression patterns. On the basis of
the seven key regulators and their corresponding gene
networks, differential regulators and corresponding gene
networks have been found to associate with varied bio-
logical processes.

Methods

Identification of poplar bZIP transcription factors and
their conserved domains

The amino acid sequences of all poplar proteins were
downloaded from the Phytozome database [20, 30], and
that of bZIP_1 (PF00170) from the Pfam database [17].
First, we used hmmsearch (http://www.hmmer.org/)
with bZIP_1 to search the poplar amino acid sequences,
with a threshold of E-value <1 x10™°. After obtaining
the candidate genes, we applied Pfam and SMART data-
bases to further verify our results [15—17]. Then, we ex-
tracted sequences of the conserved domains from the
poplar bZIP proteins identified. Finally, we used
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ClustalX 1.83 and WebLogo for multiple sequence align-
ment and visualization, respectively [18, 37].

Classification and sequence analysis on the bZIP
members

The amino acid sequences of both poplar and Arabidopsis
family members were downloaded from the Phytozome
database [20, 30, 31]. Members of the Arabidopsis bZIP
gene family were identified from previous studies [4].

We used the MEGA 7 with Maximum Likelihood
method and the best model selected by SMS to con-
struct a phylogenetic tree [38, 39]. Classification of the
poplar bZIP protein family refers to previous studies in
Arabidopsis [4].

To analyze structure of the bZIP gene family, we down-
loaded the genome sequences and coding sequences of
the genes from the Phytozome database [20, 30]. We then
used the Gene Structure Display Server to draw gene
structure diagrams [40]. The order and grouping of genes
in the gene structure diagrams refer to the results of the
phylogenetic tree. Using MEME, we identified conserved
motifs contained in the bZIP gene family [19]. Finally, we
imported the generated file into TBtools for visualization
[21]. Motif annotation information comes from the SMAR
T and Pfam databases [15-17].

Chromosome distribution and collinearity analysis

Using the TBtools and the poplar genome data down-
loaded from the Phytozome database [20, 21, 30], we vi-
sualized the chromosomal distribution of the bZIP genes
in poplar. In addition, using the TBtools with MCScanX,
we analyzed the tandem duplication events of the bZIP
gene family [21, 22]. Similarly, using the TBtools with
MCScanX and BLASTP methods, we investigated seg-
mental duplication events and the collinearity relation-
ship for gene pairs from different species [21, 22]. Ka
and Ks substitutions between gene pairs were also calcu-
lated, by use of the TBtools [21].

Plant materials and gene expression analysis

The plant materials used in this study were di-haploid
Populus simonii x Populus nigra seedlings from a wild-
type clone growing in the experimental forest of North-
east Forestry University. Using the RNA-Seq data de-
scribed in our previous study [41], we explored tissue
differential expression patterns of the bZIP genes. To in-
vestigate expression patterns of the genes in response to
salt stress, we used the RNA-Seq data collected from
root, stem, and leaf tissues under treatment with 0 or
150 mM NacCl for 24 h [42]. All of the samples have 10X
sequencing depth. Using the DESeq package in R, we
identify DEGs (fold change > =2 and padj <= 0.05) [23].
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Using qRT-PCR to validate differentially expressed genes
To verify the gene expression data from RNA-Seq, we
used qRT-PCR to quantify expression levels of the DEGs
in response to salt stress. The qRT-PCR were performed
according to the published studies [43, 44]. We use actin
as a reference gene [45]. The relative expression level
was calculated, based on the expression level of each
gene without salt treatment. The primers are listed in
Supplemental Table 5.

Gene co-expression networks and gene ontology analyses
Using the WGCNA package in R, we identified gene co-
expression based gene networks [24]. Cytoscape was
then used to visualize the results [46]. The 21 RNA-Seq
data mentioned above were used for co-expression ana-
lysis. Only genes with sum of expression levels are
greater than 10 across the samples are used for the ana-
lysis. Regarding the parameters used, the best B (soft
threshold power) value was set to 18 (after 20 iterations),
the “deepSplit” value to 2, the “minModuleSize” value to
30, and the “mergeCutHeight” value to 0.15. The correl-
ation coefficient is calculated using Pearson algorithm.
The top 20% genes with the strongest weights were used
to draw the co-expression networks.

Gene set enrichment analysis was performed using the
clusterprofiler package in R [47]. We focused on bio-
logical processes. The P-value of each pathway was cal-
culated and adjusted using the Benjamin-Hochberg
method [48].
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