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Abstract: This paper presents an open-source environment for development, tuning, and perfor-
mance evaluation of magnetic, angular rate, and gravity-based (MARG-based) filters, such as pose
estimators and classification algorithms. The environment is available in both ROS/Gazebo and
MATLAB/Simulink, and it contains a six-degrees of freedom (6 DOF) test bench, which simulta-
neously moves and rotates an MARG unit in the three-dimensional (3D) space. As the quality of
MARG-based estimation becomes crucial in dynamic situations, the proposed test platform intends
to simulate different accelerating and vibrating circumstances, along with realistic magnetic pertur-
bation events. Moreover, the simultaneous acquisition of both the real pose states (ground truth)
and raw sensor data is supported during these simulated system behaviors. As a result, the test
environment executes the desired mixture of static and dynamic system conditions, and the provided
database fosters the effective analysis of sensor fusion algorithms. The paper systematically describes
the structure of the proposed test platform, from mechanical properties, over mathematical modeling
and joint controller synthesis, to implementation results. Additionally, a case study is presented of
the tuning of popular attitude estimation algorithms to highlight the advantages of the developed
open-source environment.

Keywords: MARG; attitude estimation; complementary filter; inertial measurement unit; Kalman filter;
sensor fusion; test environment

1. Introduction
1.1. Relative Localization

Providing accurate pose estimates (i.e., position and attitude results) is a crucial task
in the control of agile mobile systems, such as robots. Since the controller and estima-
tor algorithms are linked in closed-loop, therefore, the estimator algorithm should meet
important design requirements. Such requirements ensure that the controller algorithm
successfully stabilizes the system in the close vicinity of the desired state based on the
estimation results [1–3]. If these conditions are not satisfied, then the system can easily be
driven to unwanted states, which may eventually damage the hardware [4–7]. As a result,
the estimator algorithm should be both analyzed carefully during dynamic conditions and
tuned properly in order to provide accurate and robust results [8–11].

The relative localization problem is solved with microelectromechanical systems-based
(MEMS-based) sensors, such as accelerometers, magnetometers, and gyroscopes, in today’s
embedded systems. These sensors form the inertial measurement unit (IMU), where a
microcontroller processes the sensor data, executes filtering algorithms and functions as an
attitude and heading reference system (AHRS) [12]. At the output of the IMU, the attitude is
usually provided in Euler angles (roll, pitch, and yaw angles) or quaternion representation
of orientation. The filtering algorithm (attitude/pose estimator) is designed such a way to
both handle external disturbances effectively and provide properly smoothed signals. There
are three types of disturbances that cause radical decrease in attitude estimation quality.
On one hand, external accelerations executed during different translational motions prevent
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the use of the pure gravity vector in attitude calculation; moreover, vibrations occurring
during the control of unstable systems also prohibit the obtainment of reliable attitude
results [13]. On the other hand, magnetic perturbations are among the key disturbances that
make attitude estimation difficult, since ferromagnetic materials alter the local magnetic
field in the sensor frame, thereby resulting in inaccurate attitude realizations. Attitude
estimator algorithms address the aforementioned issues and execute stochastic-based
information fusion or frequency domain processing of MEMS sensor data to provide
reliable results. These algorithms are categorized into two main groups, namely Kalman
filter (KF) and complementary filter-based (CF-based) approaches, which are prevalent
solutions for relative localization problems; usually, both techniques are augmented with
deterministic attitude realization methods.

Deterministic approaches use solely gravity and magnetic field observations to solve
the Wahba’s problem and provide attitude estimation [14,15]. Among the techniques,
the three-axis attitude determination (TRIAD) and QUaternion ESTimator (QUEST) con-
stitute the fundamental approaches; moreover, recent advances offer enhanced solutions,
which provide higher reliability [16–18]. These approaches work well during static system
conditions; however, external disturbances can reduce their performance significantly.
Therefore, the high frequency attitude realization of gyroscope signals is incorporated in
filter structures to obtain higher robustness in attitude estimation. Gyroscopes are not
sensitive to external disturbances, but the numerical integration of angular rate data results
in unbounded drift, i.e., only short term accuracy is ensured with angular rate sensors.
This short term accuracy is advantageously utilized in both KF and CF structures. CFs use
frequency domain information and fuse sensor data by combining the low frequency atti-
tude realization of accelerometer and magnetometer with high frequency attitude results
of gyroscope signals via low-pass and high-pass filters, respectively. CFs are characterized
by simple structure and easy implementation; therefore, these algorithms are extensively
applied in control systems. Among the techniques, the gradient descent algorithm-based
(GDA-based) attitude estimator and the explicit complementary filter (ECF) have become
popular choices, and their performance is usually considered as benchmark filters in com-
parative analysis [19–21]. Recent approaches in the realm of CFs augment these benchmark
filters with adaptive strategies to both obtain higher reliability and handle external dis-
turbances more effectively [22–24]. KFs constitute the core algorithms for state estimation
of Gaussian stochastic systems. These Bayesian estimators operate on state space models
(which describe the system dynamics) and use statistical information to provide state
estimates with minimum variance. The magnetic, angular rate, and gravity (MARG) sys-
tem fits well into stochastic state space models, where the numerically integrated angular
rate measurements describe the state propagation, while the accelerometer and magne-
tometer data are employed in the attitude update (correct) equations. It is common to
employ quaternion representation of orientation and describe the system dynamics with a
7-dimensional state space vector, where the temperature dependent gyroscope bias is also
involved in the state propagation [25]. Additionally, the update equations are formulated
with the application of the rotation matrix (which describes the relationship between the
sensor and navigation frames) or the orientation observation is obtained with deterministic
approaches [4]. Recent advances extend the basic filter structure with adaptive techniques,
in which novel measurement methods, adaptation laws and inference mechanisms, both
detect and incorporate the external disturbances into the filter structure, thereby prevent-
ing the quality decrease of estimation performance [5,26–28]. A recent survey on attitude
estimation techniques is provided in Reference [1].

