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Alternative splicing is an RNA processing mechanism that affects most genes in human, contributing to disease mechanisms

and phenotypic diversity. The regulation of splicing involves an intricate network of cis-regulatory elements and trans-acting
factors. Due to their high sequence specificity, cis-regulation of splicing can be altered by genetic variants, significantly af-

fecting splicing outcomes. Recently, multiple methods have been applied to understanding the regulatory effects of genetic

variants on splicing. However, it is still challenging to go beyond apparent association to pinpoint functional variants. To fill

in this gap, we utilized large-scale data sets of the Genotype-Tissue Expression (GTEx) project to study genetically modu-

lated alternative splicing (GMAS) via identification of allele-specific splicing events. We demonstrate that GMAS events are

shared across tissues and individuals more often than expected by chance, consistent with their genetically driven nature.

Moreover, although the allelic bias of GMAS exons varies across samples, the degree of variation is similar across tissues

versus individuals. Thus, genetic background drives the GMAS pattern to a similar degree as tissue-specific splicing mech-

anisms. Leveraging the genetically driven nature of GMAS, we developed a new method to predict functional splicing-

altering variants, built upon a genotype-phenotype concordance model across samples. Complemented by experimental

validations, this method predicted >1000 functional variants, many of which may alter RNA-protein interactions.

Lastly, 72% of GMAS-associated SNPs were in linkage disequilibrium with GWAS-reported SNPs, and such association

was enriched in tissues of relevance for specific traits/diseases. Our study enables a comprehensive view of genetically driv-

en splicing variations in human tissues.

[Supplemental material is available for this article.]

High-throughput sequencing technologies are enabling identifica-
tion of an extraordinary number of genetic variants in the human
genome (Reuter et al. 2015). These data provide a foundation to
elucidate the genetic underpinnings of human diseases or pheno-
typic traits. Many genome-wide studies have been conducted to
uncover associations between the genetic variants and complex
traits (Buniello et al. 2019). However, moving from associations
to revealing the underlying mechanisms remains a significant
challenge. Genetic variants could affect many aspects of gene ex-
pression or function, which is a major determinant of phenotypic
diversity (Manning and Cooper 2017). Until recently, research ef-
forts have been focused on variants that may impose epigenetic or
transcriptional regulation. However, it is increasingly recognized
that genetic variants also play critical roles in modulating post-
transcriptional mechanisms, such as alternative splicing (Wang
and Cooper 2007; Sterne-Weiler and Sanford 2014).

Alternative splicing is an essential mechanism in eukaryotic
gene expression, contributing tomanyaspects of phenotypic com-
plexity and disease mechanisms (Hsiao et al. 2016b). Splicing is
regulated by an intricate network of trans-factors and cis-regulatory
elements (Hsiao et al. 2016b). Thus, it is not surprising that genetic

variants may alter different aspects of splicing regulation, such as
the cis-regulatory motifs, trans-factor expression or function, and
the interactions between these players (Wang and Cooper 2007;
Sterne-Weiler and Sanford 2014). Indeed, quantitative trait loci
(QTL) mapping in lymphoblastoid cell lines suggested that splic-
ing QTLs and expression QTLs are comparable in their effects on
complex traits (Li et al. 2016; Ferraro et al. 2020).

Both computational and experimental methods have been
developed to reveal splicing-disrupting genetic variants (Hsiao
et al. 2016b; Rhine et al. 2019; Rowlands et al. 2019). Computa-
tionally, applications of machine learning methods have yielded
promising results (Barash et al. 2010). Recently, performance im-
provements were achieved using deep learning to predict splice
site usage directly from nucleotide sequence (Xiong et al. 2015;
Bretschneider et al. 2018; Cheng et al. 2019; Jaganathan et al.
2019). However, these methods still present challenges in inter-
pretability, and it is difficult to determine whether the features be-
ing used are biologically relevant. Experimentally, massively
parallel reporter assays have enabled large-scale screens of func-
tional variants in splicing (Ke et al. 2011; Rosenberg et al. 2015;
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Soemedi et al. 2017; Adamson et al. 2018; Cheung et al. 2019).
However, due to the limited insert size cloned into the reporters,
the splicing outcome may not always recapitulate endogenous
splicing patterns. Additionally, these reporter assays can only be
performed in one cell type at a time. In general, it remains a great
challenge, both computationally and experimentally, to identify
causal genetic variants specific to each tissue type.

In this study, we carried out global analyses of allele-specific
alternative splicing using RNA-seq data from a large panel of hu-
man tissues and individuals generated by the GTEx project (The
GTEx Consortium 2015). Compared to machine learning meth-
ods, allele-specific analysis is a data-driven approach that requires
little prior knowledge about splicing regulatory mechanisms. The
advantage of this approach includes its applicability to a single
RNA-seq data set. In addition, it compares the alternative alleles
of a heterozygous SNP in the same cellular environment in the
same subject. Thus, the method controls for tissue conditions,
trans-acting factors, global epigenetic effects, and other environ-
mental influences.

Our lab previously developed allele-specific analysis methods
to identify allele-specific splicing events, also called genetically
modulated alternative splicing (GMAS) (Li et al. 2012; Hsiao
et al. 2016a). Here, in addition to applying these methods to the
GTEx data, we developed a new method to infer functional SNPs
underlying the GMAS events. The analysis of GTEx data using
these methods allowed a detailed view of GMAS across tissues
and individuals and their potential functional relevance in human
diseases and traits.

Results

Overview of genetic modulation of alternative splicing

in GTEx data

We first applied our previously publishedmethod (Li et al. 2012) to
identify GMAS events. Briefly, this method examines allelic biases
in reads covering heterozygous SNPs in each gene. By comparing
the allele-specific expression patterns of all heterozygous SNPs in
a gene and their associations with alternative splicing, themethod
identifies SNPs that are associated with allele-specific splicing pat-
terns (Methods). Although this method does not pinpoint the
functional SNPs regulating splicing, it captures exons (namely
GMAS exons) that are under such genetic regulation. Therefore,
the SNPs with allelic bias located in the GMAS exons are named
tag SNPs. Using this method, we analyzed a total of 7822 GTEx
RNA-seq data sets, across 47 tissues and 515 donors, following a
few quality control filters (Methods).

