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A B S T R A C T

Exploring the complicated relationships underlying the clinical information is essential for the diagnosis and
treatment of the Coronavirus Disease 2019 (COVID-19). Currently, few approaches are mature enough to show
operational impact. Based on electronic medical records (EMRs) of 570 COVID-19 inpatients, we proposed
an analysis model of diagnosis and treatment for COVID-19 based on the machine learning algorithms and
complex networks. Introducing the medical information fusion, we constructed the heterogeneous information
network to discover the complex relationships among the syndromes, symptoms, and medicines. We generated
the numerical symptom (medicine) embeddings and divided them into seven communities (syndromes) using
the combination of Skip-Gram model and Spectral Clustering (SC) algorithm. After analyzing the symptoms
and medicine networks, we identified the key factors using six evaluation metrics of node centrality. The
experimental results indicate that the proposed analysis model is capable of discovering the critical symptoms
and symptom distribution for diagnosis; the key medicines and medicine combinations for treatment. Based
on the latest COVID-19 clinical guidelines, this model could result in the higher accuracy results than the
other representative clustering algorithms. Furthermore, the proposed model is able to provide tremendously
valuable guidance and help the physicians to combat the COVID-19.
. Introduction

As the continuous growth of Coronavirus Disease 2019 (COVID-
9) cases worldwide, the early diagnosis and supportive treatments
re crucial to cure the patients [1]. Based on the various patients’
anifestations, the physicians always need to find the representative

ymptoms from the complicated information to support their diagnosis
or the different individuals [2]. After giving the accurate syndrome
iagnosis based on the clinical symptoms, a serial of medicines should
e combined to efficiently treat the patients. Therefore, the exploration
f the effective diagnosis and therapy strategies referring to the key
actors, symptom distribution, and medicine combination is of the
reatest significance to diagnose and treat the COVID-19 patients.

Researches in the artificial intelligence (AI) or network analysis [3–
] make great contributions to fight against COVID-19 for the aspects of
iagnosis and prognosis, treatments and cures [6,7]. Researchers have
lready developed numerous algorithms or models to explore the thera-
eutic schemes for COVID-19 [8,9]. Although these studies are relevant
o discover the relationships of medical information, higher quality
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researches are needed to supply effective and reliable approaches to
manage the COVID-19 pandemic [10]. Moreover, there is a broad
range of potential applications of AI covering diagnosis and treatment
challenges posed by the COVID-19.

The most challenges of the clinical diagnosis and treatment methods
for the COVID-19 are the following two aspects:

• Most current researches identify the key factors (symptoms,
medicines) in diagnosis and treatment by the simple statistical
methods [6,11], such as frequency count, percentage, etc., which
may be trapped into the restriction and one-sidedness with-
out considering the multi-dimensions or multi-aspects of clinical
information. Besides, the inherent relationships underlying the
symptoms and medicines cannot be effectively discovered, which
also leads to the inaccuracy of the analysis results [12,13].

• Despite a high volume of analysis models are constructed to
support the clinical diagnosis or treatment for COVID-19, most of
them only focus on one of the aspects: diagnosis or treatment [8,
vailable online 1 March 2021
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14]. Moreover, most of the diagnosis models just consider the
X-ray or computed tomography (CT) image data only without
referring to the key factors (symptoms) in the diagnosis process,
which will also lead to the inaccuracy of the analysis results [15,
16].

n this paper, we build a diagnosis and treatment analysis model for the
OVID-19 to address the challenges of one-sidedness and inaccuracy of
linical analysis results. Through the patients’ manifestations, we hope
his model can give the accurate diagnosis of syndromes and provide
he corresponding therapies. In order to improve the comprehensive-
ess of analysis, we use six centrality evaluation metrics to identify
ore nodes in symptom and medicine networks. Then, based on the
kip-gram model [17,18], we generate the symptom and medicine em-
eddings with conserving the hidden relationships underlying clinical
nformation. Finally, we use spectral clustering (SC) [19,20] algorithm
o improve the division accuracy through similarity calculation be-
ween any two symptom (medicine) embeddings. Through information
usion, we summarize the regularity of the main COVID-19 syndromes
nd their core symptoms and symptom distribution, core medicines
nd medicine combination. The following lists the contributions of
he proposed analysis model of diagnosis and treatment for COVID-19
andemic:

• This analysis model identifies the key symptoms and medicines
based on six centrality evaluation metrics. It uses the skip-gram
model to train and generate the symptom and medicine embed-
dings conserving the inherent information. Furthermore, combin-
ing the node embedding and spectral clustering, the performance
of symptom and medicine division will be greatly improved com-
pared to other contrast algorithms.

• The analysis model can comprehensively realize the diagnosis
and treatment for COVID-19 by combining with the medical
information fusion of the syndromes, symptoms, and medicines
together. It can effectively identify the significant syndromes,
their core symptoms and symptom distribution, core medicines
and medicine combinations. By the information fusion, the ac-
curacy of diagnosis and treatment of COVID-19 will be greatly
improved.

he remaining parts of the article are organized as follows. We sum-
arize the related work in Section 2. In Section 3, we depict the

rchitecture of diagnosis and treatment analysis model, data prepa-
ation, and model realization. We present the experiment design and
rocess, then give the experimental results and the discussion in Sec-
ion 4. Finally, we summarize the conclusion and forecast the future
orks in Section 5.