1.2. Contribution of the Paper

The performance of each technique discussed in the previous subsection heavily de-
pends on the core parameters that characterize the filter structure. These parameters should
be selected carefully in order to both meet the design requirements and provide accurate
and robust attitude estimates in the intended application. If the intended application is
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expected to contain different system conditions (e.g., static states, slow/fast motions and
agile movements), then the problem of selecting the proper parameters becomes even more
crucial, since the system dynamics influences significantly the MARG-based state estima-
tion process. Usually, it is difficult to derive the appropriate filter parameters (e.g., sensor
noise power); moreover, the determination process requires particular equipment and
measurement methods. As a result, engineering intuition-based filter tuning is usually
performed, which yields only a compromise solution between filter dynamics and accuracy.
However, it is also common to use optimization-based techniques to maximize the filter
performance [2,25,27,29].

Both approaches discussed above require an environment, which enables the evalua-
tion of filter performances. Namely, the true system states need to be obtained simultane-
ously with the estimation results in order to determine the estimation quality. The literature
offers various solutions for such environments, from camera-based techniques [20,30],
over industrial robotic manipulators-based approaches [31–33], to experimental appara-
tuses [2]. These environments enable the researcher to analyze the filter convergence, tune
the parameters, observe the issues, and incorporate the observations into the development.
Moreover, the optimization of these filter structures can be outlined effectively to obtain
maximized filter convergence. These advantages emphasize the need for an universally
applicable test environment that enables the execution of the aforementioned tasks.

As a result of the investigation, this paper proposes a novel test environment for
effective development of MARG-based algorithms. This test environment includes a six-
degrees of freedom (6 DOF) mechanism to execute various external accelerations and
vibrations, thereby simulating different system conditions. An MARG unit is attached to
the end of the defined kinematic chain of joints; therefore, the environment simultaneously
supplies the raw MARG sensor data, along with the true pose (position and orientation)
states, during the motion of the system. Moreover, the test environment includes an
artificial magnetic perturbation algorithm to generate realistic magnetic disturbance effects
during the execution of different test scenarios. This complete environment allows to
simulate various real word scenarios and thereby enables both the development and testing
of any filter structure. Additionally, the tuning of filter parameters can easily be performed,
since the true states of the system are provided in the environment, and even numerical
optimization can be employed to obtain maximized filter performance. The author made
both the ROS/Gazebo and MATLAB/Simulink implementations publicly available in the
supplementary online material [34] in order to help other lab teams in the development of
MARG-based algorithms. The proposed test environment has been employed during the
development of an attitude estimator algorithm in an earlier work [1]. However, the main
components (i.e., the structure of the environment, test bench properties, derivation of
models, perturbation algorithms, and applied controllers) which form this comprehensive
environment have not been published yet.

The remainder of the paper is organized as follows. Section 2 describes the com-
plete elaboration of the test environment, from system equations, over control synthesis
and MARG unit modeling, to implementation results. Section 3 gives a case study on
the effective evaluation of attitude filters with the help of the proposed test platform.
Finally, Section 4 provides the conclusions and recommendations for future studies.

2. Test Environment

To be able to effectively develop, test, and evaluate different relative localization-
type algorithms, a test environment is required to be designed. This test environment
should both allow to simulate various realistic system behaviors (i.e., static behaviors,
dynamic conditions, and external perturbations) and contain realistic sensor models which
include manufacturing errors and noise sources. Additionally, the test environment should
provide the real system states (ground truth position and orientation), along with the
raw, noisy, uncalibrated sensor data, during the execution of different system conditions.
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These features both enable the evaluation of filter performances and foster the development
of novel techniques.

A test environment that satisfies the aforementioned requirements is depicted in
Figure 1. This environment contains a 6 DOF platform that alters the pose (both position
and orientation) of an MARG unit in the 3D space. The closed-loop structure simulates
dynamic circumstances, i.e., the 6 DOF platform executes the desired mixture of static and
dynamic system behaviors based on the supplied reference signals. Since both the system
dynamics and sensor models are included in this environment; therefore, the acquisition
of true system states (true position and orientation of the MARG frame), along with raw
sensor data, is supported. These measurements contributes to post-processing, such as the
analysis of dynamic effect on estimation process, filter performance quantification (i.e., state
estimation error determination), and optimization of filter parameters. These attributes
form the main advantages of the proposed environment, which has been implemented
in both ROS/Gazebo and MATLAB/Simulink. Moreover, video demonstrations of the
closed-loop dynamics, along with the ROS/MATLAB-based program packages, have been
made publicly available on the author’s website [34].
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Figure 1. Structure of the test environment in ROS/Gazebo.

The 6 DOF test bench consists of three prismatic joints and three revolute joints.
The prismatic joints maintain the desired spatial coordinates of the MARG unit. More-
over, by sliding back and forth, up, and down the sensor frame in the 3D space different
accelerating system conditions are simulated via these joints. The revolute joints control
the orientation (instantaneous Euler angles) of the sensor frame. These joints can execute
both fast and slow rotation motion to simulate vibration and oscillation effects. A plate
is attached to the end of this kinematic chain which contains the MARG unit (see the
small orange sensor block in Figure 1). Therefore, this 6 DOF platform enables the control
and measurement of the pose of sensor frame; moreover, the implemented sensor models
provide the instantaneous measurements (raw sensor data) related to the system dynamics
simultaneously. This comprehensive framework supplies the necessary environment and
data to both generate various system conditions (dynamic spatial motion, along with exter-
nal accelerations and sensor frame vibrations) and access the raw sensor measurements,
along with the true system states, for post-processing and analysis. In the first row of
Figure 2, three snapshots of the 6 DOF platform are depicted during the motion in the 3D
space; moreover, the generated instantaneous accelerometer, gyroscope, and magnetometer
measurements are highlighted in the second row.
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Figure 2. (a–c) Snapshots during the motion of the 6 six-degrees of freedom (6 DOF) platform; (d–f) raw measurements of
the attached magnetic, angular rate, and gravity (MARG) unit.

2.1. Model Equations

Table 1 describes the main parameters of the model. The system dynamics is obtained
with the help of the Lagrange-equations [35]:

d
dt

∂L
∂q̇
− ∂L

∂q
= τ, (1)

where q denotes the vector of generalized coordinates, and L defines the Lagrange function.
The Lagrange function is defined as the difference of kinetic and potential energies, i.e., L =
K− P. The total kinetic energy of the system is composed of the kinetic energy resulting
from translational motions (Tt, executed by the prismatic joints) and rotational energy
(Tr, generated by the revolute joints) resulting from the oscillation of the body plate, i.e.,

Tt =
1
2
(
(
mj,1 + mb

)
ẋ2

b +
(
mj,2 + mb

)
ẏ2

b +
(
mj,3 + mb

)
ż2

b),

Tr =
1
2

(
Jb,φφ̇2 + Jb,θ θ̇2 + Jb,ψψ̇2

)
.

