
libsbmljs — Enabling Web–Based SBML Tools

J Kyle Medleya, Joseph Hellersteinb, Herbert M Sauroa

aDepartment of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061,
USA

beScience Institute, University of Washington, Seattle, Washington, United States of America

Abstract

The SBML standard is used in a number of online repositories for storing systems biology models,

yet there is currently no Web–capable JavaScript library that can read and write the SBML format.

This is a severe limitation since the Web has become a universal means of software distribution,

and the graphical capabilities of modern web browsers offer a powerful means for building rich,

interactive applications. Also, there is a growing developer population specialized in web

technologies that is poised to take advantage of the universality of the web to build the next

generation of tools in systems biology and other fields. However, current solutions require server–
side processing in order to support existing standards in modeling. We present libsbmljs, a

JavaScript / WebAssembly library for Node.js and the Web with full support for all SBML

extensions. Our library is an enabling technology for online SBML editors, model–building tools,

and web–based simulators, and runs entirely in the browser without the need for any dedicated

server resources. We provide NPM packages, an extensive set of examples, JavaScript API

documentation, and an online demo that allows users to read and validate the SBML content of

any model in the BioModels and BiGG databases. We also provide instructions and scripts to

allow users to build a copy of libsbmljs against any libSBML version. Although our library

supports all existing SBML extensions, we cover how to add additional extensions to the wrapper,

should any arise in the future. To demonstrate the utility of this implementation, we also provide a

demo at https://libsbmljsdemo.github.io/ with a proof–of–concept SBML simulator that supports

ODE and stochastic simulations for SBML core models.

Graphical Abstract

Our project is hosted at https://libsbmljs.github.io/, which contains links to examples, API documentation, and all source code files
and build scripts used to create libsbmljs. Our source code is licensed under the Apache 2.0 open source license.

medjk@comcast.net (J Kyle Medley).

Conflict of interest statement
The authors declare that they have no conflict of interest.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Biosystems. Author manuscript; available in PMC 2021 July 01.

Published in final edited form as:
Biosystems. 2020 July ; 195: 104150. doi:10.1016/j.biosystems.2020.104150.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsbmljsdemo.github.io/
https://libsbmljs.github.io/

Keywords

sbml; systems biology; web

Introduction

The SBML [1] standard is used for encoding reaction network models in systems biology

research in a reusable, exchangeable, and future–proof manner. One of the factors behind

Medley et al. Page 2

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SBML’s wide adoption is the SBML standard’s process for introducing extension modules,

which allow incremental incorporation of new capabilities. While the core components of

the standard are designed for describing kinetic chemical reaction network models, SBML

extensions exist for encoding constraint–based models (the “flux– balance constraints”

extension [2], employed by the widely used COBRA toolkit for constraint–based modeling

[3, 4] as well as other tools such as Escher and the BiGG database [5, 6], FAME [7], SBW

Flux Balance [8], ModelPolisher [9] and CellNetAnalyzer[10]), and rule–based models (the

SBML “multi” extension [11]). SBML is used in several online model repositories including

BioModels [12, 13] and JWS Online [14, 15], which host primarily kinetic reaction network

models, and BiGG Models [6], which hosts primarily genome–scale constraint–based

models.

Despite this wide–spread adoption and inclusion in several online repositories, no feature–

complete JavaScript library currently exists that can run in a web browser (a native Node.js

module exists, but cannot run in the browser). Thus, these online repositories must rely on

server–side processing of all SBML–related requests. A JavaScript library would allow these

services to offload some of their processing to the client, and would also allow for more

interactive features on the Web. Furthermore, the Web is becoming a major platform for

systems biology tools. With the advent of Web applications for pathway visualization

(Escher [5]), gene interaction network visualization (Cytoscape.js [16]), expression analysis

(ZBIT [9]) and integrated design systems (Caffeine [17]), the need for a JavaScript library

which can read and write SBML becomes imperative.

We present libsbmljs, a feature–complete JavaScript library for reading and writing SBML

in the browser and Node.js. libsbmljs uses the full code-base of the libSBML C++ library

compiled to the web using Emscripten, a toolset for compiling C++ projects to the web.