Across all tissues, a total of 12,331 exons were identified as
GMAS exons, associated with 18,894 heterozygous tag SNPs
(Methods), where one GMAS exon may be associated with multi-
ple tag SNPs. We focused on GMAS events that are common to
multiple samples by requiring each GMAS exon be present in ≥3
samples (across all tissues and individuals). A total of 4941
GMAS exons (7404 tag SNPs) were retained (Supplemental Table
S1). For each tissue, an average of 10%of all testable exons (defined
based on read coverage requirements) (see Methods) were identi-
fied as GMAS exons (Fig. 1A). This percentage is highest in whole
blood (17.8%),whichmay reflect existence of a high level of genet-
ic modulation of splicing, consistent with the sQTL results in the
GTEx study (The GTEx Consortium 2015). Note that the preva-
lence of GMAS per tissue may be affected by sample size and se-
quencing depth (Supplemental Fig. S1A). Using subsets of

samples that match the number of samples and the sequencing
depth per sample in brain substantia nigra (the tissue with the
least samples), we observed that blood is still among those with a
high percentage of GMAS events (second to testis) (Supplemental
Fig. S1B).

In each tissue, the most prevalent type of alternative splicing
for GMAS events is skipped exons (SEs), accounting for about 80%
of all events, followed by retained introns (RIs, ∼10%) (Supple-
mental Fig. S2A). The difference in splicing levels of GMAS exons
in individuals homozygous for the reference versus variant allele is
generally lower than 50% (Supplemental Fig. S2B), although some
brain regions showed larger differences relative to other tissues.
Note that the distributions for alternative splice site exons may
not be reliable given the small number of events.

GMAS patterns vary across tissues and individuals

to a similar degree

Given the data sets frommany individuals and a large panel of tis-
sues, we first examined the global variability in GMAS patterns de-
pending on these two variables. To segregate the impact of tissues
and individuals on GMAS, we used a linear mixed model that in-
cludes these two variables and a number of confounding factors
(age, ethnicity, and gender) (Methods). We observed equivalent
levels of dependence of GMAS on tissues and individuals (Fig.
1B). This result is in stark contrast to previous findings that both
gene expression and splicing in general predominantly vary de-
pending on tissue types instead of individuals (Melé et al. 2015).
Nevertheless, our result is not surprising because GMAS, by defini-
tion, consists of splicing eventsmodulated by genetic variants that
can be individual-specific. In turn, this result confirms the validity
of the reported GMAS events. Our observation highlights that ge-
netic background drives the splicing patterns of GMAS exons to a
similar degree as tissue-specific splicing mechanisms, a previously
underappreciated aspect.

Genes that contain GMAS exons with high tissue variance or
high individual variance have substantially different function (Fig.
1B). The first group of genes is enriched in Gene Ontology (GO)
terms associated with biophysical properties of the cells, especially
related to heart or skeletal muscle function (e.g., sarcomere organi-
zation, cardiac muscle development, and cytoskeleton organiza-
tion). This finding supports that alternative splicing is an
important aspect contributing to the vast spectrum of biophysical
properties of different cell types (Wang et al. 2008). In contrast,
genes harboring GMAS exons with large variability across individ-
uals are often involved in immune response and signaling path-
ways. This observation suggests that the individual variability in
immune or stress response (Aguirre-Gamboa et al. 2016;
Schirmer et al. 2016; Ter Horst et al. 2016) is partly accounted for
by splicing variations driven by genetic backgrounds. For genes
with GMAS exons with low variability across both tissues and in-
dividuals, themost significantGO terms are related to essential cel-
lular processes (Supplemental Fig. S3), whichmay reflect existence
of selection against splicing variability in essential genes.

GMAS patterns are shared between tissues or individuals

To better understand the tissue specificity of GMAS events, we
next investigated the extent of overlap ofGMAS exons between tis-
sues (Methods). We observed that biologically related tissues, such
as brain regions, heart and skeletal muscles, and reproductive tis-
sues (uterus and vagina), formed clear clusters (Fig. 2A). Most brain
regions shared about 25%–43% of GMAS exons with one another,
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Figure 1. The landscape of GMAS exons in human tissues. (A) % of GMAS exons among all testable exons in each tissue (averaged across individuals).
(B) The variability of GMAS patterns across tissues and individuals (Methods). Each dot represents an exon, and the colors represent the number of over-
lapping dots. This analysis only included GMAS exons that exist in ≥2 individuals per tissue and ≥2 tissues per individual. The numbers along the diagonal
line show the number of GMAS exons above and below the line, respectively. GO terms enriched among genes in the high variability groups (boxed) are
shown. Color intensity represents the number of genes associated with each significant GO term. The P-values were estimated based on 10,000 random-
izations of control genes (i.e., genes hosting alternatively spliced exons that were tested for GMAS) matching gene length and GC content of the test genes
(Hsiao et al. 2016a). The significant cutoff of the P-value was set to be 1/(number of total GO terms considered).
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with the exception of cerebellum and cerebellar hemisphere.
These two regions were previously reported as outliers with dis-
tinctly higher splicing factor expression than other brain regions
(Melé et al. 2015). Consistently, we observed that these two brain
regions shared the most GMAS exons with each other and much
less with other regions (Supplemental Fig. S4).

Next, we asked whether GMAS patterns are shared between
distinct tissues more than expected by chance. For this analysis,
we focused on 26 representative tissues to remove redundant
ones that are highly similar to each other (Methods). Each exon
was required to be testable in at least 10 individuals and five repre-
sentative tissues of a specific individual. We observed that the alle-
lic bias of the GMAS tag SNPs was more similar between tissues of
the same individual than expected by chance (Fig. 2B). Similarly,
for the same tissue, the GMAS-associated allelic bias is also shared
among individuals to a greater extent than expected by chance
(Fig. 2C). These results suggest that genetic variants are important
drivers for GMAS patterns, and tissue-specific effects may play a
relatively less dominant role. This observation is consistent with

the data in Figure 1B where the majority
of GMAS exons showed relatively small
variability across tissues or individuals,
with those that are tissue- or individual-
specific being the minority.

Inferring functional SNPs for GMAS

events

Because genetic background is a main
driver for GMAS events, an important
task is to pinpoint the functional genetic
variants underlying these events. Note
that the tag SNPs identified with the
GMAS events are not necessarily func-
tional as they could be in LD with the
functional SNPs. To infer the functional
SNPs, we developed a new method
that combines allele-specific analysis
of one data set with population-level
variation in GMAS patterns, namely,
concordance-based analysis of GMAS
(cGMAS).