(2)

By introducing the vector of generalized coordinates as q = (xb, yb, zb, φ, θ, ψ)T , the to-
tal kinetic energy is formulated in a compact form as:

T = Tt + Tr =
1
2

q̇T Mmassq̇,

Mmass = diag
((

mT
j + I1×3mb, JT

b

)T
)

,
(3)

where I denotes the identity matrix of size given in subscript, and mj =
(
mj,1, mj,2, mj,3

)T ,

mj,i is the mass of the ith link, i = {1, 2, 3}, while mb and Jb =
(

Jb,φ, Jb,θ , Jb,ψ

)T
indicate the
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mass and moment of inertia of the body plate, respectively. The potential energy stored in
the system is:

P =

(
mb +

3

∑
i

mj,i

)
gh0 +

(
mb + mj,3

)
gzb −mj,3gh1, (4)

where h0 is the base height, and h1 denotes the distance between the body plate and third
prismatic joint (see Figure 1). Based on Equations (3) and (4), the Lagrange function of the
system L is derived.

The vector of generalized external forces (τ in Equation (1)) is defined as τ =

(τ1, · · · , τ6)
T , where τi denotes the generalized force acting on the ith joint, i = 1, . . . , 6.

The generalized external force on each joint consists of the external torque τa,i produced
by the joint driver (motor) and the effect of friction τf ,i, i.e., τi = τa,i − τf ,i. Each joint
is characterized by both static and viscous (damping) frictions; therefore, the friction is
modeled with sliding and stuck state transitions as follows. Initially, the friction state is set
to the stuck condition, and state transition occurs at the ith joint only if the transmitted
motor torque is bigger than the static torque τs,i, i.e.,

|τa,i| > τs,i. (5)

If the above condition is satisfied, then the sliding mode is activated and viscous
friction acts on the joints, i.e.,

τf = diag( f1, · · · , f6)q̇, (6)

where fi denotes the viscous friction coefficient for both prismatic and revolute joints
(see Table 1). If the ith motor torque becomes smaller than the static friction, moreover,
the linear velocity (prismatic joints) or angular velocity (revolute joints) is zero, i.e.,

|τa,i| ≤ τs,i ∧ q̇i = 0, (7)

then the model switches back to stick condition and static friction is activated at the ith
joint as:

τf ,i = sign(τa,i) ·min(|τa,i|, τs,i). (8)

The evaluation of Equation (1) results in the motion equations of the system in the
following form:

M(q)q̈ + V(q, q̇) = τa − τf , (9)

where M(q) = Mmass denotes the 6-by 6 symmetric and positive definite inertia matrix
given in Equation (3), while V(q, q̇) =

(
01×2, (mb + mj,3)g, 01×3

)T is the 6-dimensional
vector including the potential (gravity) force terms, where 0 denotes the zero vector of the
given size. Based on Equation (9), the state-space representation ẋ(t) = h(x, u) of the plant
is obtained. The state vector is x12×1 = (q, q̇)T and the state-space equation is given as:

ẋ(t) =

[
q̇

M(q)−1
(

τa − τf −V(q, q̇)
)],

y(t) = x(t).

(10)
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Table 1. Notation of basic test bench parameters.

Parameter Symbol (Unit) Value

Mass of link 1 and 2 mj,1, mj,2 (kg) 500
Mass of link 3 mj,3 (kg) 200
Mass of the body plate mb (g) 200
Inertia of the body plate (φ, θ) Jb,φ, Jb,θ (kgmm2) 60
Inertia of the body plate (ψ) Jb,ψ (kgmm2) 40
Viscous friction coefficient (joint 1–3) f1, f2, f3 (Ns/m) 100
Viscous friction coefficient (joint 4–6) f4, f5, f6 (Nms/rad) 0.001
Static friction (joint 1–3) τs,1, τs,2, τs,3 (N) 0
Static friction (joint 4–6) τs,4, τs,5, τs,6 (Nm) 0

2.2. Control Synthesis

Proportional-integral-derivative (PID) controllers maintain the position regulation of
the 6 DOF test bench. The prismatic joints are actuated with force inputs, while torque sig-
nals are supplied to the revolute joints. As a result, six force/torque action-type controllers
are applied to perform both translational and rotation motion with the test bench in the 3D
space. The control requirements are summarized in Table 2. These requirements ensure
the execution of extensive dynamic motions, which inherently results in the simulation of
external disturbances in the following ranges: ±30 g for external accelerations in the 3D
space and ±40 rad/s range for angular rates to simulate extensive body plate oscillations.
The external accelerations are generated by the prismatic joints during the translational
motion in the 3D space. Since these joints maintain the position regulation of the MARG
unit, therefore, such settling time and overshoot requirements were selected for these joints
that generate multiple external acceleration peaks during the position tracking. The body
plate oscillations are executed by revolute joints. These joints maintain the angular position
of the MARG unit (roll, pitch, and yaw angles). Since the test bench intends to simulate
oscillations and vibrations, therefore, both a magnitude smaller settling time is specified
and bigger overshoot is allowed for these joints. The control task was to design such
position controllers, which satisfy limt→Ts q(t) = qd at given maximum overshoot (∆v),
where qd denotes the desired position, and Ts is the settling time.

Table 2. Control requirements related to the desired system dynamics.

Parameter Symbol (Unit) Value

External acceleration executed by joint 1–3 αext,1,2,3 (g) 30
Oscillation rate executed by joint 4–6 Ω4,5,6 (rad/s) 40
Overshoot for joint 1–3 ∆v1,2,3 (%) 20
Settling time for joint 1–3 Ts (s) 1
Overshoot for joint 4–6 ∆v4,5,6 (%) 40
Settling time for joint 4–6 Ts (s) 0.3

Since the 6 DOF test platform is characterized by fully decoupled dynamics, therefore,
each joint controller can be designed separately. The design of these position controllers
is based on a third-order reference system (Hd), which describes the desired dynamics
from the input (reference joint coordinate qd) to the output (realized joint coordinate q)
in closed-loop. First, the damping ratio (ξ) and natural frequency (ωn) of a second-order
reference system is obtained based on the defined overshoot and settling time values.
The dynamics in time domain is given as:

q̈ + 2ξωn q̇ + ω2
nq = ω2

nqd,

∆v = e
− πξ√

1−ξ2 , Ts ≈
4

ξωn
.