. Related work

.1. Symptom and medicine analysis

Recently, most of the analyses for manifestations and diagnosis,
rug use and treatment of COVID-19 patients focus on the simple sta-
istical analysis methods (such as frequency count, percentage) of med-
cal information. For the early manifestations of COVID-19, Adhikari
t al. [6] reported that the classical symptoms of COVID-19 include
ough, fever, headache, fatigue, pneumonia, hemoptysis, diarrhea, and
yspnea following a methodological framework. Gautier et al. [12]
resented the new symptoms of taste and smell loss, excepting for
he major symptoms including cough, fever, trouble breathing, etc.
ased on 2,450,569 UK and 168,293 US individuals, Menni et al. [11]
howed the rank of significant symptoms like loss of smell and taste,
hortness of breath, fever, fatigue, persistent cough, skipped meals,
iarrhea, hoarse voice, abdominal pain, delirium, chest pain. Song
t al. [13] summarized that the most common symptoms included dry
ough, fatigue, fever, myalgia and dyspnea, the less common symptoms
12
involved abdominal pain, headache, nausea, diarrhea, and vomiting,
and few patients have the manifestations of gastrointestinal symptoms.
Medicine therapy is one of the significant treatments for COVID-19
patients. Statistical methods are also applied in medicine analysis. Dong
et al. [21] discovered that some medicines, such as remdesivir, chloro-
quine, favipiravir, and arbidol are undergoing clinical researched to test
their safety and efficiency for treating the COVID-19. Romo et al. [22]
presented that the antimalarial drugs chloroquine and hydroxychloro-
quine may have activity against COVID-19. Ren et al. [23] presented
that some medicines, such as Gypsum Fibrosum, Poria, etc., play a
significant role in curing COVID-19 patients. Luo et al. [24] presented
that the clinical drugs used frequently most include Armeniacae Semen
Amarum, Scutellariae Radix, and Glycyrrhizae Radix et Rhizome.

Most of these aforementioned studies can effectively discover the
key symptoms or medicines in the manifestations and treatments of
COVID-19. However, most of the key factors are identified based on the
simple statistical methods, such as frequency count, percentage, etc.,
which cannot be considered from the multiple inherent dimensions.
Moreover, the relationships underlying symptoms, medicines, or these
two together are not be considered. Therefore, an effective method
to explore the key factors and their relationships is still needed to be
researched in-depth.

2.2. Diagnosis and treatment model

During the period of COVID-19 pandemic, AI presents a powerful
ability to support COVID-19 diagnosis and treatment based on multiple
clinical data extracted from electronic medical records (EMRs) [10].
For COVID-19 detection, most of the diagnostic models are designed
based on the X-ray or CT image data [7,14]. For example, based on the
X-ray and CT images, Alom et al. [25] introduced the transfer learning
method and presented an inception residual recurrent convolutional
neural network for COVID-19 diagnosis, which can effectively segment
the COVID-19 infected regions and get a highly accurate result. Gozes
et al. [26] developed an AI-based image analysis approach to realize
the COVID-19 automated detection and patient monitoring, which can
achieve high accuracy. Through collecting a huge amount of CT slices
from various hospitals, Kumar et al. [2] trained the deep learning
model by a decentralized network to detect the COVID-19. AI is also
applied for discovering efficient drugs to combat the COVID-19. Gao
et al. [8] applied a generative network complex for drug discovery
and identified 15 novel candidate drugs and two proposed HIV drugs
for curing of COVID-19. Magar et al. [9] took Extreme Gradient Boost
(XGBoost) and graph embeddings to discover new therapies in which
they searched for antigen-neutralizing antibodies, and proposed 8 an-
ibodies as potentially effective COVID-19 treatments. Bung et al. [27]
sed a reinforcement learning approach to generate drug compounds
ith desirable properties and proposed 31 candidate inhibitors for
OVID-19.

Despite the diagnosis methods have good performance for COVID-
9 detection, most of the diagnosis analysis data just includes the
-ray or CT images, which cannot reflect the inherent and significant
haracteristics, symptoms, referring to the diagnosis. Moreover, these
nalysis models of COVID-19 always focused on one aspect of diagnosis
r treatment. It is more meaningful if the model research refers to
hese two aspects. Therefore, the diagnosis and treatment analysis
odel combining symptoms with medicines together should be further

tudied.

.3. Information fusion

Recently, with the development of AI, complex network, and data
ining, the utilization of converged various data, such as syndromes,

ymptoms, and medicines, from clinical EMRs, is also becoming pop-
lar [28,29]. Ang et al. [30] performed a network analysis to find
guidelines that provide medical formula for medical observation
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based on clinical manifestation and showed that the Citri Reticulatae
Pericarpium strongly paired with the Glycyrrhizae Radix et Rhizoma.
Zhai et al. [1] reported that COVID-19 infection can cause a serial of
severe respiratory diseases, and the treatments involving chloroquine
and hydroxychloroquine, corticosteroids, antiviral agents, antibodies,
convalescent plasma transfusion, and vaccines may work efficiently
for COVID-19. Chan et al. [16] presented that the manifestations in-
clude dry cough, fever, upper airway congestion, fatigue, shortness
of breath, sputum production, myalgia/arthralgia with lymphopenia,
prolonged prothrombin time. Some conventional medicines, such as
ribavirin, lopinavir/ritonavir, glucocorticoid, beta-interferon, etc., are
applied in clinical trials. Jamshidi et al. [15] constructed a diagnosis
and treatment platform to combat the COVID-19 through some deep
learning methods, which integrates various aspects of information from
the structured or unstructured data sources, such as medical imaging,
medicine data, etc., and gave a good performance of service.