Emscripten emits WebAssembly [18], a W3C standard for running platform–independent

binary code on the web that is supported on all major browsers. We have designed a

JavaScript wrapper around this binary format that allows libsbmljs to be used like a normal

JavaScript library. Our wrapper supports all SBML Level 3 extensions, meaning it can read

and write any type of SBML content. Since our library runs in the browser, it does not

require a dedicated web server. This is an important consideration for academic software,

where long–term maintenance cost is a concern.

Methods

Prior work on implementing the SBML standard has resulted in two libraries: libSBML

[19], a C++ library with interfaces for many languages, and JSBML [20, 21], a platform–

independent pure Java library. While the existence of these separate implementations is

certainly a convenience for C++ and Java developers respectively, it necessitates the

maintenance of two independent libraries. Rather than attempt to create a third

implementation in pure JavaScript, we have created a web–capable interface for the

libSBML C++ library using Emscripten [22], a C++–to–JavaScript compiler. Despite its C+

+ origins, libsbmljs is completely platform independent and runs on modern browsers on any

device which supports web standards.

Medley et al. Page 3

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Compiling a C++ library with Emscripten does not produce a ready–to–use JavaScript

library automatically. Instead, Emscripten compiles to WebAssembly [23], a low–level

binary format similar to x86 machine code but with additional features for security and

platform–independence. Since WebAssembly is very low level, it is difficult to use to design

JavaScript web applications. Instead, Emscripten can be used to also compile a JavaScript

interface that abstracts the low–level details of calling into WebAssembly and instead allows

developers to use familiar JavaScript objects and methods. However, this interface is not

generated automatically by Emscripten. Instead, it must be manually specified using

WebIDL.

Web IDL is a World Wide Web Consortium (W3C®) standard that specifies interfaces to

EMCAScript (i.e. JavaScript) objects. For example, the libSBML C++ class SBase has the

method getId(), which returns a string.

In WebIDL, this would be specified as:

/**

 * SBase: the base class of

 * most SBML elements

 */

[Prefix=“libsbml::”]

interface SBase {

 /**

 * Returns this element’s

 * id attribute

 */

 DOMString getId();

};

In the example above, the body of the getId method is intentionally left blank because it will

delegate to the corresponding WebAssembly routine. The “DOMString” type in the above

example is not a JavaScript type but a WebIDL type which maps to a JavaScript string and a

C++ std::string. Using syntax similar to the above, we manually designed WebIDL interface

files for most libSBML classes and methods. However, one issue remains with this

approach. The comments entered into the IDL definition above will not appear in the

JavaScript interface generated by Emscripten. Thus, there is no way of adding

documentation to the generated JavaScript code, which defeats any attempt to generate API

documentation. To remedy this issue, we created a script to automatically extract

documentation strings from IDL files and insert them into the generated JavaScript code.

This allowed us to generate extensive API documentation using documentationjs, a

documentation generator for JavaScript.

In order to use the correct argument and return types, we recommand that JavaScript

developers consult the API documentation for libsbmljs (https://libsbmljs.github.io/stable/

apidoc/), which lists the argument and return types for each method using native JavaScript

Medley et al. Page 4

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsbmljs.github.io/stable/apidoc/
https://libsbmljs.github.io/stable/apidoc/

types. For example, to use the getId method of the SBase object above a developer should

consult the documentation for the SBase class (https://libsbmljs.github.io/core/apidoc/

#sbase), which shows that the getId method returns a native JavaScript “string.”

Special Considerations for Usage

Emscripten–generated WebAssembly/JavaScript libraries are supported on a wide variety of

browsers and devices (https://github.com/libsbmljs/libsbmljs lists the browsers we have

tested). However, there are minor differences between these libraries and regular JavaScript

libraries, which are described below.

Asynchronous Loading

Emscripten–generated libraries load asynchronously. In other words, the library cannot be

used immediately as soon as the web page has loaded. This is due to the fact that

Emscripten–generated libraries consist of both a JavaScript source file (.js) containing

JavaScript classes and methods, and a WebAssembly file (.wasm) containing the compiled C

++ code. The browser may load the JavaScript source file before completely loading and

compiling the WebAssembly file. In order to accommodate this, Emscripten libraries

provide a ‘then()’ method for the JavaScript module object similar to a JavaScript Promise.