(11)
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Applying the Laplace transformation, the transfer function of the second order system
is obtained:

H =
ω2

n
s2 + 2ξωns + ω2

n
, (12)

where s is the Laplace variable. This second order system is extended with a first order
dynamics, thereby forming the third-order reference system for the ith joint in the following
form [36,37]:

Hd,i =
CiGp,i

1 + CiGp,i
=

Qi(s)
Qd,i(s)

=
ω2

n
(1 + Ts)(s2 + 2ξωns + ω2

n)
, (13)

where Ci and Gp,i denote the controller and plant transfer functions, respectively. For the
position control problem, PID-type controllers are applied with feed forward-based gravi-
tation acceleration compensation. Namely, for the ith joint:

τa,i = KP,i(qd,i − qi) + KI,i

∫ t

0
(qd,i − qi)dξ − KD,i q̇i −V(qi, q̇i). (14)

As a result, the closed-loop dynamics of the ith joint is given as:

Mi q̈i + fi q̇i = KP,i(qd,i − qi) + KI,i

∫ t

0
(qd,i − qi)dξ − KD,i q̇i, (15)

where Mi denotes the ith element of the mass matrix in Equation (3), and qd,i indicates the
desired position for the ith joint. By differentiating Equation (15), the equivalent third-order
system is obtained, and the PID controller parameters can be derived:

qd,i =
Mi
KI,i

...
q i +

fi + KD,i

KI,i
q̈i +

KP,i

KI,i
q̇i + qi,

Hr,i =
Qi(s)

Qd,i(s)
=

KI,i

Mis3 + ( fi + KD,i)s2 + KP,is + KI,i
.

(16)

The derivation of KP,i, KI,i, and KD,i parameters for the ith PID controller is straightfor-
ward. Based on the comparison of the reference system Hd,i in Equation (13) and realized
system Hr,i in Equation (16), one obtains:

KI,i =
ω2

n
T

Mi,

KP,i =

(
ω2

n +
2ξωn

T

)
Mi,

KD,i =

(
2ξωn +

1
T

)
Mi − fi.

(17)

Since the extra time constant in the third-order reference system (Hd) results in slower
closed-loop dynamics than the desired response, therefore, the damping ratio (ξ) and
natural frequency (ωn) parameters may require slight tuning after implementation.

Figure 3 highlights the closed loop dynamics achieved with the derived controllers.
In the first row, the reference tracking performance is highlighted for both the prismatic
and revolute joints. It can be observed that the prismatic joints maintain the desired xb,d,
yb,d, and zb,d spatial coordinates and fulfill the control requirements. Namely, the settling
time for each actuated joint is less than 1 s; moreover, the reference values are tracked
with reasonable overshoot (the overshoot is a must have requirement, since it results in
additional external acceleration, which can be incorporated into the quality verification of
estimation algorithms). In the experimental results, the reference values are supplied with
approximately 1-s period for the prismatic joints, while the revolute joints are required to
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track 2 Hz, 0.5 Hz, and 5 Hz sinusoidal signals with different amplitudes to maintain the
desired roll, pitch, and yaw angles.

0 0.5 1 1.5 2 2.5 3
0.0

1.0

2.0

0.0

1.0

2.0

0.0

1.0

2.0

P
ri
sm

a
ti
c
jo
in
t
p
o
si
ti
o
n
s
(m

)

xb,d xb yb,d yb zb,d zb

0 0.5 1 1.5 2 2.5 3

-0.5

0.0

0.5

-1.0

0.0

1.0

-0.3
0.0
0.3

R
ev
o
lu
te

jo
in
t
p
o
si
ti
o
n
s
(r
a
d
)

φb,d φb θb,d θb ψb,d ψb

0 0.5 1 1.5 2 2.5 3
−60

−30

0

30

60

Time (s)

E
x
te
rn
a
l
a
cc
el
er
a
ti
o
n
s
(g
)
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Figure 3. Reference tracking performance of the 6 DOF test bench in closed-loop.

The right side of the first row highlights the performance of actuated revolute joints.
Since these joints intend to simulate different oscillation magnitudes; therefore, the joints
are characterized by faster dynamics. Based on the figure, it can be concluded that both
high and low frequency oscillations are successfully realized by these joints. The reference
joint coordinates (desired roll φd, pitch θd, and yaw ψd angles) are tracked with accept-
able performance; therefore, the derived PID controllers successfully satisfy the control
requirements. In the second row of Figure 3, the generated external accelerations and
oscillation rates are highlighted during the motion of the test bench. The external accelera-
tions are in the ±60 g range, while the angular rates appear in the ±10 rad/s range in this
experiment. These values cover an extensive range of dynamic motions, from slow human
motion tracking problems to the dynamics of agile mechatronic systems characterized
by vibrations, fast maneuvers, and a variety of working conditions. These experimental
results prove that the proposed test environment is capable of simulating various system
behaviors, which enables the evaluation of different real world scenarios.

Figure 4 depicts the spatial motion of the linear joints during the aforementioned
experiment. The blue curve highlights the reference trajectory (xb,d, yb,d and zb,d), while the
red curve shows the realized trajectory during the 3 s-long experiment. An apparent
difference can be observed between the blue and red curves, due to the fact that the new
desired spatial coordinates have been supplied earlier than the settling of the prismatic
joints controllers. Moreover, the desired spatial coordinates are supplied in different time
instances; therefore, even if one prismatic joint controller settles, the other two controllers
are either in the rising time phase or overshoot state, thereby resulting in discrepancy
in either one or two coordinates. However, this discrepancy in trajectory tracking does
not influence the task and goal of the environment at any manner, since every control
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requirement is satisfied; moreover, the test environment enables the generation of different
dynamic conditions in the 3D space.

0

1

2

3

0

1

2
0

1

2

x (m)
y (m)

z
(m

)

Desired (x, y, z) position Realized (x, y, z) position

Figure 4. Reference and realized trajectories of the 6 DOF test bench in closed-loop.