Although these studies can successfully realize the tentative ex-
ploration of the relationships between symptoms and medicines, the
analysis model is still considering more medical information referring
to the various factors with strong associations. Hence, information
fusion, such as syndromes, symptoms, and medicines combined, is
effective to improve the performance of the COVID-19 diagnosis and
treatment model.

3. Diagnosis and treatment analysis model design

3.1. Model architecture

Fig. 1 shows the architecture of the COVID-19 diagnosis and treat-
ment analysis model based on clinical EMRs, which consists of by the
four components as follows:

• Clinical Electronic Medical Records: COVID-19 clinical data
are extracted from the EMRs in the hospital information system.
Based on the research theme, we focus on the diagnosis and
treatment data referring to the different databases.

• Information Fusion: Each EMR corresponding to a COVID-19
patient contains the whole diagnosis and treatment information
while in hospital. The data sets extracted from EMRs are desen-
sitized, cleaned, and standardized, then, are constructed as three
categories: syndrome data, symptom data, and medicine data. The
relationships among homogeneous data or heterogeneous data
will be conserved in each record.

• Analysis Model: The three category data sets and their hidden
relationships will be abstracted as the nodes and edges in a het-
erogeneous network. We use a serial of methodologies, including
the network analysis, node centrality, node embedding [31], clus-
tering analysis, etc., to construct the overall analytical framework.
By using this framework, we can discover the core symptoms
and medicines for COVID-19, and summarize the regularity of
symptom distribution and medicine combination in terms of the
analysis results.

• Applications: In the period of COVID-19 pandemic, the clinicians
can use this analysis model to realize the diagnosis and treatment:
(i) Clinical diagnosis: the output results of core symptoms and
common symptom distribution can offer the effective reference
for the diagnosis. Based on them, clinicians can give the accu-
rate judgment. (ii) Clinical treatment: the model will give the
medicine analysis results referring to the core medicines and
general medicine combination. In terms of them, the clinicians
can provide the reasonable therapeutic schedule.

.2. Data preparation

The analysis data of 570 COVID-19 inpatients is extracted from the
ospital information system in Hubei Provincial Hospital of Traditional
hinese Medicine, Wuhan, China, one of the COVID-19 designated hos-
itals, from January 15th to March 13th, 2020. The data preparation
ncludes two parts (shown in Fig. 2) as follows.
13
3.2.1. Data cleaning and standardization
The three categories of medical information is extracted from the

‘‘computerized physician order entry system’’: the syndrome informa-
tion is from the diagnosis conclusion in the ‘‘discharge note table’’; the
symptom information is from the current symptom description in the
‘‘admission note table’’; the medicine information is from the ‘‘medicine
order table’’. Base on ‘‘International Classification of Diseases 11th
Revision (ICD-11)’’,1 the syndromes, symptoms, and medicines have
been cleaned and standardized, of which the key processes include the
term extraction, modifier deletion, terminology standardization, syn-
onym combination, etc. Subsequently, the dictionaries of syndromes,
symptoms, and medicines and their corresponding standardized data
sets of COVID-19 have been constructed.

3.2.2. Information fusion
For each inpatient, the information from the EMRs has the inherent

relationships among them, and the different category data should be
analyzed synthetically. Hence, we fuse the syndromes, symptoms, and
medicines together and try to discover the regularity of diagnosis and
treatment for COVID-19.

3.3. Model realization

We used four approaches to realize the analysis model of the diag-
nosis and treatment for COVID-19 (Fig. 2) as follows.

3.3.1. Construction regularity of medical network
We used the heterogeneous information network (HIN) to abstract

the hidden relationships underlying the medical information of COVID-
19. HIN, a graph data model, can capture the relationships among
entities (nodes), in which nodes and edges are annotated with class and
relationship labels [32–34]. Through abstracting the syndromes, symp-
toms, medicines and their relationships underlying the EMRs, we con-
structed a heterogeneous information network model of COVID-19. In
the COVID-19 HIN model, the different nodes represent the syndromes,
symptoms, and medicines; the different edges denote the co-occurrence
between the syndromes, symptoms, or medicines in the same EMR; the
edge weights express the co-occurrence frequencies. Then, based on the
theory of complex network [35,36], we projected the nodes and edges
of the COVID-19 heterogeneous information network into the symptom
and medicine networks, respectively. The construction regularity of
the network is set as follows: take each symptom (medicine) in the
records as a node; extract the co-occurrence relation between any
two symptoms (medicines) in a diagnosis (prescription) as an edge;
denote the co-occurrence frequency of two symptoms (medicines) as
the edge weight. Based on it, we define the undirected weighted graph
𝐺 (𝑉 ,𝐸,𝑊 ) of symptom or medicine, where 𝑉 , 𝐸, and 𝑊 denote the
set of nodes (symptoms or medicines), edges (co-occurrence relations),
and weights (frequencies of co-occurrences), respectively.