Leveraging the genetically driven
nature of GMAS, cGMAS is built upon
the rationale that a functional SNP, if it
exists as a heterozygous SNP, should al-
ways lead to allele-specific splicing pat-
tern (i.e., GMAS) in the corresponding
data set. Thus, we expect to observe con-
cordance between the genotype of a
functional SNP and the splicing patterns
of a GMAS exon across different individ-
uals. As illustrated in Figure 3A (details in
Methods), the cGMAS method considers
as candidate functional SNPs all hetero-
zygous SNPs in GTEx individuals located
in the proximity of GMAS events. For
each candidate SNP, a concordance score
(Si) was calculated between its genotype
and the GMAS pattern in each individual
where the SNP genotype is available. In
particular, the GMAS pattern was repre-

sented by the allelic imbalance at the tag SNP initially identified
with the GMAS event (Supplemental Fig. S5). Subsequently, the
distribution of Si over all individuals was analyzed using a
Gaussian Mixture Model (GMM) to identify prominent peaks.
The significance of each peak was evaluated via randomization
of the Si values. The functionality of the candidate SNP was
determined based on the number and Si values of significant
peaks (FDR≤0.05) detected in the above procedure (Supplemental
Fig. S5).

The ability to identify functional SNPs via cGMAS is expected
to depend on the number of individuals that possess the GMAS
pattern of a given exon. To carry out a power analysis for thismeth-
od, we simulated 100 hypothetical GMAS exons with functional
SNPs that occur in a varying number of individuals (Methods).
In addition, we varied the fraction of the simulated individuals
that harbor a heterozygous genotype at each functional SNP
(Methods). As expected, greater predictive power was achieved if
more individuals had the GMAS event (Fig. 3B). The proportion
of individuals that had heterozygous alleles at the candidate SNP

B

A

C

Figure 2. Comparison of GMAS patterns across tissues or individuals. (A) Heat map of the Jaccard in-
dices of GMAS exons between each pair of tissues (Methods). White boxes correspond to tissue pairs with
<10 common testable exons. (B) Empirical cumulative distribution function (eCDF) of variances across
tissues in the allelic biases of tag SNPs of GMAS exons for all individuals. Controls were included for com-
parison purposes (Methods). The P-value was calculated using the Kolmogorov–Smirnov test. (C) Similar
to B but for variance across individuals per tissue.
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(i.e., heterozygous ratio) also affected power, where higher hetero-
zygous ratios led to increased power.

Functional SNPs for GMAS events in GTEx individuals

We applied cGMAS to analyze the GTEx data in two ways: sepa-
rately for individual tissues and collectively using data of all tis-
sues. Because the number of data sets from each tissue is limited,
the latter analysis is associated with increased predictive power.
Although tissue-specific functional SNPs may not be identifiable,
the pooled analysis could detect SNPs that function relatively

ubiquitously across tissues. These analyses together identified
1045 putative functional SNPs corresponding to 677 GMAS exons
(FDR≤0.05) (Fig. 3C). These SNPs had 16%–24% of overlap with
known sQTLs, depending on the method and data set used for
sQTL analyses (Lappalainen et al. 2013; ’t Hoen et al. 2013; The
GTEx Consortium 2015; Supplemental Fig. S6). Among the 1045
predicted functional SNPs, 1015 were associated with exon skip-
ping events and the remaining 30 were associated with intron re-
tention. Because alternative 5′ and 3′ splice site events generally
occurred in few individuals, functional SNPs were not predicted
for these types of splicing.

E

BA

C D

Figure 3. Prediction of functional SNPs for GMAS events. (A) Functional SNPs are predicted by considering candidate SNPs (red crosses) in the vicinity of
a GMAS exon, including the tag SNP itself (blue crosses). Concordance among the allelic ratios of the tag SNP in all samples is calculated as described in
Methods (with hypothetical distributions shown). (B) The percentage of SNPs predicted given the number of individuals in the simulated testing cohort
(Methods). Different percentages of individuals with the heterozygous genotype were simulated. Vertical dotted line marks 10 individuals. (C) Top:
Number of predicted functional SNPs per tissue. Bottom: Number of GMAS exons with predicted functional SNPs per tissue. The rightmost bar (All) corre-
sponds to predictions made by pooling samples from all tissues. (D) Left pie chart: predicted functional SNPs in the exonic or intronic regions of SE (skipped
exons). Exonic GMAS: the functional SNP is also the exonic GMAS tag SNP. The rest of the functional SNPs were classified into the “Exonic” or “Flanking
intron” group. Right pie chart: for retained introns (RI). Intronic GMAS: the functional SNP is also the GMAS tag SNP. N refers to the number of functional
SNPs for each group. No functional SNPs were predicted for alternative 5′ or 3′ ss exons. (E) Densities of predicted functional SNPs near the exon-intron
boundaries of their associated GMAS exons (SEs only). The number of functional SNPs was normalized by the total number of testable SNPs at each nu-
cleotide position. Orange curve is the fitted trend line of the shaded area that represents the SNP density at single-nucleotide resolution.
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Among the putative functional SNPs, about 78% (812) coin-
cided with the GMAS tag SNPs. The rest of the SNPs were located
within the same exons as the GMAS exon or in the flanking in-
trons (Fig. 3D). In addition, 23 (2.2%) putative functional SNPs re-
sided in the 5′ splice sites (ss), and 26 (2.5%) in the 3′ ss. The
alternative alleles of these SNPs caused a significant difference in
the splice site strength (Supplemental Fig. S7). In general, putative
functional SNPs demonstrated a positional bias towards enrich-
ment near the splice sites of skipped exons (Fig. 3E), consistent
with the expectation that regulatory elements of splicing tend to
locate in close proximity to splice sites. Note that because the other
types of alternative exons had relatively small numbers of events,
they were not included in this analysis.

Experimental support of functional SNPs for GMAS

To support the predicted functional SNPs, we performedminigene
reporter experiments using a splicing reporter from a previous
study (Xiao et al. 2009). For each candidate SNP, we created two
versions of the minigene construct, harboring the reference and
variant alleles, respectively (Supplemental Table S2). Once ex-
pressed in cells, minigenes containing functional SNPs are expect-
ed to show a significant splicing difference between the two
versions. Using this system in HeLa cells, we tested 14 predicted
functional SNPs, eight associated with exon skipping events
(PDE4DIP, MAP2K3, UGT2B17, ADAM15, SCEL, MOBP, CAST,
and KRT72) and six with intron retention (SEPTIN4, PGGHG,
PSMD13 [×2], NDUFS7, and RGL2) (Fig. 4A). These minigenes
were further tested in U87, K562, and/or HEK293 cells (Supple-
mental Fig. S8A). All 14 SNPs were confirmed to lead to allele-
specific splicing patterns. The observed differences in allelic effect
were replicated across multiple cell lines (except for the event in
MAP2K3), which highlights again that GMAS events tend to be
shared across cell types. These results strongly support the predict-
ed functionality of these SNPs.