2.3. MARG System

The 6 DOF test bench performs various dynamic motions, where the pose of its body
plate is altered continuously to simulate both oscillations and external acceleration events.
An MARG unit model is attached to the body plate, which provides raw, noisy sensor data
during the motion of the system.

The model of MARG unit provides the raw gyroscope Ωk, accelerometer Ak, and
magnetometer Hk measurements in each epoch k according to the following equations [38]:

Ωk = (I + ∆SΩ)MΩωk + ω̄k + µk,

Ak = (I + ∆SA)MA(αk + gk) + a0 + νk,

Hk = (I + ∆SH)MH(Bsihk + bhi) + h0 + εk.

(18)

Each sensor model in Equation (18) is characterized by scale factor and misalignment
errors. These errors represent the imperfection of manufacturing by the corresponding
matrices ∆S and M. Moreover, each sensor model provides the measurements as the sum
of the real physical quantity, bias term (ω̄k, a0 or h0), and Gaussian additive measurement
noise (µk, νk or εk). In case of the gyroscope sensor, the real physical quantity is the angular
velocity ωk of the body plate, while the sum of gravitational gk and external acceleration
αk constitute the physical quantity of the accelerometer sensor. Additionally, the physical
quantity of the magnetometer model is the local magnetic field vector hk disturbed by
magnetic soft iron Bsi and hard iron bhi errors. These magnetometer errors are compensated
for in self-calibration procedures [39–41].

The aforementioned MARG model enables the generation of realistic raw MEMS
sensor data during the motion of the 6 DOF test bench. Therefore, the effects of both
external accelerations and sensor frame oscillations are appropriately represented by Ωk,
Ak, and Hk sensor outputs.

2.4. Magnetic Perturbation Generator

Magnetic fluctuations cannot be generated by Equation (18) in the simulation environ-
ment. However, random magnetic perturbations commonly occur in real world scenarios,
where the magnetometer output gets disturbed by ferromagnetic objects [42]. Therefore,
an essential requirement is to simulate random magnetic fluctuations in the proposed
test environment.
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An additional algorithm is utilized to generate these artificial magnetic perturba-
tions. The algorithm calculates the output (i.e., the magnetic perturbation) in three steps
as follows.

mk = r1, k = s1, . . . , s1 + Lw,

mk =
r2

Lw
((k− s2) mod Lw), k = s2, . . . , s2 + Lw,

mk = r3 sin
(

2π f1
k− s3

Lw

)
, k = s3, . . . , s3 + Lw,

mk = r4 sin
(

2π f2
k− s4

Lw

)
, k = s4, . . . , s4 + Lw,

mk =
r5

π
sin−1

(
sin
(

π
k− s5

Lw

))
, k = s5, . . . , s5 + Lw,

(19)

Ml =
Lm

∑
k=1

mke−j
(

2πl(k−1)
Lm

)
, l = 1, . . . , Lm,

hl = 1, l = 1,
(

Lm

2
+ 1
)

, and hl = 2, l = 2, . . . ,
Lm

2
,

ma,k = mr,k + jmi,k =
1

Lm

Lm

∑
l=1
Mlhle

j
(

2πk(l−1)
Lm

)
, k = 1, . . . , Lm.

(20)

1. Generate an artificial signal by combining five fundamental waveforms. In this algo-
rithm, a square signal, a sawtooth wave, two sinusoidal signals and a triangle wave
are combined to generate the artificial signal m of length Lm = ∆t fs, where ∆t denotes
the time window, in which magnetic perturbation is to be generated, while fs is the
sampling frequency. Namely, initialize mk = 0 for k = 1, . . . , Lm, and then let Lw
denote the length of each waveform; moreover, a vector s = (s1, . . . , s5) containing
the start locations of each waveform is generated via a random permutation. As a
result, the artificial signal (m) is produced with Equation (19), where ri is the random
amplitude of the ith waveform, i = 1, . . . , 5, while f1 and f2 denote the random
frequencies of the sinusoidal signals in [0.5, 2.5] Hz range. The first row of Figure 5
shows the generated artificial signal, where ∆t = 2 s, fs = 200 Hz and Lw = Lm/10.

2. Use the artificial signal (m) and calculate the analytic signal ma,k = mr,k + jmi,k,
k = 1, . . . , Lm, where mr,k denotes the real part and is the original signal, while
mi,k represents the imaginary part, and is the original signal with π/2 phase shift,
obtained via Hilbert transformation. In this step, the fast Fourier transform (FFT)M
of m is calculated, a zero vector h of length Lm is created and offset (scaling) values
are applied, and, finally, the inverse FFT of the element-wise product of m and h is
obtained [43]; see Equation (20). Then, the artificial perturbation mp is generated as
the sum of the imaginary part mi and absolute value of the analytic signal ma, where
the sequence of absolute values is reversed in time (see the outcome of this step in the
second row of Figure 5):

mp,k = mi,k +
∣∣ma,l

∣∣, (21)

3. Extract the continuous linear trend of the artificial perturbation signal by subtracting
a straight line m̂p from mp, where m̂p denotes the best linear fit to mp in the least
squares sense:

∆mp = mp − m̂p,
Lm

∑
k=1

(
mp,k − m̂p,k

)2
→ min. (22)
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Then, apply low-pass filtration to the detrended signal (∆mp) via a second order
Butterworth infinite impulse response (IIR) filter to obtain the output (m̃):

m̃k =
2

∑
i=1

aim̃k−i +
2

∑
j=0

bj∆mp,k−j, (23)

where k = 1, . . . , Lm; moreover, ai and bi filter coefficients are obtained based on the
cutoff frequency of the filter. In this algorithm, the cutoff frequency was selected to be
5 Hz. The output of the algorithm is shown in the third row of Figure 5.
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Figure 5. Artificial magnetic perturbation algorithm.