3.3.2. Evaluation metrics of node centrality
In complex networks, researchers always identify the important

nodes using several evaluation metrics [37]. The representative metrics
includes degree centrality (BC), closeness centrality (CC), between-
ness centrality (BC) [38], eigenvector centrality (EC) [39], current
flow closeness centrality (CCC) [40], and load centrality (LC) [41].
In general, the DC, BC, CC, and EC are the conventional metrics to
evaluate the node centrality. Considering the complexity of the medical
networks, we introduced the CCC metric with the anti-noise feature and
the LC metric with the characteristic of local information comparison
to further evaluate. The description about these six evaluation indices
are shown in Table 1. For DC, 𝑑𝑒𝑔(𝑣) denotes the degree of node 𝑣,
𝑛 represents the number of nodes; for BC, 𝛿𝑠𝑡 indicates the number of

1 https://icd.who.int/en.

https://icd.who.int/en
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Fig. 1. The architecture of diagnosis and treatment analysis model.
Fig. 2. Flowchart of data processing.
the shortest paths from nodes 𝑠 to 𝑡, 𝛿𝑠𝑡(𝑣) denotes the number of the
shortest paths through node 𝑣; for CC, 𝑑𝐺(𝑣, 𝑡) represents the shortest
paths from 𝑣 to 𝑡; for EC, 𝜆1, 𝜆2,… , 𝜆𝑛 indicates the eigenvalues of the
adjacent matrix 𝐴, and 𝑒𝑡 is the corresponding eigenvector of 𝜆𝑡; for
CCC, 𝑛 − 1 is a normalizing factor, 𝑝 (𝑣) is closeness index of node 𝑣
14

𝑠𝑡
based on shortest paths, and 𝑝𝑠𝑡(𝑣) − 𝑝𝑠𝑡(𝑡) corresponds to the distance

between 𝑠 and 𝑡; for LC, 𝜃𝑠,𝑑 is a quantity of the information that is sent

from 𝑠 to 𝑑, and 𝜃𝑠,𝑑 (𝑣) denotes the overall information forwarded by

𝑣.
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Table 1
Evaluation metrics of node centrality.

Names Abbreviations Equations

Degree centrality DC 𝐶𝑑 (𝑣) =
𝑑𝑒𝑔(𝑣)
𝑛 − 1

Betweenness centrality BC 𝐶𝑏(𝑣) =

∑

𝑠≠𝑣≠𝑡∈𝑉
𝛿𝑠𝑡(𝑣)
𝛿𝑠𝑡

(𝑛 − 1)(𝑛 − 2)∕2

Closeness centrality CC 𝐶𝑐 (𝑣) =
∑

𝑡,𝑣∈𝑉 𝑑𝐺(𝑣, 𝑡)
𝑛 − 1

Eigenvector centrality EC 𝐶𝑒(𝑣) = 𝜆−1
∑𝑁

𝑡=1 𝑎𝑣𝑡𝑒𝑡

Current flow closeness centrality CCC 𝐶𝑐𝑐 (𝑣) =
𝑛−1

∑

𝑣∈𝑉 ∧𝑣≠𝑡(𝑝𝑠𝑡 (𝑣)−𝑝𝑠𝑡 (𝑡))

Load centrality LC 𝐿𝐶(𝑣) =
∑

𝑠,𝑑∈𝑉 𝜃𝑠,𝑑 (𝑣)

3.3.3. Training approach of node embedding
Based on the symptom or medicine network, we used the random

walk probability and the Skip-Gram model [17] to generate the symp-
tom embeddings or medicine embeddings [42], respectively. We show
the training steps as follows:

Step 1: Initial the unnormalized transition probability for a symptom
(medicine) node in the network. Traverse a selected node by
the following rules: store the weights between this node and
its neighbor nodes; summarize and normalize the weights of
the current symptom (medicine) node; obtain the transition
probabilities from this node to its neighbors.

Step 2: Based on Eqs. (1) and (2), set the unnormalized transition
probabilities of each edge.

𝜋𝑡𝑗 = 𝛼𝑝𝑞 (𝑖, 𝑗) ⋅𝑤𝑡𝑗 (1)

𝛼𝑝𝑞 (𝑖, 𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑝
, 𝑖𝑓 𝑑𝑖𝑗 = 0

1, 𝑖𝑓 𝑑𝑖𝑗 = 1
1
𝑞
, 𝑖𝑓 𝑑𝑖𝑗 = 2

(2)

where 𝑖 and 𝑗 indicate the nodes 𝑣𝑖 and 𝑣𝑗 , separately; 𝑤𝑡𝑗
denotes the weight between 𝑣𝑡 and 𝑣𝑗 ; 𝑣𝑡 is an intermediate
node from 𝑣𝑖 to 𝑣𝑗 ; 𝛼𝑝𝑞 (𝑖, 𝑗) expresses the search bias between
𝑣𝑖 and 𝑣𝑗 , 𝑝 is the breadth weight and 𝑞 is the depth weight;
𝜋𝑡𝑗 indicates the unnormalized transition probability from 𝑣𝑡 to
𝑣𝑗 ; 𝑑𝑖𝑗 is the shortest path from 𝑣𝑖 to 𝑣𝑗 , and 𝑑𝑖𝑗 ∈ {0, 1, 2}.

Step 3: Normalize the weight of each edge; obtain the transition prob-
ability from the current node to its neighbors.

Step 4: Acquire each node’s walk paths (𝑤𝑎𝑙𝑘𝑠). Calculate the transi-
tion probabilities from the current node to its neighbors based
on Eq. (3).