It is expected that many functional SNPs may disrupt the in-
teraction between splicing factors and their cis-regulatory motifs
(Hsiao et al. 2016b). Among the putative functional SNPs, 492
were predicted to alter the binding motifs of known splicing fac-
tors (Cook et al. 2011; Ray et al. 2013) (using our previous motif
analysis method [Hsiao et al. 2016a]) or overlap the binding sites
of splicing factors in the ENCODE eCLIP data sets (Supplemental
Fig. S9A; Van Nostrand et al. 2020). For these SNPs, we observed
that the splicing of their associated GMAS exons showed signifi-
cant changes upon splicing factor knockdown (KD) compared to
random testable alternatively spliced exons as controls (ENCODE
RNA-seq data) (Fig. 4B; Van Nostrand et al. 2020), supporting the
functional roles of the splicing factors.

Furthermore, 31 putative functional SNPs were testable for al-
lele-specific binding (ASB) using the ENCODE eCLIP data in our
previous study (Yang et al. 2019), 18 (58%) of which had signifi-
cant ASB supporting their functional roles. To experimentally con-
firm the ASB patterns, we carried out electrophoreticmobility shift
assays (EMSA, or gel shift) for BUD13, the protein with the largest
number of eCLIP peaks overlapping putative functional SNPs (Sup-
plemental Fig. S9A,B). We focused on two candidate functional
SNPs and asked whether BUD13 binds to the alternative alleles
with different strength. Two versions of the RNA sequences were
synthesized harboring the alternative alleles of each SNP. As
shown in Figure 4C, the binding of BUD13 to target RNAs was
stronger with increasing protein input. The alternative alleles of
the SNPs demonstrated visible differences in their binding to the

protein, supporting the functional impact of these SNPs. It should
be noted that the binding motifs of BUD13 may be quite diverse
(Feng et al. 2019), explaining the seemingly different nucleotide
sequences of the two BUD13 targets in Figure 4C. Consistent
with the EMSA data, the two SNPs were also predicted as ASB
SNPs for BUD13 via eCLIP-seq analysis of K562 cells (Fig. 4C;
Yang et al. 2019). In addition,minigene experiments in our recent-
ly published study confirmed the functional role of rs638250
in splicing regulation (Supplemental Fig. S9C; Yang et al. 2019).
In general, BUD13 may regulate many more GMAS events,
supported by the relatively high correlation between BUD13
expression and the allelic ratios of GMAS SNPs (Supplemental
Fig. S9D).

GMAS events are enriched in disease-relevant genes and regions

To examine the disease relevance of GMAS events, we first asked
whether GMAS events are significantly associated with GWAS
loci. Specifically, we examined whether the predicted functional
SNPs underlying GMAS were in LD with GWAS SNPs (and within
200 kb in distance) (Methods). As controls, random variants from
non-GMAS genes were sampled and analyzed relative to GWAS
SNPs similarly. We observed that 74% (774) of GMAS functional
SNPswere in LDwithGWAS SNPs, a percentage significantly high-
er than that among control SNPs (P< 2.2 ×10−16) (Fig. 5A). Note
that similar results were observed when including all GMAS
events, not limited to those with putative functional SNPs (72%,
5317 GMAS SNPs, P<2.2 ×10−16) (Fig. 5A). This result is expected
becauseGMAS, by definition, is driven by genetic variants, and the
functional SNPs (even if not identifiable here due to lack of power)
are usually located close to the regulated exon (Fig. 3E). Overall,
these observations support the likely disease relevance of GMAS
events.

We further examined the GMAS-GWAS relationship for spe-
cific traits/diseases. For each trait/disease, we repeated the above
LD analysis and calculated the enrichment of all GMAS SNPs rela-
tive to control SNPs that are located in LD regions of GWAS SNPs
(defined as relative risk) (Methods: Fig. 5B). A number of traits/dis-
eases, such as immune function, Parkinson’s disease, and bipolar
disorder, demonstrated significantly high enrichment (Fig. 5B).
Similar results were obtained when repeating this analysis using
predicted functional SNPs only (Supplemental Fig. S10), although
some differences do exist likely due to reduced power given the in-
evitably smaller number of GMAS events with predicted function-
al SNPs than the set of all GMAS events. GMAS SNPs associated
with immune function consistently had the highest relative
enrichment, in line with the known prevalence of alternative
splicing in the immune system (Lynch 2004). The enriched associ-
ation of GMAS SNPs with neurological function or related diseases
suggests that splicing may have close relevance in these processes.
Complex traits such as height and body mass index (BMI) had the
lowest relative risk (although still significant), indicating that splic-
ing likely contributes the least to their underlying biologicalmech-
anisms among those considered here.

An interesting question is whether the GMAS events were
identified in tissues relevant to their associatedGWAS traits/diseas-
es. To this end, we defined a trait-relevance ratio (TRR) to evaluate
the proportion of GMAS SNPs in each tissue that were in LD with
GWAS SNPs for a given trait/disease (Methods). This analysis re-
vealed some interesting insights. For example, for bipolar disorder,
brain tissues had the highest TRRs among all tissues, consistent
with the nature of the disease (Fig. 5C; Supplemental Fig. S11A).
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In contrast, TRRs were highest in lymphocytes and whole blood
for immune function-associated GMAS SNPs (Fig. 5D;
Supplemental Fig. S11B), both with immune relevance. In addi-
tion, GMAS SNPs associated with metabolic function had the
highest TRRs in tissues (liver and adrenal gland) of close relevance
to metabolism (Supplemental Fig. S11C,D). Neuroticism- and cog-
nitive function-related GMAS SNPs were observed with high TRRs
in brain tissues (Supplemental Fig. S11E–H). Note that the above
TRR enrichment is unlikely solely due to tissue-specific expression
of the GMAS-associated genes, as the above results still hold

after removing GMAS events in known tissue-specific genes
(Supplemental Fig. S12A–V; Yang et al. 2018). Thus, these observa-
tions are highly consistent with the expected tissues of relevance
of the traits/diseases, supporting the potential involvement of
GMAS in related functional processes. For other traits, the top tis-
sues with high TRR values were more diverse or nonintuitive
(Supplemental Fig. S11I–T). It is likely that genetically driven splic-
ing alteration is not a primary contributor, or alternatively, these
traits/diseases are complex and involve biological processes in a
wide range of tissues.