This method accepts a callback that will execute once the WebAssembly is fully downloaded

and compiled.

Manual Memory Management

Most modern languages feature some type of automatic garbage collection. However,

WebAssembly is a low–level binary–like format, and hence does not provide high–level

features like garbage collection. This means that whenever the user creates an object in

libsbmljs using the new keyword, the user must also destroy the object using

libsbml.destroy(obj). In most cases, this simply amounts to destroying the SBML document

when it is no longer needed.

In terms of modern programming languages, this may seem like a significant regression, but

it is an unavoidable tradeoff when using C++ compiled WebAssembly, at least for currently

available technology (a proposal exists to add garbage collection to WebAssembly [24], but

an implementation is not available at the time of writing). In the event that the user forgets to

call the libsbml.destroy function, the allocated object will persist in the browser’s memory

until the browser tab is closed. Since our main target users are developers of web

applications, and browser tabs are short–lived, we do not believe this is a significant

concern. However, Node.js developers should take care to destroy all created objects. The

same requirement also applies to libSBML’s native Node.js module.

In SBML, many elements are contained in so–called “listOfX” structures. We have chosen

not to include these ListOf structures in libsbmljs because they are merely simple containers

for other elements. Moreover, we found that the parent element of a listOf structure always

has methods for adding, removing, and iterating over the contained elements, making the

listOf structure redundant. For example, the libSBML Model class contains a

getListOfReactions method, but also contains createReaction, removeReaction,

Medley et al. Page 5

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsbmljs.github.io/core/apidoc/#sbase
https://libsbmljs.github.io/core/apidoc/#sbase
https://github.com/libsbmljs/libsbmljs

getNumReactions, and getReaction. Taken together, these methods allow all operations

provided by the underlying listOfReactions element. This pattern is repeated for many

SBML elements. Excluding these redundant elements also creates a slight size reduction in

the JavaScript package. Table 1 shows the elements we have intentionally left out of the

wrapper.

Client–side SBML Simulation

We used libsbmljs to construct a fully client–side, web–based SBML simulator

(sbml_websim), which supports ODE–based (using the Bulirsch–Stoer algorithm [26, 27]

implemented in JavaScript [28]) and stochastic (using the Next Reaction / “Gibson” method

[29]) simulations. This simulator is directly connected to the BioModels / BiGG Models

browser demo associated with this manuscript (https://libsbmljsdemo.github.io). The

simulator supports SBML core features including rate rules and events. Although slow

compared to state–of–the–art simulators like libroadrunner [30], the main utility of this

simulator is to demonstrate the technological readiness of this approach for creating

standards–supporting web–apps. This method could be used, for example, to integrate

simulation capability into the BioModels and BiGG Models repositories. Figure 2 shows

web–based simulations of each of these models using sbml_websim. Figure 3 shows an

example stochastic simulation.

Discussion & Conclusion

Currently, there is no web–capable library that can read and write SBML models. We have

presented a WebAssembly / JavaScript library that can read and write all SBML packages.

We have provided tutorials, examples and extensive API documentation for potential users.

We have also provided a modular build system that can be used to regenerate the wrapper

from any recent checkout of the libSBML C++ library from the stable or experimental

branch, as well as in–browser tests of the wrapper using the Karma testing engine.

Additionally, we have used this wrapper to create the first web– based client–side SBML

simulator. We hope these advances will enable the development of systems biology web

applications and services that can use the SBML standard.

Acknowledgments

Funding

HMS was supported by NIH grants GM123032-01, NHLBI U01HL12219902, and NIBIB P41EB023912. JKM was
supported by NIH grant GM12303201A1. JH was supported by the Moore/Sloan Data Science Environments
Project at the University of Washington supported by grants from the Gordon and Betty Moore Foundation (Award
#3835) and the Alfred P. Sloan Foundation (Award #2013-10-29).