𝑃
(

𝑐𝑙 = 𝑗 ∣ 𝑐𝑙−1 = 𝑡
)

=

{𝜋𝑡𝑗
𝑍

, 𝑖𝑓 (𝑡, 𝑗) ∈ 𝐸
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where 𝑐𝑙 indicates the 𝑙th node in a walk path; 𝑡 and 𝑗 demon-
strate the nodes 𝑣𝑡 and 𝑣𝑗 ; 𝑍 indicates a constant for the
normalization.

Step 5: Construct a node list for all the nodes and their paths. The
walk regularity is defined as: shuffle the sequence of nodes
and randomly select a node; the selected node walks to the
neighbor using 𝑃

(

𝑐𝑙 = 𝑗 ∣ 𝑐𝑙−1 = 𝑡
)

.
Step 6: Use the Skip-gram model to train the walk paths of a node, and

obtain the embedding for each symptom (medicine) node.

.3.4. Clustering approach of node embedding
The combination of graph embedding and spectral clustering (SC)

lgorithm works well on 20,000 node network in [20]. According to
he trained symptom or medicine embeddings, we also selected the
C algorithm [19] to obtain the clustering results of symptoms or
15

edicines, respectively. We show the clustering steps as follows:
Step 1: Get the weighted matrix 𝑊 (similarity matrix 𝑆) by Eq. (4).
Present 𝑤𝑖𝑗 as the edge weight between 𝑣𝑖 and 𝑣𝑗 , and 𝑠𝑖𝑗 as the
similarity of these two symptom (medicine) node embeddings.
The weighted matrix is denoted as 𝑊 =

{

𝑤𝑖𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗
≤ 𝑛}, here, 𝑛 is the number of nodes. Obtain the Euclidean
distance ‖𝑣𝑖 − 𝑣𝑗‖22 between 𝑣𝑖 and 𝑣𝑗 , then get 𝑤𝑖𝑗 and 𝑠𝑖𝑗 as
follows:

𝑤𝑖𝑗 = 𝑠𝑖𝑗 = 𝑒𝑥𝑝

(

−
‖𝑣𝑖 − 𝑣𝑗‖22

2𝜎2

)

(4)

where 𝜎 is a scaling parameter to control the descending speed
of 𝑤𝑖𝑗 as the distance descending between 𝑣𝑖 and 𝑣𝑗 . In [20],
the SC algorithm can acquire the best performance when 𝜎 is
set as 1, here, we also set 𝜎 as 1.

Step 2: Based on Eq. (5), obtain the degree matrix 𝐷, 𝑑𝑖 indicates the
sum of weighted edges connecting to 𝑣𝑖.

𝑑𝑖 =
𝑛
∑

𝑗=1
𝑤𝑖𝑗 (5)

Step 3: Denote the Laplacian matrix as 𝐿 = 𝐷 − 𝑊 , normalize 𝐿
as 𝐿′ = 𝐷−1∕2𝐿𝐷1∕2. Get the first 𝑘 minimum eigenvalues
of 𝐿′ and their corresponding eigenvectors. Reconstruct the
normalized eigenvectors to an new eigenmatrix 𝐹 of size 𝑛×𝑘,
here 𝑘 ≪ 𝑛.

Step 4: Set the cluster number as 𝑚, use the K-means algorithm to
divide the eigenmatrix 𝐹 into the symptom (medicine) clusters
𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑚}.

. Experiment

.1. Experiment design

We designed four experiments and conducted them on a single 16
B RAM 3.6 GHz Intel (R) Core (TM) CPU. Firstly, in Section 4.2,
e constructed the heterogeneous information network of syndromes,

ymptoms and medicines, and then projected it into the symptom and
edicine networks, respectively. Then, we identified the core symptom

nd core medicine nodes by six evaluation metrics of node centrality
n Section 4.3. Subsequently, in Section 4.4, we obtained the symptom
nd medicine embeddings using the skip-gram model. Then, we ac-
uired the symptom groups and medicine combinations through the SC
lgorithm, respectively. Finally, we gave the experimental results and
he relative analysis compared SC with other representative algorithms:
-means and hierarchical clustering algorithms in Section 4.5.

.2. Network model construction

Based on the regularity of network construction in Section 3.3.1,
e constructed the HIN model (Fig. 3), in which the different types

f nodes represent the entities: syndromes, symptoms, and medicines
ith three colors; the various edges show the different relationships
nderlying these entities.

Then, we show the construction processes of COVID-19 symptom
etwork, and medicine network in Figs. 4 and 5, respectively. We
nitialized a network of two symptom nodes fever and cough with
he relative edges. In development, the other two symptom nodes
eakness and expectoration with their edges were extended into the
etwork. Finally, we obtained a COVID-19 undirected weighted symp-
om network with 83 nodes and 10,126 edges in Fig. 4. By the similar
ay, we also initialized a network with two medicine nodes Radix
lycyrrhizae and Rhizoma Pinelliae Preparatum, and then, extended other

wo medicine nodes Agastache rugosa and Fructus Aurantii Immaturus
nto this network. Ultimately, we acquired the medicine network with
16 nodes and 216,327 edges in Fig. 5. We show the statistical summary
f the symptom and medicine networks in Table 2, including the name,
umber of nodes and edges, minimum/maximum/average weights.