B

A

C

Figure 4. Experimental support of predicted functional SNPs. (A) Minigene experiments validating predicted functional SNPs for GMAS in triplicates
(R1–3). The inclusion levels (% inclusion) of the skipped exons or retained introns were estimated from the band intensities of the PAGE gel. Note that,
for illustration purposes, the y-axis scales are different for different genes. (B) eCDF of the absolute changes in the PSI values of GMAS exons upon KD
of splicing factors associated with putative functional SNPs (based on motif analysis or eCLIP overlap). All splicing factors in Supplemental Figure S9A
with ENCODE KD RNA-seq data are included here. The P-value was calculated using the Kolmogorov–Smirnov test. (C) EMSA validating allele-specific bind-
ing of BUD13 to putative functional SNPs. The amount of BUD13 protein used in the experiment is illustrated above the gel. BUD13 eCLIP reads (gray) are
shown below the gel, where the locations of the SNPs are labeled with vertical colored lines. The fraction of reads supporting either allele at the functional
SNP position is delineated.
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Discussion

We report a comprehensive study of allele-specific alternative
splicing (a.k.a. GMAS) in human tissues. Using GTEx data sets,
we identified thousands of GMAS events, encompassing 4941 ex-
ons and 7404 SNPs. The multifaceted nature of the data allowed
an examination of the GMAS landscape across tissues and individ-
uals. We observed that the allele-specific pattern of GMAS events
varied to similar degrees across tissues and individuals. It is well es-
tablished that alternative splicing demonstrates high tissue specif-
icity, which enables segregation of samples by tissue types rather
than per individual (Barbosa-Morais et al. 2012; Merkin et al.
2012; Melé et al. 2015). In contrast, our analysis showed that, for

genetically regulated splicing events, the genetic contribution to
splicing variability is equivalent to that contributed by tissue spe-
cificity. As tissue specificity is often imposed by trans-acting regula-
tors, our results suggest that cis- and trans-regulatory mechanisms
have similar degrees of impact on the variability of GMAS.

In general, GMAS events can be shared across tissues or indi-
viduals or demonstrate high tissue- or individual-specificity (Figs.
1B, 2). We observed that GMAS events overall are shared more sig-
nificantly than expected by chance across tissues or individuals
(that share the same genotype) (Fig. 2B,C). This result is consistent
with previous literature that genetically driven splicing profiles
tend to be common to different cell or tissue types (Li et al.
2012; The GTEx Consortium 2015; Hsiao et al. 2016a). This is

BA

C D

Figure 5. Functional relevance of GMAS events. (A) Proportions of all GMAS SNPs and putative functional SNPs in LD with (and within 200 kb of) GWAS
SNPs. Controls were random dbSNPs in genes that do not harbor GMAS SNPs. (∗) P<2.2 × 10−16 (Fisher’s exact test). (B) Relative risk of GMAS SNPs in LD
with selected trait/disease, defined as the ratio between the values in A of the GMAS and control groups for all GMAS SNPs. (ASD) Autism spectrumdisorder,
(SCZ) schizophrenia, (BMI) body mass index. All P-values < 2.2 × 10−16 (Fisher’s exact test). (C,D) Trait-relevance ratio of each tissue (TRRt) defined as the
proportion of GMAS SNPs identified in each tissue that were in LD with GWAS SNPs, for bipolar disorder and immune function, respectively.
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expected because genetic determinants are the most important
factor for such splicing events. On the other hand, there do exist
many GMAS events that are highly individual- or tissue-specific
(Fig. 1B). Genes with individual-specific GMAS exons are often in-
volved in immune-related processes. This observation not only
highlights the impact of an individual’s geneticmakeupon the im-
mune system but also identifies splicing as a potential mechanism
through which the phenotypic effects of genetic variants areman-
ifested. In contrast, genes containingGMAS exonswithhigh tissue
variability are involved in heart or skeletal muscle function, sup-
porting the particular importance of alternative splicing in the bio-
physical properties and functions of cells (Kelemen et al. 2013).

Leveraging the GTEx genotype information and GMAS
events, we developed a new method to pinpoint functional SNPs
that regulate splicing. Specifically, our method appraises the con-
cordance between the allelic bias of a candidate SNP and the splic-
ing pattern of an alternatively spliced region, as represented by the
allelic signature of the tag GMAS SNP. The key factor that deter-
mines the performance of our method is the “heterozygous ratio”
of a candidate functional SNP among the testing cohort. Our
method demonstrates high predictive power when many individ-
uals have heterozygous alleles at the candidate SNP locus. Within
the GTEx cohort, we were able to predict over 1000 functional
SNPs for GMAS, and the quality of our predictions was confirmed
by the enrichment of functional SNPs near the splice sites, a pop-
ular metric used to examine the splicing relevance of a SNP. This
method can be generally applied to any data set encompassing
large populations to expand the repertoire of functional SNPs
that regulate splicing.

Many large-scale efforts have been devoted to understanding
the functional relevance of SNPs in the human genome. To date,
the GWAS catalog has documented hundreds of thousands of phe-
notype-associated SNPs from over 3500 publications (Buniello
et al. 2019). Yet, many traits were found to associate with noncod-
ing or intergenic SNPs that do not alter the protein sequences,
which makes GWAS interpretation challenging. We observed
that a high fraction of GMAS events are associated with SNPs in
LD with GWAS loci, suggesting that these GWAS-reported SNP-
trait associations may be related to dysregulation of splicing.
This observation is further substantiated by the GMAS enrichment
in tissues of expected relevance for a number of GWAS traits (e.g.,
bipolar disorder, metabolic and immune function). Our study in-
dicates that allele-specific splicing analysis is an effective means
to discover functionally relevant genetic variants that may con-
tribute to disease mechanisms. Future studies can leverage long-
read sequencing technologies to better characterize GMAS. This
may be achieved through improved haplotyping and incorpora-
tion of isoform level ASE events that would otherwise be missed
by short reads. The use of long reads may also make it easier to
detect functional cis-regulatory variants for splicing (Deonovic
et al. 2017).