Bibliography

References

[1]. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D,
Cornish-Bowden A, et al., The systems biology markup language (sbml): a medium for
representation and exchange of biochemical network models, Bioinformatics 19 (4) (2003) 524–
531. [PubMed: 12611808]

Medley et al. Page 6

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsbmljsdemo.github.io/

[2]. Olivier BG, Bergmann FT, SBML level 3 package: Flux balance constraints version 2, Journal of
Integrative Bioinformatics 15 (1) (Mar. 2018). doi:10.1515/jib-2017-0082. URL 10.1515/
jib-2017-0082

[3]. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ, Quantitative prediction of
cellular metabolism with constraint-based models: the cobra toolbox, Nature protocols 2 (3)
(2007) 727. [PubMed: 17406635]

[4]. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A,
Lewis NE, Rahmanian S, et al., Quantitative prediction of cellular metabolism with constraint-
based models: the cobra toolbox v2. 0, Nature protocols 6 (9) (2011) 1290. [PubMed: 21886097]

[5]. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO, Escher: a web
application for building, sharing, and embedding data-rich visualizations of biological pathways,
PLoS computational biology 11 (8) (2015) e1004321.

[6]. King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE,
Bigg models: A platform for integrating, standardizing and sharing genome-scale models,
Nucleic acids research 44 (D1) (2015) D515–D522. [PubMed: 26476456]

[7]. Boele J, Olivier BG, Teusink B, Fame, the flux analysis and modeling environment, BMC systems
biology 6 (1) (2012) 8. [PubMed: 22289213]

[8]. Bergmann F, Sbw flux balance, http://fbergmann.github.io/FluxBalance/(2013). URL http://
fbergmann.github.io/FluxBalance/

[9]. Römer M, Eichner J, Dräger A, Wrzodek C, Wrzodek F, Zell A, Zbit bioinformatics toolbox: a
web-platform for systems biology and expression data analysis, PloS one 11 (2) (2016)
e0149263.

[10]. Klamt S, Saez-Rodriguez J, Gilles ED, Structural and functional analysis of cellular networks
with cellnetanalyzer, BMC systems biology 1 (1) (2007) 2. [PubMed: 17408509]

[11]. Zhang F, Meier-Schellersheim M, Sbml level 3 package: multistate, multicomponent and
multicompartment species, version 1, release 1, Journal of integrative bioinformatics 15 (1)
(2018).

[12]. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H,
Schilstra M, Shapiro B, et al., Biomodels database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems, Nucleic acids
research 34 (suppl 1) (2006) D689–D691. [PubMed: 16381960]

[13]. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan
MI, et al., Biomodels database: An enhanced, curated and annotated resource for published
quantitative kinetic models, BMC systems biology 4 (1) (2010) 92. [PubMed: 20587024]

[14]. Olivier BG, Snoep JL, Web-based kinetic modelling using jws online, Bioinformatics 20 (13)
(2004) 2143–2144. [PubMed: 15072998]

[15]. Peters M, Eicher JJ, van Niekerk DD, Waltemath D, Snoep JL, The jws online simulation
database, Bioinformatics 33 (10) (2017) 1589–1590. arXiv:/oup/backfile/content_public/journal/
bioinformatics/33/10/10.1093_bioinformatics_btw831/2/btw831.pdf, doi:10.1093/bioinformatics/
btw831. URL +10.1093/bioinformatics/btw831 [PubMed: 28130238]

[16]. Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD, Cytoscape.js: a graph theory library
for visualisation and analysis, Bioinformatics 32 (2) (2015) 309–311. [PubMed: 26415722]

[17]. Lopez A, Fodor M, Sirunian A, Kaafarani A, Lieven C, Sonnenschein N, Azrak T, Beber ME,
Dd-decaf/caffeine: Version 1, 10.5281/zenodo.2616028 (Mar. 2019). doi:10.5281/
zenodo.2616028. URL 10.5281/zenodo.2616028

[18]. Webassembly, https://webassembly.org. URL https://webassembly.org/

[19]. Bornstein BJ, Keating SM, Jouraku A, Hucka M, Libsbml: an api library for sbml,
Bioinformatics 24 (6) (2008) 880–881. [PubMed: 18252737]