Information Fusion 73 (2021) 11–21F. Hu et al.
Fig. 3. Heterogeneous information network of COVID-19 with syndromes (yellow nodes), symptoms (purple nodes), and medicines (blue nodes). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Construction of symptom network.
Fig. 5. Construction of medicine network.
4.3. Core node evaluation

Based on these two networks, we used six evaluation metrics,
including DC, BC, CC, EC, CCC, and LC, to get the various centrality
16
values for the nodes, and just show the top 20 significant symptoms
and medicines in Tables 3 and 4 (the digits of the top 10 symptoms
and medicines are bolded, respectively). From Table 3 in Appendix,
we show that these six metrics can identify the same top 8 symptoms,
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Table 2
Statistical summary of the symptom and medicine networks.

Names Number of
nodes

Number of
edges

Minimum
weights

Maximum
weights

Average
weights

Symptom network 83 10,126 1 272 13
Medicine network 316 216,327 1 401 11

including cough, weakness, poor sleep, expectoration, loss of appetite,
oppression in chest, fever, and gasp; the DC, CC, EC, and CCC can find the
same top 9 important symptom dry mouth; the DC, CC, BC, CCC, and
LC, excepting for EC, can discover the top 10 symptom dyspnea. Based
on Table 4 in Appendix, we show that these six metrics can identify the
same top 10 medicines, including Radix Glycyrrhizae, Poria, Pericarpium
Citri Reticulatae, Rhizoma Atractylodis Macrocephalae, Rhizoma Pinelliae
Preparatum, Astragali Radix, Radix Scutellariae, Cortex Magnoliae Of-
ficinalis, Radix Codonopsis, and Radix Ophiopogonis; excepting for the
EC identified the top 10 medicine as Radix Platycodonis, however,
the centrality value 0.0912 is similar to the Radix Ophiopogonis with
0.0899.

We compared the identified top 20 significant symptoms and
medicines to latest clinical guidelines of COVID-19 ‘‘Diagnosis and
treatment of corona virus disease-19 (7th trial edition)’’.2 We show that
100% of the top 20 symptoms (bolded in Table 3) and 80% of the top
20 medicines (bolded in Table 4) are presented in the latest guidelines,
respectively.

4.4. Symptom and medicine embedding training and clustering analysis

According to the matrices of symptom and medicine networks,
we used the realization steps of node embeddings described in Sec-
tion 3.3.3 to train the COVID-19 symptom and medicine embeddings
(also called vectors), respectively. By transferring the one-hot vectors
of symptoms and medicines into numerical vectors, we got 83 symptom
embeddings with 128 dimensions and 316 medicine embeddings with
128 dimensions.

Community division [43] is introduced to discover the closely con-
nections underlying the symptoms or medicines, which can effectively
explore the special clinical syndromes of COVID-19. We used the SC
algorithm to respectively divide 83 symptom embeddings and 316
embeddings into the their corresponding syndrome communities. The
SC algorithm is well-known that the community number is confirmed
as an input parameter. As the aforementioned latest clinical guidelines
of COVID-19. The main syndromes of COVID-19 have been divided into
seven categories, therefore, we set the input community number of SC
algorithm as seven.

As shown in Figs. 6 and 7, we divided the COVID-19 symptom
network (Fig. 4) and medicine network (Fig. 5) into seven communities
by the SC algorithm. The clinical syndromes (denoted as seven com-
munities with different colors) and their corresponding symptoms and
medicines are presented as follows:

• Syndrome of cold-damp constraint in the lung (colored by rose
pink) includes the core symptoms weakness, expectoration, cough,
fever, and loss of appetite and other symptoms palpitation, headache,
dizziness, abdominal pain, loose stool, etc. The effective treatment
for this syndrome refers to the core medicine Radix Scrophulariae
and other medicines Astragali Radix, Herba Taraxaci, Rhizoma
Anemarrhenae, Herba Ephedrae, Rhizoma Zingiberis, etc.

2 General Office of National Health Commission of the People’s Republic
f China, Office of National Administration of Traditional Chinese Medicine.
iagnosis and treatment of corona virus disease-19 (7th trial edition) [J].
hina Medicine, 2020, 15(6): 801–805. DOI: 10. 3760/j. issn. 1673–4777.
020. 06. 001.
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s

• Syndrome of deficiency of both qi and yin (colored by wiste-
ria) includes the core symptom chills and other symptoms lum-
bago, constipation, leg soreness, emotional instability, fecal inconti-
nence, etc. The effective treatment for this syndrome refers to
the core medicine Radix Adenophorae and other medicines Fruc-
tus Schisandrae Chinensis, Salviae Miltiorrhizae Radix Et Rhizoma,
Semen Arecae, Herba Lophatheri, Armeniacae Amarum Semen, etc.

• Syndrome of epidemic toxin blocking the lung (colored by light
blue) includes the core symptom gasp and other symptoms bit-
ter taste, nausea, soreness of the whole body, frequent urination,
abdominal distention, etc. The effective treatment for this syn-
drome refers to the core medicine Bulbus Fritillariae Thunbergii
and other medicines Fructus Forsythiae, Pericarpium Trichosanthis,
Poria, Exocarpium Citri Grandis, Semen Lepidii, etc.