Methods

Preprocessing of GTEx RNA-seq data and identification of GMAS

events

FASTQ files from individuals with genotype information (from
whole-genome sequencing, whole-exome sequence, or Illumina
SNP Arrays) were downloaded from the GTEx database (v6p re-
lease). Library adaptors were trimmed by cutadapt (Martin 2011).
We aligned the reads to the hg19 genome and transcriptome using

HISAT2 (Kim et al. 2015) with parameters ‐‐mp 6,4 ‐‐no-softclip
‐‐no-mixed ‐‐no-discordant, keeping only the uniquely mapped
read pairs for the following analyses. Note that the choice of ge-
nome assembly (hg19 vs. GRCh38) should not affect our conclu-
sions as the identification of GMAS utilized genotyping data in
the nuclear genome (source: GTEx; see below). Samples with fewer
than 25 million uniquely aligned read pairs were considered as in-
sufficient read coverage for detecting GMAS events and thus dis-
carded (about 10% of all data sets). We focused on the tissues
that have at least 50 samples with sufficient read coverage. In total,
7822 RNA-seq samples across 47 tissues from 515 donors were kept
for the GMAS analysis.

We collected a list of high-quality SNPs from whole-genome
sequencing (quality filter: GQ≥20), whole-exome sequence (qual-
ity filter: GQ≥20), and Illumina SNP Arrays (quality filter: IGC≥
0.2) provided by GTEx. In addition to the genotyped SNPs, we in-
cluded all dbSNPs (version 146) that showed RNA-seq evidence of
being heterozygous in at least one GTEx individual as potential
candidates for the GMAS analysis. To determine which dbSNPs
were heterozygous, we used the RNA-seq reads covering the candi-
date dbSNP position and defined the SNP to be heterozygous if it
had at least three reads for each of the two alleles (with at least
20 total reads). Additionally, we further filtered out those with ex-
treme allelic ratio (AR, defined as number of reads covering the ref-
erence allele/total number of reads), that is, AR< 0.1 or AR>0.9.
This filter removes monoallelically expressed SNPs and excludes
imprinted genes and other genes with extreme allele-specific ex-
pression (ASE). In our study, this filter is necessary to focus on het-
erozygous SNPs observed in RNA-seq.

We applied our published method (Li et al. 2012) to predict
GMAS events using the combined list of SNPs (genotyped or
RNA-seq-based) and the uniquely aligned RNA-seq reads. Briefly,
this method first examines ASE of all heterozygous SNPs in a
gene. It then determines whether ASE is global in the specific
gene,which represents gene-level ASE possibly regulated at the lev-
el of transcription or RNA decay that affects all heterozygous SNPs
in the gene. Alternatively, a gene may have local ASE, that is, ASE
demonstrated in only a small fraction of testable (≥20 read cover-
age) heterozygous SNPs. GMAS accounts for a type of such local
ASE patterns, where the ASE SNP is located in an alternatively
spliced exon and has significant allelic bias relative to control
SNPs in the same gene (non-ASE SNPs).

Relative to the published version (Li et al. 2012), we made the
following modifications in this study. First, instead of focusing
solely on annotated alternatively spliced exons from GENCODE
comprehensive annotation (v24lift37), we tested all internal exons
for potential GMAS events. Second, we replaced the normalized ex-
pression value (NEV) by PSI calculated by the method described in
Schafer et al. (2015), only keeping exonswith≥15 total reads (inclu-
sion reads+ exclusion reads) or ≥2 exclusion reads. An exon is test-
able if it passes the read coverage requirements for PSI calculation
and has a powerful (defined as having ≥20 read coverage) non-
ASE SNP in another exon of the same gene (Li et al. 2012). We fur-
ther required all GMAS exons to have PSI≤0.8. To avoid false posi-
tives, we only focused on GMAS events that were called in at least
three samples out of the total 7822 samples we analyzed.

Estimation of tissue versus individual contributions to GMAS

pattern variations

We used the lmer function from the lme4 package in R (version
3.6.0) (R Core Team 2019) to model the allelic imbalance for
each GMAS exon as the following:

Allelic imbalance� (1|individual)+(1|tissue)+age+ethnicity+sex.
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The allelic imbalance was calculated as the absolute difference of
allelic ratio to 0.5. The fixed effects (age, ethnicity, and sex) were
chosen based on the previous literature (Melé et al. 2015). The al-
lelic imbalance variations contributed by tissues and by individu-
als were estimated from the above model.

Tissue specificity quantified by Jaccard index and GMAS

frequency

We used the Jaccard index to quantify the extent of sharing of the
GMAS pattern for an exon e between tissues i and j (seij) across in-

dividuals in whom exon e is GMAS. Specifically, seij =
Nei > Nej

Nei < Nej
,

where Nei and Nej are the number of individuals with e showing
GMAS pattern in tissues i and j, respectively (i≠ j). To reliably esti-
mate seij, we required Nei <Nej ≥ 10. The final GMAS pattern

shared between tissues i and j (sij) was calculated as sij =
∑E

e=1 seij
E

,

where E is the total number of exons with seij for tissues i and j.

Tissue and individual variability in GMAS

To assess the variability in GMAS across individuals and tissues, we
used variance as a quantitativemeasure of dissimilarity in allelic bi-
ases. For each exon showing GMAS pattern in any given individu-
al, wemeasured the variancewithin allelic biases of the tag SNPs in
all corresponding tissues of the individual. As controls, we sampled
allelic biases of the tag SNPs of the same exon in similar tissues but
different individuals and calculated their variance. The distribu-
tion of variances across all individuals for the GMAS exons was
then compared to that of the controls (Fig. 2B). Similarly, for
each exon showing GMAS pattern in a given tissue, we calculated
the variance among the allelic biases of the tag SNPs across individ-
uals. The controls were randomly sampled allelic biases of the tag
SNPs of the same exon in individuals showing GMAS pattern for
the exon but different tissues. Again,we compared the distribution
of variances across all tissues for the GMAS exons to the distribu-
tion of variances in controls (Fig. 2C).

Prediction of functional SNPs for GMAS

The basic rationale for our method is that a functional SNP for
GMAS should show concordant relationship (cGMAS) between
its genotype and the splicing pattern of the target exon across a
large number of individuals. In the toy example illustrated in
Supplemental Figure S5A, we first define a distance metric d=
|0.5–Rtag|, where Rtag is the allelic ratio of the tag SNP defined as
Nref/(Nref +Nalt). Nref and Nalt denote the number of reads harbor-
ing the reference allele and the alternative allele of the SNP, respec-
tively. Thus, d represents the difference between the allelic ratio of
the tag SNP and the expected allelic ratio of an unbiased SNP. In
Supplemental Figure S5A, the candidate SNP (which is different
from the tag) is assumed to be the functional SNP underlying
GMAS, with the A allele causing exon inclusion and G allele caus-
ing exon skipping. Thus, for individuals with the homozygous ge-
notype (AA orGG) at the candidate SNP, d is expected to be 0.5. On
the other hand, for individuals with AG genotype at the candidate
SNP, d is 0 or 1 depending on the haplotype between the tag and
candidate SNPs.