Figure 5 highlights that the aforementioned algorithm produces realistic magnetic
perturbation signals; therefore, it can be effectively used in the test environment to generate
various real world scenarios, where the magnetometer data is disturbed due to environ-
mental changes, such as the effect of ferromagnetic materials. Figure 6 illustrates the
application of the proposed algorithm on raw magnetometer data. The blue curves indicate
the raw undisturbed magnetometer measurements, while the red curves indicate particular
sections, where the measurement was disturbed by the proposed algorithm. It can be
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seen that the algorithm altered the raw sensor signals three times during the 15 s-long
measurement. In the last row of Figure 6 the magnitude of magnetometer data is shown,
where the red curve highlights the effect of the perturbation algorithm (i.e., the norm of
measurements has increased to approximately five times of the raw data norm during the
perturbation events). These figures demonstrate that the algorithm provides useful output
for simulating random realistic magnetic perturbations.
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Figure 6. Magnetometer data before (blue curves) and after (red curves) the artificial
magnetic perturbations.

2.5. Implementation Results

The proposed 6-DOF test bench, along with its closed-loop architecture, MARG unit
model, and magnetic perturbation algorithm, as a complete simulation environment,
has been implemented in both MATLAB/Simulink and ROS/Gazebo. These implementa-
tions have been made publicly available in the supplementary online material [34] with the



Sensors 2021, 21, 1183 14 of 23

aim to share the test environment with other researchers who’s work is focused on MEMS
MARG unit-based algorithms. Appendixes A and B describe the complete procedure of
the usage of the proposed test environment.

Regarding the MATLAB-based implementation, the state-space dynamics of the 6 DOF
test platform (Equation (10)) has been implemented with a Simulink S-function block. Each
joint is controller in closed-loop; therefore, six position input effort output-type controllers
have been implemented (Equation (14)) to maintain the desired joint coordinates. The PID
parameters have been obtained using Equation (17). The MARG unit is connected to the
end of the kinematic chain and is composed of accelerometer and gyroscope Simulink
blocks, along with a custom-made magnetometer model (see Equation (18)). In the current
implementation, it is assumed that the sensor models are calibrated (bias terms are zero
vectors); moreover, zero scaling and no misalignment are considered in Equation (18).
However, these values can easily be modified in the corresponding Simulink sensor blocks,
if more advanced problems need to be examined. Figure 7 shows the implemented model
in MATLAB/Simulink.
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Figure 7. The test environment in MATLAB/Simulink.

In ROS/Gazebo environment, the dynamics of the 6 DOF test bench is implemented
in a Universal Robotic Description Format (URDF) file [44]. This XML file describes all
elements of the test environment, from kinematic and dynamic properties (mass, inertia,
friction parameters, and joint ranges), over collisions to frame positions and velocities.
The derived PID controllers have been implemented and loaded via the controller manager
ROS package. Effort action-based controllers are defined to drive the joints in closed-loop.
The ros controllers meta-package provides the environment to implement these low level
controllers. As it is given in Equation (14), these controllers are driven with desired position
inputs and supply torque outputs to the joints. The state vector x = (q, q̇)T is obtained by
the joint state controller, which is a sensor controller and supplies the true states of the system
continuously (true joint positions, velocities, and joint efforts without measurement noise).
The MARG unit is connected to the body plate of the test platform and is implemented with
Gazebo sensor plugins [45]. The positions, frames, and noise properties of these sensors
are defined in the aforementioned URDF file. Figure 1 shows the implemented model in
ROS/Gazebo environment.

3. Case Study: Evaluation and Tuning of Attitude Filters

This section intends to show that the proposed environment fosters the effective
analysis of MARG-based algorithms. Namely, the test platform enables (i) to observe the
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impact of different dynamic conditions on the estimation performance, (ii) the tuning of
filter parameters, (iii) to detect robustness issues, and, finally, (iv) the complete development
and evaluation MARG-based algorithms.

The case study demonstrates the performance evaluation and tuning of attitude
filters in the following subsections. As it was discussed in the introduction, the task of
attitude estimators is to provide both accurate and robust estimation results even if external
disturbances (external acceleration, vibration, and magnetic perturbation) occur during
the motion of the dynamical system. Therefore, the performance of these filters can be
tested in such environment where the aforementioned disturbances commonly appear
with different magnitudes and frequencies. The proposed test environment is completely
suitable for the simulation of these system conditions.

3.1. Algorithms

Three popular attitude filters are discussed in the analysis, namely the ECF [19],
GDA [20], and standard extended Kalman filter (EKF) [46] algorithms are evaluated with the
help of the test environment. The implementations of these algorithms are widely used and
available in both ROS/Gazebo [22,47,48] and MATLAB/Simulink environments [49,50]. Since
the algorithms have been described in detail in earlier works [1,2,4,5,32,51,52], therefore,
only the key steps of the algorithms are introduced as follows.

3.1.1. Explicit Complementary Filter

The algorithm in Reference [19] derives a quaternion-based CF, in which the error
between the measured and estimated directions of gravity and magnetic field vectors is
calculated. Then, a PI controller is used to correct the gyroscope signal, which finally drives
the quaternion propagation:

ek =
SAk ×

S Â(q̂k) +
SHk ×

S Ĥ(q̂k),

Ω̂k = Ωk + Kpek + Ki

k

∑
i=1

eiTs,

q̂k+1 = q̂k +
Ts

2
Q(q̂k)

[
0

Ω̂k

]
,

(24)

where Ts is the sampling period, SAk and SHk are the measurements in the sensor frame,

and S Âk = S
E q̂k ⊗ E g ⊗ SE q̂k

∗ and S Ĥk = S
E q̂k ⊗ Eh ⊗ SE q̂k

∗ denote the estimated vectors,
while Q(q̂k) indicates the quaternion matrix [53]. The derivation of these quaternion-based
expressions have been described in detail in an earlier work [1]. The filter is characterized
by two parameters, these are the PI controller gains Kp and Ki.

3.1.2. Gradient Descent-Based Attitude Filter

The algorithm in Reference [20] also uses quaternion representation of orientation.
The accelerometer and magnetometer measurements are employed in a gradient descent
algorithm to obtain the quaternion derivative related to the gyroscope measurement
error. As a result, a drift corrective step is executed to maintain the gyroscope-based
quaternion propagation:

fk =

[S
Â(q̂k)− SAk
S

Ĥ(q̂k)− SHk

]
,

O fk = JT
k fk,

q̂k+1 = q̂k + Ts

(
1
2

Q(q̂k)

[
0

Ωk

]
− β

O fk
‖ fk‖

)
,

(25)
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where Jk is the Jacobian matrix of the objective function fk, and β denotes the learning rate.
This algorithm is a single-gain (β) attitude filter.