• Syndrome of lung–spleen qi deficiency (colored by orange) in-
cludes the core symptoms acid reflux and excessive urination and
other symptoms aches and pains of the whole body, arthralgia, icy
cold hands and feet, odynuria, gatism, etc. The effective treatment
for this syndrome refers to the core medicine Rhizoma Dioscoreae
and other medicines Pericarpium Citri Reticulatae, Polygoni Cuspi-
dati Rhizoma Et Radix, Radix Paeoniae Rubra, Radix Glycyrrhizae,
etc.

• Syndrome of cold-damp obstructing the lung (colored by light
green) includes the core symptom oppression in chest and other
symptoms dry mouth, vomiting, diarrhea, shortness of breath, low
spirits, etc. The effective treatment for this syndrome refers to
the core medicine Rhizoma Atractylodis and other medicines Radix
Platycodonis, Gypsum Fibrosum, Fried Malt, Radix Peucedani, Fruc-
tus Aurantii Immaturus, etc.

• Syndrome of internal blockage and external desertion (colored
by lilac) includes the core symptom dyspnea and other symptoms
limb dyskinesia, cognitive disorder, slurring of speech, somnolence,
dysphoria, etc. The effective treatment for this syndrome refers
to the core medicine Tree Peony Bark and other medicines Radix
Saposhnikoviae, Rhizoma Phragmitis, Flos Farfarae, Amomi Fructus,
Agastache rugosa, etc.

• Syndrome of blazing of both qi and ying (colored by yellow) in-
cludes the core symptom poor sleep and other symptoms dry stool,
coma, limb convulsion, etc. The effective treatment for this syn-
drome refers to the core medicine Radix Pseudostellariae and other
medicines Radix Ophiopogonis, Rhizoma Coptidis, Folium Perillae,
Massa Medicata Fermentata, Periostracum Cicadae, etc.

.5. Experimental result comparison analysis

In general, for the clinical diagnosis and treatment in real world,
he numbers of symptom representations and medicines may be greater
han the medical information in the latest clinical guidelines of COVID-
9. Thus, we summarized the all specific 7 syndromes and their cor-
esponding 63 primary symptoms and 78 primary medicines as the
valuation standard to verify the accuracy and performance of the
nalysis model.

As the previous studies, we found that the non-adaptive clustering
lgorithms can acquire the better results than the adaptive algorithms
n the graph embeddings [44]. Therefore, we selected the representa-
ive non-adaptive algorithms: K-means and hierarchical clustering algo-
ithms as the comparison. We have used the representative evaluation
etrics: accuracy, modularity [45], normalized mutual information

NMI) [46], Fowlkes–Mallows index (FMI) [47], adjusted rand index
ARI) [48], and adjusted mutual information (AMI) [49], to evaluate
he quality of community division. We show the evaluation results
f different symptom communities in Fig. 8, and various medicine
ommunities in Fig. 9, respectively.

After comparative analysis, the experimental results show that the
C algorithm works better than the other two algorithms and gets more
uccessful runs on the all metrics. From Fig. 8 of symptom division
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Fig. 6. Symptom communities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Medicine communities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Evaluation of different clustering algorithms on the primary symptom network.
evaluation, we show that the SC algorithm can get the highest accuracy

0.9524 than other algorithms: K-means with 0.7302 and hierarchical
18
clustering with 0.7619. For the classical metric modularity, the SC

algorithm can acquire the higher value 0.5359 than K-means with
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Fig. 9. Evaluation of different clustering algorithms on the primary medicine network.
Table 3
Node centrality analysis of symptom network.

No. Symptoms Degree Closeness Betweenness Eigenvector Current flow closeness Load

1 cough 0.7683 0.8039 0.1117 0.2147 0.0689 0.1121
2 weakness 0.7317 0.7810 0.0987 0.2121 0.0686 0.0992
3 poor sleep 0.7073 0.7593 0.1319 0.1998 0.0684 0.1315
4 expectoration 0.6951 0.7523 0.0619 0.2106 0.0681 0.0619
5 loss of appetite 0.6707 0.7455 0.0645 0.2050 0.0679 0.0624
6 oppression in chest 0.6585 0.7257 0.0442 0.2047 0.0677 0.0441
7 fever 0.6341 0.7257 0.0479 0.1971 0.0675 0.0482
8 gasp 0.5732 0.6833 0.0207 0.1946 0.0666 0.0206
9 dry mouth 0.5000 0.6508 0.0149 0.1787 0.0654 0.0150
10 dyspnea 0.4878 0.6560 0.0259 0.1718 0.0653 0.0260
11 diarrhea 0.4878 0.6457 0.0157 0.1740 0.0653 0.0156
12 headache 0.4756 0.6406 0.0092 0.1765 0.0650 0.0092
13 bitter taste 0.4634 0.6357 0.0075 0.1717 0.0648 0.0075
14 palpitation 0.4512 0.6308 0.0046 0.1753 0.0645 0.0046
15 loose stool 0.4512 0.6308 0.0092 0.1653 0.0645 0.0093
16 vomiting 0.4390 0.6308 0.0874 0.1510 0.0642 0.0875
17 chills 0.4268 0.6212 0.0070 0.1615 0.0640 0.0070
18 dizziness 0.4024 0.6029 0.0059 0.1517 0.0628 0.0059
19 nausea 0.4024 0.6119 0.0030 0.1615 0.0634 0.0030
20 abdominal pain 0.4024 0.6119 0.0057 0.1569 0.0634 0.0056
0.3386 and hierarchical clustering with 0.348. For the evaluation of
community detection, it is widely believed that it is a good division
when the modularity is greater than 0.3. For the other four metrics:
NMI, FMI, ARI, and AMI, the SC algorithm can also obtain the highest
values 0.9179, 0.9192, 0.9025, and 0.8987 than K-means with 0.6604,
0.5785, 0.497, and 0.5726, and hierarchical clustering with 0.6674,
0.643, 0.5656, and 0.5858.