Next, we define the concordance score (Si) for this example
exon in individual i, similarly as used in a previous study
(Lappalainen et al. 2013). Si measures the concordance level be-

tween the genotype and the splicing pattern.

Si =
d2i
0.52 if candidate SNP is heterozygous

1− d2i
0.52 if candidate SNP is homozygous

⎧
⎪⎪⎨

⎪⎪⎩

For the toy example in Supplemental Figure S5A where A/G
alleles of the candidate SNP cause a complete switch of exon inclu-
sion/exclusion, the value of Si is 1. In a different scenario as illus-
trated in Supplemental Figure S5B where the tag SNP is
considered as the candidate functional SNP, we define

Si = d2
i

0.52 .

Thus, in the case of a functional SNP causing a complete
switch of exon inclusion/exclusion, the value of Si is also 1. In ge-
neral, for true functional SNPs, Si is expected to have a distribution
with a peak close to 1, whereas random neural SNPs have broadly
distributed Si values (Supplemental Fig. S5C).

Formore realistic cases where the two alleles of the functional
SNP do not cause 100% splicing difference, the distribution of Si is
multimodal. In addition to a peak close to 1, another peak in the
medium Si range (>0) exists. On the other hand, a peak at 0 corre-
sponds to nonfunctional SNPs. To unbiasedly model the distribu-
tion of Si, we fitted a GaussianMixture Model to identify its peaks.
The number of GMM components was determined via the
Bayesian information criterion (BIC). A z-test was carried out to
search for peaks whose average values were significantly different
from 0 (FDR≤0.1). For a true functional SNP, the Si distribution
should be supported by individuals with different genotypes (ho-
mozygous or heterozygous). To avoid potential false positives driv-
en by a specific genotype in a small number of individuals, we
excluded candidate SNPs where the genotype supporting the Si
peak is significantly biased towards one genotype (Fisher’s exact
test, FDR≤0.1).

To ensure that the magnitude of the peak was significant, we
binned the x-axis (Si scores) into 100 bins and randomized the data
points evenly across the bins to generate a background distribu-
tion. This process was repeated 500 times to estimate an average
background peak level and its standard deviation. We compared
the peak height to the background in the same bin and defined sig-
nificant peaks by z-score > 2.58, which corresponds to P<0.01.

For each GMAS exon, we examined all SNPs in the exon and
the immediate introns as candidate functional SNPs (Supplemen-
tal Fig. S5D). SNPs that are homozygous in all individuals were not
considered. The concordance score for each candidate and tag SNP
pair was calculated, and the functional SNP was predicted as de-
scribed above.

Power analysis for predicting functional SNPs for GMAS

To assess howmany individuals ourmethodnecessitates to predict
functional SNPs for GMAS, we simulated 100 functional SNPswith
two alternating alleles inducing 75% difference in PSI. This allele-
specific splicing difference is reflected in the allelic ratios. The total
read counts of a SNP were simulated from a negative binomial dis-
tribution using parameters estimated from a real GTEx RNA-seq
sample. We required all simulated SNPs to have at least 20 reads.
The allelic ratios of the simulated SNPswere generated from a bino-
mial distribution.

We simulated six groups of 200 individuals. Each group has a
specific heterozygous frequency (Fig. 3B), which is defined as the
fraction of individuals with heterozygous alleles at the candidate
SNP position in a group. We ran the cGMAS method on the 100
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SNPs by varying the number of individuals while maintaining the
heterozygous frequency for prediction. Figure 3B illustrates the
power of this method in the different simulations.

Analysis of ENCODE eCLIP-seq and RNA-seq data

eCLIP peaks were obtained from the ENCODE portal (https://www
.encodeproject.org). The ENCODE RNA-seq data were analyzed
similarly as described above for GTEx RNA-seq data. PSI values of
replicated samples were averaged in Figure 4C.

Analysis of GMAS SNPs in LD with GWAS SNPs

Trait-variant associations with P-values larger than 5.0 ×10−8 were
removed from the GWAS catalog (Buniello et al. 2019) (version
1.0.2, downloaded 2020-02-04). In addition, the GWAS SNPs
were separated into LD blocks according to the LD information
of the CEU population and further required to have R2≥0.8 and
D′ ≥0.9. To evaluate the functional relevance of GMAS SNPs
with regard to GWAS, we calculated the number of GMAS SNPs
in LD with and within 200 kb of at least one GWAS SNP (referred
to as GMAS-GWAS SNPs). A similar number was also calculated for
the putative functional SNPs. To determine the significance of the
above enrichment, we randomly sampled the same number of
dbSNPs from genes that do not host GMAS events. The number
of randomized dbSNPs in LD with and within 200 kb of at least
one GWAS SNP was compared to that of the GMAS SNPs with a
Fisher’s exact test.

To investigate the enrichment of GMAS-GWAS SNPs in spe-
cific traits/diseases, we calculated the relative risk of GMAS SNPs
being in LD with and within 200 kb of a GWAS SNP for the trait
of interest versus control SNPs. The relative risk or risk ratiowas cal-
culated as follows:

RRT = Pgmas
T

Pctrl
T

,

where RRT is the relative risk for trait T, Pgmas
T is the proportion of

GMAS SNPs in LD with GWAS SNPs for trait T, and Pctrl
T is the pro-

portion of control SNPs in LD with GWAS traits for trait T.
As a measure of how relevant the GMAS-GWAS SNPs are to

the corresponding traits, we calculated the trait-relevance ratio
(TRRt) for each tissue in which the SNP showed GMAS pattern.
The TRRt metric controls for the number of GMAS events identi-
fied per tissue and is calculated as

TRRT
t = GMAS SNPs from t in LD with GWAS SNPs for T

Number of all GMAS SNPs in t
,

where TRRT
t is the trait-relevance ratio, T is the trait of interest, and

t is a source tissue of a GMAS-GWAS SNP.

Cell culture

HEK293T and HeLa cells were obtained from ATCC and main-
tained in DMEM supplemented with 10% FBS (Thermo Fisher
Scientific 10082147) and antibiotics at 37°C in 5% CO2.

Construction of minigenes

Minigenes containing SNP candidates were cloned as previously
described (Yang et al. 2019). Briefly, the candidate skipped exon
and ∼500 nt of each flanking intron were amplified using HeLa ge-
nomic DNA. The DNA fragment was then subcloned into the
pZW1 splicing reporter using HindIII and SacII or EcoRI and
SacII cloning sites. The candidates for intron retentionwere cloned
into the pcDNA3.1 plasmid. Final constructs were confirmed by

Sanger sequencing. Primers used in this study are listed in
Supplemental Table S2.