3.1.3. Attitude Estimation with Extended Kalman Filter (EKF)

The EKF employs the gyroscope-based quaternion propagation to obtain the a priori
state estimate x̂−k =

(
q̂−k , ˆ̄ω−k

)T in the so-called predict phase, and then these estimation

results are updated with the accelerometer and magnetometer readings zk =
(
SAk, SHk

)T

in the measurement update phase of the algorithm. The state propagation includes both
the quaternion (qk) and random walk process of gyro-bias (ω̄k), while the update equations
are based on the relationship between the reference vectors and sensor measurements:

q̂−k = q̂k−1 +
Ts

2
Q(q̂k−1)

[
0

Ωk − ˆ̄ωk−1

]
,

P−k = ΦPk−1ΦT + Q,

Gk = P−k HT
(

HP−k HT + R
)−1

,

ẑ−k =
(S Â

(
q̂−k
)
, S Ĥ

(
q̂−k
))T

,

x̂k = x̂−k + Gk
(
zk − ẑ−k

)
,

Pk = (I − Gk H)P−k .

(26)

In Equation (26), x̂ is the state estimate, and Φ and H denote the Jacobians of state
dynamics and measurement update equations, respectively, while P is the error covariance
and G is the Kalman gain. Moreover, Q and R denote the state and measurement noise
covariance matrices, which mainly determine the performance of the EKF.

3.2. Experimental Results

In the conducted experiments, the 6 DOF test platform executed various system behav-
iors in order to evaluate the filter convergences in different scenarios. External accelerations
and sensor frame oscillations have been generated by supplying random desired spa-
tial coordinates to the PID controllers of the three prismatic joints. Simultaneously,
diverse sinusoidal signals as reference joint coordinates were supplied to the PID con-
trollers of the three revolute joints to maintain a variety of sensor frame oscillations,
where both the amplitude and frequency coefficients were randomly generated. As a result,
the closed-loop system of the 6 DOF mechanism executed an extensive range of dynamic
motions in the 3D space. Moreover, the proposed magnetic perturbation algorithm gener-
ated random pose-based disturbance events, as well. During these system motions, the test
environment recorded the true system states (ground truth position and orientation of
the sensor frame), along with the raw, noisy MARG sensor data. Therefore, the collected
database enabled to both evaluate and tune the attitude estimator algorithms.

Figures 8–10 show a sample measurement set obtained in the simulation environment.
The sampling frequency was set to fs = 200 Hz; in the MARG model (see Equation (18)),
the standard deviations were defined as follows: µ = 0.0224 (rad/s)/

√
Hz for the gyroscope

model, ν = 0.0224
(
m/s2)/√Hz for the accelerometer output, and ε = 0.0022 nu/

√
Hz for

the magnetometer readings (normalized unit, nu). The magnetic perturbation algorithm
was executed for random ∆t = 2 s time windows. The 6 DOF platform performed both
static and dynamic motions in the following ranges: oscillations were generated with
revolute joints in the ±50 rad/s angular velocity range, ±4 g external accelerations were
executed by the prismatic joints, and magnetic perturbations were applied in the 0–4 nu
disturbance range.

The MARG sensor data (the output of the simulation environment) drove the attitude
filter algorithms (Equations (24)–(26)). The outputs of attitude filters were observed;
moreover, the tuning of each filter was performed based on the heuristic techniques
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developed in References [1,2,54]. Figure 8 shows the GDA output, and Figure 9 highlights
the performance of the ECF algorithm, while Figure 10 illustrates the output of the EKF
algorithm. The first three rows of each figure highlight the ground truth Euler angles (true
roll φ, pitch θ, and yaw ψ angles are indicated with blue curves); moreover, the initial
(pink curves) and tuned (red curves) filter performances are shown in these subplots.
The fourth row of each figure depicts the magnitude of accelerometer readings; therefore,
both the static and dynamic system behaviors can be identified. Additionally, the norm of
magnetometer data is depicted in the fifth row, which enables the identification of magnetic
disturbance events.

It can be observed that the test environment effectively fostered the tuning procedure
of each filter algorithm. The initial filter outputs (pink curves) contained notable estimation
errors; therefore, the default filter parameters did not contribute to an acceptable filter
performance during the executed dynamic motions. However, the tuning of filter param-
eters could easily be performed in the environment, which resulted in improved filter
performances. The effects of external accelerations, vibrations, and magnetic perturbations
can also be observed in the measurement results. These external disturbances significantly
decrease the performance of each filter during the first 12 s in the experiment. These effects
can be handled more effectively in adaptive filter structures. The analysis of adaptive
filters exceeds the scope of this article, but, in fact, the test environment aims to effectively
support the development and evaluation of such novel techniques.
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Figure 8. Initial and tuned performance of the gradient descent-based attitude filter.

The test environment also enables the evaluation of filter convergence in terms of
mean squared error (MSE) and standard deviation (STD) of attitude estimation errors
(eφ,k = φk − φ̂k, eθ,k = θk − θ̂k, and eψ,k = ψk − ψ̂k, where φ̂k, θ̂k, and φ̂k denote the
outputs, estimated Euler angles, of the implemented filter algorithms in epoch k). Moreover,
a cumulated performance index can be defined with Equation (27) to quantify the overall
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performance (N is the length of the measurement). The evaluation of these performance
indexes is summarized for each filter in Table 3. Based on the results, it can be observed
that each filter provides significantly enhanced performance with the tuned parameters.

F = 3

√√√√(∑N
k=1 e2

φ,k

N

)(
∑N

k=1 e2
θ,k

N

)(
∑N

k=1 e2
ψ,k

N

)
. (27)

Among the algorithms, the GDA was characterized by the largest performance in-
dex (F = 0.1812) in the experiment (the smaller the value, the better the performance).
This outcome can be related to the single (constant) gain property of the algorithm. The dy-
namic circumstances made the GDA provide large estimation errors around 7 s in Figure 8,
which resulted in the biggest performance index in the analysis. The ECF showed a more
robust filter performance with F = 0.1471 performance index. The tuned PI controller
enabled the filter to overcome the impact of external disturbances more effectively; how-
ever, notable estimation errors can be observed during the dynamic behavior of the system.
The EKF algorithm yielded the most robust filter performance during the experiment
(F = 0.1033). This algorithm was characterized by four parameters (i.e., noise statistics
related to quaternion propagation, bias walk process, accelerometer observations, and mag-
netometer measurements); therefore, its flexibility allowed to both effectively suppress the
effects of disturbances and provide superior filter performance. However, the performance
of EKF algorithm also decreased during the dynamic motions, as can be observed during
the first 10-s period. The effective handling of these disturbances is performed by adaptive
sensor fusion structures.
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Figure 9. Initial and tuned performance of the explicit complementary filter.