Based on Fig. 9 of medicine division evaluation, the experimental
results demonstrate that the SC algorithm obtain the highest accuracy
0.9487 than other algorithms: K-means with 0.8205 and hierarchical
clustering with 0.7949. For the modularity, the SC algorithm can
acquire the higher value 0.4839 than K-means with 0.4214 and hierar-
chical clustering with 0.3681. For the other four metrics: NMI, FMI,
ARI, and AMI, the SC algorithm can also obtain the highest values
0.9085, 0.8913, 0.8742, and 0.8919 than K-means with 0.7012, 0.6489,
0.5911, and 0.6437, and hierarchical clustering with 0.6867, 0.6207,
0.559, and 0.6283.

5. Conclusion

In this study, we have explored an effective model to support
the diagnosis and treatment of COVID-19. Through the combination
of complex network and machine learning techniques, the proposed
model is able to find the key factors and the clinical regularity in the
process of diagnosis and treatment accurately and effectively. Firstly,
19

we designed the symptom and medicine networks to represent the
complex relationships underlying the symptoms and medicines, respec-
tively. Secondly, we utilized six evaluation metrics to identify the core
symptom and medicine nodes based on the network topology. Thirdly,
we trained each symptom or medicine node using the skip-gram model
to generate the numerical symptom or medicine embedding (or called
a vector), which conserves the similarity relationship between any
two symptoms or medicines. In order to find the symptom group or
the medicine combination, we used the SC algorithm to divide the
symptoms or medicines into seven communities (clusters) with the
corresponding to the specific syndromes. Through checking up on the
latest clinical guidelines of COVID-19 and compared to the representa-
tive clustering algorithms, we show that our model can accurately and
effectively discover the symptom groups and medicine combinations,
and their corresponding syndromes.

In the clinical practice of COVID-19, this model can filter the irrel-
evant information and acquire the key factors and important clinical
regularity. Through introducing the medical information fusion, the
model discovers the relative effects among the syndromes, symptoms,
and medicines, which provides tremendously valuable guidance and
helps physicians to give the effective diagnosis and treatment strategies
for the COVID-19 patients. Furthermore, the dictionaries and embed-
ding sets of syndromes, symptoms, and medicines will be supplied as
the basic data sets for the COVID-19 researchers. The efficiency of the
prediction of disease evolution for COVID-19 remains a challenging
area. We will use the efficient solver such as iterative solvers to find the
eigenvectors in the Spectral Clustering method in the future to improve

the algorithm’s efficiency.
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Table 4
Node centrality analysis of medicine network.

No. Medicines Degree Closeness Betweenness Eigenvector Current flow closeness Load

1 Radix Glycyrrhizae 0.9714 0.9722 0.0200 0.0936 0.1805 0.0200
2 Poria 0.9524 0.9545 0.0165 0.0931 0.1798 0.0165
3 Pericarpium Citri Reticulatae 0.9429 0.9459 0.0173 0.0927 0.1795 0.0173
4 Rhizoma Atractylodis Macrocephalae 0.9429 0.9459 0.0211 0.0927 0.1795 0.0211
5 Rhizoma Pinelliae Preparatum 0.9365 0.9403 0.0158 0.0926 0.1792 0.0158
6 Astragali Radix 0.9175 0.9238 0.0140 0.0916 0.1785 0.0140
7 Radix Scutellariae 0.9143 0.9211 0.0132 0.0920 0.1784 0.0132
8 Cortex Magnoliae Officinalis 0.9143 0.9211 0.0134 0.0918 0.1784 0.0134
9 Radix Codonopsis 0.8984 0.9078 0.0125 0.0910 0.1778 0.0125
10 Radix Ophiopogonis 0.8889 0.9000 0.0129 0.0899 0.1774 0.0129
11 Radix Platycodonis 0.8889 0.9000 0.0109 0.0912 0.1773 0.0109
12 Pericarpium Trichosanthis 0.8889 0.9000 0.0113 0.0908 0.1774 0.0113
13 Radix Pseudostellariae 0.8794 0.8924 0.0108 0.0904 0.1770 0.0108
14 Radix Bupleuri 0.8635 0.8799 0.0109 0.0898 0.1763 0.0109
15 Armeniacae Amarum Semen 0.8540 0.8726 0.0100 0.0889 0.1759 0.0100
16 Fructus Schisandrae Chinensis 0.8476 0.8678 0.0103 0.0883 0.1756 0.0103
17 Flos Farfarae 0.8413 0.8630 0.0080 0.0892 0.1753 0.0080
18 Agastache rugosa 0.8381 0.8607 0.0087 0.0889 0.1752 0.0087
19 Semen Trichosanthis 0.8349 0.8583 0.0084 0.0885 0.1751 0.0084
20 Bulbus Fritillariae Thunbergii 0.8349 0.8583 0.0086 0.0889 0.1751 0.0086
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