Transfection, RNA extraction, reverse transcription, and PCR

Minigene constructs were transfected into >90% confluence HeLa
cells using Lipofectamine 3000 (Thermo Fisher Scientific
L300015). Total RNA was isolated after 24-h transfection using
TRIzol (Thermo Fisher Scientific 15596018) followed by a Direct-
zol RNAMiniprep plus kit (Zymo Research R2072). cDNAwas pro-
duced from 2 μg of total RNA by the SuperScript IV First-Strand
Synthesis System (Thermo Fisher Scientific 18091050). To amplify
the candidate exons in minigene constructs, 5% of the cDNA was
used as a template via 26 PCR cycles (Supplemental Table S2).

Gel electrophoresis and quantification

The PCR amplicon was loaded onto 5% polyacrylamide gel and
run at 70 volts for 1.5 h. The PAGE gel was stained with SYBR
Safe DNA Gel Stain (Thermo Fisher Scientific S33102) for 30
min, and the gel image was taken by the Syngene SYBR safe pro-
gram (Syngene). Spliced isoforms expression level was estimated
using the ImageJ software (http://imagej.nih.gov/ij/). The inclu-
sion or intron retention rate (% inclusion) of the target exon was
calculated as the intensity ratio of upper/(upper + lower) bands.

Cloning of human BUD13 and lentiviral overexpression

Human BUD13 was cloned from HeLa cDNA into the pCR 2.1-
TOPO vector (Thermo Fisher Scientific 450641). After sequence
confirmation, BUD13was subcloned into the pcDNA3.1 backbone
containing 3xFLAG-6HIS tag using NotI and EcoRI sites. To
achieve stable overexpression, the 3xFLAG-BUD13-6HIS fragment
was transferred into the pLJM1 lentiviral construct using the NdeI
and EcoRI sites (Addgene plasmid #19319). We produced lentivi-
ruses via cotransfection of pCMV-d8.91, pVSV-G, and pLJM1-
3xFLAG-BUD13-6HIS into HEK293T cells using Lipofectamine
3000 (Thermo Fisher Scientific L3000015). Lentiviruses were col-
lected from conditioned media after 48-h cotransfection and fil-
tered through a 0.2-μm syringe filter. Lentivirus-containing
medium was mixed with the same volume of DMEM containing
polybrene (8 μg/mL). The lentiviruses were transduced into
HEK293T cells in 10 150-mm culture plates, where they were incu-
bated with 2 μg/mL puromycin for 48 h.

Purification of recombinant human BUD13

HEK293T cells stably expressing BUD13 were centrifuged at 1000g
for 5 min at 4°C, and the pellets were resuspended with ice-cold
5 mL lysis buffer (PBS, 20 mM Imidazole, 0.5% IGEPAL CA-630,
0.5 mM DTT, 0.5× protease inhibitor cocktail, 100 U DNase I).
After a 30-min incubation, the lysate was disrupted using sonica-
tion at 25% amplitude for 20 sec with 1-sec pulse. Next, the lysate
was centrifuged at 13,000g for 5 min at 4°C. The supernatant was
collected and filtered using a 0.45-μm syringe filter. The sample
was incubatedwith 1mLNi-NTA agarose (Thermo Fisher Scientific
R90110) for 6 h at 4°C followed by five times of washingwith 5mL
of buffer A (PBS, 20mM Imidazole, 0.5mMDTT, 0.5% IGEPALCA-
630, 0.5× protease inhibitor cocktail). Proteins were eluted with
3 mL elution buffer (PBS, 250 mM Imidazole), and excess salt
was removed using a desalting column according to the manufac-
turer’s protocol (GE Healthcare 17085101). Subsequently, FLAG
affinity purificationwas performedusing 1mL FLAGagarose beads
(MilliporeSigma A2220) according to the manufacturer’s protocol.
Elution was performed using 100 mg/mL counter FLAG peptide.
FLAG peptide and small size nonspecific proteins were removed
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by a 20 K Slide-A-Lyzer dialysis cassette (Thermo Fisher Scientific
66003) with 1 L binding buffer (PBS, 0.5% IGEPAL CA-630, 5%
glycerol) in the cold room overnight. Recombinant BUD13 purifi-
cation was confirmed by SimplyBue SafeStain (Thermo Fisher Sci-
entific LC6060) and western blot using BUD13 antibody (Bethyl
Laboratories A303-320A). Protein concentration was measured
by a Pierce Coomassie (Bradford) protein assay kit (Thermo Fisher
Scientific 23200) and the Turner spectrophotometer SP-830.

In vitro transcription of BUD13 target RNA

Sense and antisense oligos including T7 promoter (Supplemental
Table S2) were annealed at 95°C for 5 min in a heat block, then
cooled down to room temperature for 3 h. In vitro transcription
was performed using a HiScribe T7 high yield RNA synthesis kit ac-
cording to themanufacturer’s protocol (NEB E2040S). In vitro-syn-
thesized RNAs were treated with 10 U RNase-free DNase I (Thermo
Fisher Scientific EN0525) at room temperature for 30 min, then
purified by the RNA clean & concentrator-5 Kit (Zymo Research
R1015). Next, RNA samples were treated with 10U shrimp alkaline
phosphatase (NEB M0371S) at 37°C for 1 h and then labeled with
0.5 μL of gamma 32P-ATP (PerkinElmer BLU502A250UC) using
20 U T4 polynucleotide kinase (NEB M0201S). Subsequently,
RNA probes were purified by 5% urea PAGE extraction and an
RNA clean& concentrator-5 Kit. RNA concentrationwasmeasured
by Qubit 2.0 fluorometer (Thermo Fisher Scientific).

Electrophoretic mobility shift assay (EMSA)

The RNA probes and recombinant BUD13 protein (0, 0.2, 0.4, 0.8,
and 1.6 μg) were incubated in 15 μL of the binding buffer (PBS,
0.5% IGEPAL CA-630, 5% glycerol, 0.1× protease inhibitor cock-
tail, 10 U RNase inhibitor) at 28°C for 1 h, then loaded onto a
5%TBE-PAGE gel run at 75 V for 1.5 h. The gel was processed with-
out drying, coveredwith a clear folder, and exposed toX-ray film at
−80°C.

Software availability

The code for predicting functional SNPs for GMAS is available as
Supplemental Code and at GitHub (https://github.com/gxiaolab/
cGMAS).
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