This subsection demonstrated the use of the proposed test environment for the analysis
and tuning of common attitude filters. The test environment can be universally applied
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for any type of MARG-based algorithm, where external accelerations, vibrations, and
magnetic perturbations commonly occur, and their effect should be carefully addressed
(and incorporated) in the development of novel algorithms.
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Figure 10. Initial and tuned performance of the standard extended Kalman filter (EKF).

Table 3. Outcome of filter analysis. The bold values indicate the tuned filter performances.

ECF GDA EKF

Initial Tuned Initial Tuned Initial Tuned

F 0.5237 0.1471 1.1950 0.1812 0.2891 0.1033
MSE (φ) 0.4405 0.1831 1.2361 0.2349 0.2351 0.0856
STD (φ) 0.6307 0.4275 0.9103 0.4835 0.4848 0.2881
MSE (θ) 0.3713 0.0773 0.5610 0.0977 0.1068 0.0676
STD (θ) 0.5996 0.2756 0.7410 0.3069 0.3184 0.2593
MSE (ψ) 0.8784 0.2248 2.4607 0.2589 0.9618 0.1906
STD (ψ) 0.6384 0.4476 1.0554 0.4871 0.9774 0.4115

4. Conclusions

This paper presented an universally applicable test environment for development,
testing, and performance evaluation of MARG-based filtering techniques, such as pose
estimators and classification algorithms. The test environment contains a closed-loop
controlled 6 DOF dynamical system to alter the pose of an MARG unit in the 3D space
and thereby simulate various system behaviors. Effort action-based joint controllers are
employed to execute realistic external accelerations and vibrations by the 6 DOF platform;
moreover, an artificial magnetic perturbation algorithm is applied to generate realistic
magnetic disturbances. The simulation environment executes the desired dynamical
motions and simultaneously supplies the true system states (ground truth values), along
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with the raw sensor measurements. As a result, the proposed environment provides
effective help in the development of filtering techniques, since a big variety of system
conditions can be both simulated and evaluated. The environment has been implemented
in both ROS/Gazebo and MATLAB/Simulink and is publicly available online. Future
work will include the analysis of advanced conditions, where the impact of static friction,
sensors frame misalignment, and scaling errors will also be evaluated during the state
estimation procedures.
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Appendix A. Usage of the package in MATLAB/Simulink

After downloading the package from Reference [34], the start MATLAB file should
be executed in the simulink folder. This script loads the system parameters (e.g., inertia
and mass properties of the joints, friction coefficients, and PID controller parameters)
and opens the Simulink simulation environment (see Figure 7). The researcher can freely
change the length of simulation (tsim), sampling time (Tsampling), and time window for
magnetic perturbation (dt) parameters to evaluate different dynamic scenarios, as well.
Then, the desired position and orientation values should be supplied to the 6 DOF model
(see the left side of Figure 7); these reference values will be realized by the dynamic system
with the help of the closed-loop driven linear and revolute joints. The desired values can
be supplied by different Simulink blocks, i.e., from simple Repeating Sequence Generator
block, over Signal Generator block, to custom made signal waves (From Workspace block) can
be utilized for the generation of reference values. The properties of MARG system can
also be modified by editing the parameters of Gyroscope, Accelerometer, and Magnetometer
blocks (see the right side of Figure 7). Namely, the natural frequency and damping ratio
parameters, scaling, and misalignment errors, as well as the noise power for each axis (see
Equation (18)), can be freely modified for each sensor block to observe different system
scenarios. Once the parameters and input reference values are set up, the simulation
environment can be executed. The outputs of the simulation are the true system states
(position in posXYZ, orientation in angleXYZ, angular velocity in oscRate, linear acceleration
in extAccel, and angular acceleration in extAngularAccel) and the realistic MARG sensor
data (accelerometer in aMeas, gyroscope in gMeas, and magnetometer in mMeas). These
outputs can be used to both effectively evaluate filter algorithms and tune filter parameters.

Appendix B. Usage of the package in ROS/Gazebo

The package [34] should be cloned and built in the catkin workspace. The 6 DOF
test environment node is started with the spawn testenv launch file. This launch file uses
the URDF file to construct both the kinematic chain and dynamics of the 6 DOF system
(see the description in Section 2.5). The researcher can freely change the parameters of
the test environment (i.e., from dimension of links, over mass parameters and joint limits,
to MARG errors, noise powers, and sampling time) in the testenv xacro file in the urdf folder.
Therefore, the aforementioned launch file spawns the dynamic system in Gazebo with
the selected parameters; moreover, it adds a PID controller to each joint with the help
of the controller manager package. The PID controller parameters can also be altered in
the testenv trajectory control yaml file in the config folder. Once the spawning of the test
environment is finished, the Gazebo simulator utilizes its physics engines to continuously

http://appl-dsp.com/faekf
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update the instantaneous system states via ROS topics. The researcher can observe and
monitor these instantaneous values in the rqt graphical user interface by subscribing to the
joint states, imu raw, and magnetic ROS topics (see both Figure 1 and video demonstrations
in Reference [34]). Moreover, the researcher can generate the database of both real system
states and raw MARG data with the help of the rosbag tool. Finally, the exec traj node is
utilized to supply the desired position and orientation values to the closed-loop architecture
of the 6 DOF system. This node creates a ROS client to the follow joint trajectory topic for
moving simultaneously the linear and revolute joints according to the selected reference
values. In this node, the researcher can freely select the way points for each joint to be
realized, thereby defining the custom spatial movements to be executed by the dynamic
system. As a result, the PID controllers are supplied by the reference values, and the Gazebo
simulator simulates the intended system behavior. The instantaneous measurements are
collected in the database during the spatial movements by the rosbag tool; therefore, both
the filter evaluation and parameter tuning can be effectively realized.
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