[20]. Le Novere N, Rodriguez N, Wrzodek F, Mittag F, Fröhlich S, Hucka M, Thomas A, Palsson B,
Lewis NE, Dräger A, Myers CJ, Watanabe L, Vazirabad IY, Kofia V, Gómez HF, Diamantikos A,
Netz E, Matthes J, Eichner J, Keller R, Rudolph J, Wrzodek C, JSBML 1.0: providing a
smorgasbord of options to encode systems biology models, Bioinformatics 31 (20) (2015) 3383–
3386. arXiv:http://oup.prod.sis.lan/bioinformatics/article-pdf/31/20/3383/17087774/btv341.pdf,
doi:10.1093/bioinformatics/btv341. URL 10.1093/bioinformatics/btv341 [PubMed: 26079347]

Medley et al. Page 7

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fbergmann.github.io/FluxBalance/
http://fbergmann.github.io/FluxBalance/
http://fbergmann.github.io/FluxBalance/
http://oup/backfile/content_public/journal/bioinformatics/33/10/10.1093_bioinformatics_btw831/2/btw831.pdf
http://oup/backfile/content_public/journal/bioinformatics/33/10/10.1093_bioinformatics_btw831/2/btw831.pdf
https://webassembly.org
https://webassembly.org
http://oup.prod.sis.lan/bioinformatics/article-pdf/31/20/3383/17087774/btv341.pdf

[21]. Dräger A, Rodriguez N, Dumousseau M, Dörr A, Wrzodek C, Le Novère N, Zell A, Hucka M,
JSBML: a flexible Java library for working with SBML, Bioinformatics 27 (15) (2011) 2167–
2168. arXiv: http://oup.prod.sis.lan/bioinformatics/article-pdf/27/15/2167/13846361/btr361.pdf,
doi:10.1093/bioinformatics/btr361. URL 10.1093/bioinformatics/btr361 [PubMed: 21697129]

[22]. Zakai A, Emscripten: an llvm-to-javascript compiler, in: Proceedings of the ACM international
conference companion on Object oriented programming systems languages and applications
companion, ACM, 2011, pp. 301–312.

[23]. Rossberg A, Titzer BL, Haas A, Schuff DL, Gohman D, Wagner L, Zakai A, Bastien JF, Holman
M, Bringing the web up to speed with webassembly, Commun. ACM 61 (12) (2018) 107–115.
doi:10.1145/3282510. URL 10.1145/3282510

[24]. Webassembly garbage collection, https://github.com/WebAssembly/design/issues/1079. URL
https://github.com/WebAssembly/design/issues/1079

[25]. Elowitz MB, Leibler S, A synthetic oscillatory network of transcriptional regulators, Nature 403
(6767) (2000) 335. [PubMed: 10659856]

[26]. Bulirsch R, Stoer J, Numerical treatment of ordinary differential equations by extrapolation
methods, Numerische Mathematik 8 (1) (1966) 1–13.

[27]. Wanner G, Hairer E, Solving ordinary differential equations II, Springer Berlin Heidelberg, 1996.

[28]. Smith C, odex-js, https://github.com/littleredcomputer/odex-js. URL https://github.com/
littleredcomputer/odex-js

[29]. Gibson MA, Bruck J, Efficient exact stochastic simulation of chemical systems with many
species and many channels, The journal of physical chemistry A 104 (9) (2000) 1876–1889.

[30]. Somogyi ET, Bouteiller J-M, Glazier JA, König M, Medley JK, Swat MH, Sauro HM,
libroadrunner: a high performance sbml simulation and analysis library, Bioinformatics 31 (20)
(2015) 3315–3321. [PubMed: 26085503]

Medley et al. Page 8

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://oup.prod.sis.lan/bioinformatics/article-pdf/27/15/2167/13846361/btr361.pdf
https://github.com/WebAssembly/design/issues/1079
https://github.com/WebAssembly/design/issues/1079
https://github.com/littleredcomputer/odex-js
https://github.com/littleredcomputer/odex-js
https://github.com/littleredcomputer/odex-js

Highlights

• This article describes a feature–complete SBML library for client–side web

applications

• Extensive documentation, tests are provided to allow others to build SBML–

supporting web applications

• An online demo featuring the ability to browse the BioModel and BiGG

Models repositories, validate SBML, and run simulations is described in order

to demonstrate technology readiness

Medley et al. Page 9

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
(A) A workflow diagram of the process used to produce libsbmljs. The libSBML C++

source code and a hand–written WebIDL interface are processed by a Gradle script to

produce Emscripten–compiled bytecode and JavaScript API documentation. The Emscripten

bytecode is further compiled into separate JavaScript (*.js) and WebAssembly (*.wasm)

files. When the JavaScript source file is loaded by the browser, it executes instructions to

fetch the corresponding WebAssembly file asynchronously. These two files are then

combined into an npm package. (B) A screenshot of the demo page showing the

Repressilator model [25] in the BioModels database (BIOMD0000000012). After selecting a

model via using the demo’s search bar or uploading an SBML file, the demo allows the user

to view SBML content as a tree–like structure and validate the SBML model subject to the

validation options provided by libSBML. This particular model can be viewed at https://

libsbmljsdemo.github.io/#/view?m=BIOMD0000000012

Medley et al. Page 10

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012

Figure 2:
Example web–based simulations of BioModels: the repressilator (https://

libsbmljsdemo.github.io/#/view?m=BIOMD0000000012, 12 reactions, A), p53 p14ARF

(https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000189, 14 reactions, B), and

MAPK (https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000014, 300 reactions, C)

models. These results were separately compared to the libroadrunner simulator to verify

accuracy (not shown).

Medley et al. Page 11

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000189
https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000014

Figure 3:
A stochastic simulation of the repressilator model the Next Reaction Method[29]. sbml

websim allows the user to repeat the stochastic simulation for a desired number of replicates

(10 here) and plots all replicates (faint lines) in addition to the mean value of each variable

over all replicates (solid line).

Medley et al. Page 12

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Medley et al. Page 13

Table 1:

List of classes and members intentionally left out of the libsbmljs core wrapper.

• SBase

 – appendAnnotation (const XMLNode *annotation)

 – appendNotes (const XMLNode *notes)

 – clone () const

 – deleteDisabledPlugins (bool recursive=true)

 – disablePackage (const std::string \&pkgURI, const std::string \&pkgPrefix)

 – enablePackage (const std::string \&pkgURI, const std::string \&pkgPrefix, bool flag)

 – getAnnotation ()

 – getCVTerms ()

 – getElementName () const

 – getLevel () const

 – getLine () const

 – getModelHistory () const

 – getNotes ()

 – getUserData () const

 – matchesRequiredSBMLNamespacesForAddition (const SBase *sb)

 – read (XMLNode \&node, XMLErrorSeverityOverride_t flag=LIBSBML_OVERRIDE_DISABLED)

 – removeFromParentAndDelete ()

 – removeTopLevelAnnotationElement (const std::string &elementName, const std::string elementURI=“”, bool removeEmpty=true)

 – setModelHistory (ModelHistory *history)

 – toSBML ()

 – toXMLNode ()

 – unsetModelHistory ()

 – unsetUserData ()

• ListOfUnitDefinitions (all)

• ListOfCompartments (all)

• ListOfSpecies (all)

• ListOfParameters (all)

• ListOfRules (all)

• ListOfReactions (all)

• Model

 – getListOf* () const

• XMLAttributes

• XMLConstructorException

• XMLError

• XMLErrorLog

• XMLInputStream

• XMLLogOverride

• XMLNamespaces

• XMLNode

Biosystems. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Medley et al. Page 14

• XMLOutputStream

• XMLToken

• XMLTriple

Biosystems. Author manuscript; available in PMC 2021 July 01.

	Abstract
	Graphical Abstract
	Introduction
	Methods
	Special Considerations for Usage
	Asynchronous Loading
	Manual Memory Management
	Client–side SBML Simulation

	Discussion & Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:

