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Abstract

Structured RNA elements within the internal ribosome entry site (IRES) of hepatitis C virus 

(HCV) genome hijack host cell machinery for translation initiation through a cap-independent 

mechanism. Here, using a phage display selection, we obtained two antibody fragments (Fabs), 

HCV2 and HCV3, against HCV IRES that bind the RNA with dissociation constants of 32 ± 7 nM 

and 37 ± 8 nM respectively, specifically recognizing the so-called junction IIIabc (JIIIabc). We 

used these Fabs as crystallization chaperones and determined the high-resolution crystal structures 

of JIIIabc – HCV2 and – HCV3 complexes at 1.81-Å and 2.75-Å resolution respectively, revealing 

an anti-parallel four-way junction with the so-called IIIa and IIIc sub-domains brought together 

through tertiary interactions. The RNA conformation observed in the structures supports the 

structural model for this region derived from cryo-EM data for the HCV IRES – 40S ribosome 

complex, suggesting that the tertiary fold of the RNA pre-organizes the domain for interactions 

with the 40S ribosome. Strikingly, both Fabs and the ribosomal protein eS27 not only interact with 

a common subset of nucleotides within the JIIIabc but also use physio-chemically similar sets of 

protein residues to do so, suggesting that the RNA surface is well-suited for interactions with 

proteins, perhaps analogous to the ‘hot spot’ concept elaborated for protein-protein interactions. 

Using a rabbit reticulocyte lysate-based translation assay with a bicistronic reporter construct, we 

further demonstrated that Fabs HCV2 and HCV3 specifically inhibit the HCV IRES-directed 

translation, implicating disruption of the JIIIabc – ribosome interaction as a potential therapeutic 

strategy against HCV.
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INTRODUCTION

Translation initiation in most eukaryotes involves the interaction of a 5ꞌ-cap structure of the 

mRNA with the translation initiation factors (eIFs).1,2 In the canonical mechanism, the cap-

binding protein eIF4E recognizes the 5ꞌ-cap and recruits the scaffolding protein eIF4G, 

which then binds eIF4B, the helicase eIF4A and poly(A)-binding protein. Interactions 

between poly(A)-binding protein and the poly(A) tail circularize the mRNA. After 

recruitment of the 40S ribosome and eIF3, the complex scans the mRNA to find a suitable 

translation start site.1,2 Numerous viral genomes, and a subset of cellular mRNAs, bypass 

this canonical translation initiation mechanism however, initiating translation with cap-

independent mechanisms that involve cis-acting, structured RNA elements, termed internal 

ribosome entry sites (IRESs).2–4 An IRES recruits the ribosome directly or via interactions 

with translation initiation factors in a cap-independent manner and positions the ribosome at, 

or upstream of, the translation start site.

In hepatitis C virus (HCV) – a member of Flaviviridae family and a major human pathogen 

– translation initiation is driven by the direct interaction of the IRES elements in the 5ꞌ-UTR 

of the positive sense ssRNA viral genome with the 40S ribosome and initiation factor 3 

(eIF3).5–12 The 341-nt long 5ꞌ-UTR shows well-defined secondary structure domains 

(designated I to IV, Fig. 1a and Supplementary Fig. 1) that are highly conserved among 

isolates and strains.13–18 Previous mutation and deletion analyses using monocistronic and 

bicistronic reporter assays show that full translation activity requires 333 nucleotides (nts 

40–372) of the viral genome, which include nucleotides 40–341 of the 5ꞌ-UTR, the AUG 

start codon (nts A342-G344) and nucleotides 345–372 of the coding region (see 

Supplementary Fig. 1 for the sequence).8,13,15,19,20 Nevertheless, several biochemical and 

structural studies have revealed that domains II and III (nts 40–341) contain all the structural 

features essential for the 40S ribosome binding and translation initiation.8,13,15,19,20

Previous structural and functional studies, including NMR and cryo-EM structural analyses, 

have revealed important features of the IRES – ribosome interactions.10,21–27 Consistent 

with the outcomes of those studies, a recent 3.9-Å resolution cryo-EM structure of the HCV 

IRES-40S subunit complex (PDB code: 5A2Q25) determined by the focused refinement of 

the human 80S ribosome-HCV IRES complex demonstrates that domain II of the HCV 

IRES assumes a L-shaped structure that reaches across the 40S subunit and into the 40S-60S 

intersubunit space, interacting with the ribosomal proteins uS7, uS11 and uS25.25 Domain 

III – the largest domain within the IRES (nts 119–330) – consists of several stem-loops 

(designated sub-domains IIIa to IIIf) involved in three-way and four-way junctions and 

pseudoknot structures (Supplementary Fig. 1).22,25,28–30 The base of the domain III, 

including sub-domains IIIe and IIIf, forms a four-way junction and a pseudoknot involving 

the IIIf loop and the nucleotides 325–330.25,28 This region interacts with the proteins (eS1 

and eS28) and 18S rRNA components of the 40S ribosome.25 In the middle of domain III, 

sub-domain IIId forms part of a three-way junction and interacts with 18S rRNA.25 The 

apical region of domain III contains a four-way junction (designated JIIIabc) involving the 

central domain III stem and sub-domains IIIa, IIIb and IIIc, and IIIa and IIIc interact with 

ribosomal protein eS27 (Supplementary Fig. 1).25 Although the highest resolution (3.9-Å) 
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cryo-EM structure thus far lacks stem-loop IIIb, earlier chemical and enzymatic foot-

printing, UV-cross-linking and quantitative binding assays have shown that IIIb interacts 

with eIF3, playing a crucial role for initiating the HCV translation.1,7,8,31,32 More recently, a 

modest resolution (9.3-Å) cryo-EM reconstruction of a similar IRES from classical swine flu 

virus (CSFV) in complex with the 40S ribosome and eIF3 revealed that sub-domain IIIb 

binds to eIF3, displacing it from the canonical 40S-eIF3 complex.11

Structural analysis of IRES elements both as isolated RNA domains and as higher order 

complex with ribosomes contributes to our understanding IRES function. High-resolution X-

ray and NMR structures of many fragments of the HCV IRES have been reported 

previously, including domains II, IIIb, IIIc, IIId, IIIef-IV, and the IIIabc junction (JIIIabc).
22,23,30,32–34 Interestingly, the JIIIabc crystal structure (2.8-Å resolution, PDB code: 

1KH6)33 captured the four-way junction in a conformation that is distinct from the 

conformation observed in 3.9-Å resolution cryo-EM structure of the IRES – ribosome 

complex (Supplementary Fig. 2).25,33 The four-way junction in the former structure assumes 

a parallel conformation with two coplanar sets of stacked helices – IIIa stacks on IIIb and 

IIIc on the remaining helix (designated III*).33 The overall architecture separates IIIa and 

IIIc and positions domain IIIb close to the III* helix.33 In contrast, the same junction in the 

context of the full IRES bound to the 40S ribosomal subunit (3.9-Å resolution cryo-EM 

structure) adopts an antiparallel conformation, placing IIIb and III* in an opposite direction 

and juxtaposing IIIa and IIIc to form a binding platform for the ribosomal protein eS27.25 It 

is noteworthy that the crystal structure corresponds to a dimeric form of the JIIIabc 

construct, which contains the same junction nucleotides and flanking base pairs in the 

helices IIIa, IIIb and III* as the monomeric form (cryo-EM structure) but loop IIIc is 

engaged with the same loop of the neighboring molecule to form a helical stem 

(Supplementary Fig. 2).25,33 The dimerization of the JIIIabc in the crystal might have arisen 

due to crystallization conditions. It is possible that both parallel and antiparallel monomeric 

conformations may exist in solution,35 but ribosome binding stabilizes the antiparallel 

conformation.

We have been developing chaperone-assisted RNA crystallography using antibody-derived 

antigen binding fragments (Fabs) as chaperones.36–42 Fabs that bind RNA targets 

specifically are obtained through screening of phage libraries displaying Fabs bearing 

limited, prescribed sequence diversity in their complementarity determining regions (CDRs).
36–42 Here, we target the HCV IRES RNA and obtain two Fabs, termed HCV2 and HCV3, 

that specifically bind the JIIIabc domain within the IRES. Using these Fabs as crystallization 

chaperones, we solved high-resolution crystal-structures of JIIIabc – HCV2 and – HCV3 

complexes at 1.81-Å and 2.75-Å resolution, respectively. The overall architecture of JIIIabc 

crystal structure closely resembles that modeled from lower resolution (3.9-Å) cryo-EM data 

of the HCV IRES in complex with the human 40S ribosome,25 establishing that the JIIIabc 

domain folds into a structure pre-organized for the ribosome and eIF3 interactions. Despite 

using the entire HCV IRES (333 nts) as the target for phage display Fab selection, both Fabs 

bind to JIIIabc in the same region, which serves as a docking site for ribosomal protein 

eS27, implicating a potential ‘hot spot’ within the IRES for protein interactions – a concept 

well-elaborated for protein-protein interactions.43–45 We also demonstrate that both Fabs 

HCV2 and HCV3 effectively inhibit HCV IRES-mediated translation in a concentration 
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dependent manner while having no effect on canonical translation. These findings 

demonstrate proof-of-principle that antibodies to RNA domains have potential as 

crystallization chaperones, as tools to identify vulnerable regions within pathogenic RNAs 

for targeting small molecules, and as a potential class of translation inhibitors for developing 

antiviral therapeutics.

RESULTS AND DISCUSSION

Selection of Fabs against HCV IRES using phage display.

The RNA construct used for phage display selection contained 333-nucleotides from the 

HCV IRES (nts 40 to 372, genotype 1b)16,18 with an additional 3ꞌ-overhang sequence that 

hybridizes to a biotinylated DNA oligonucleotide (Supplementary Fig. 3), allowing 

immobilization of the RNA-DNA hybrid construct on streptavidin-coated magnetic beads. 

We have previously selected Fabs that specifically bind to RNA using phage libraries 

displaying Fabs derived from a humanized Fab4D5 framework bearing reduced codon 

diversity in the CDRs, the hypervariable loops that endow antibody repertoires with the 

capacity to bind a wide variety of antigens.36,37,39,41,42 To isolate Fabs that specifically bind 

to HCV IRES, we performed in vitro phage display selection using a phage library termed 

YSGR that contains constant CDRs-L1 and -L2 from the parent Fab4D5, encodes equal 

proportions of Y and S at variable positions in CDR-L3, -H1, and -H2, and encodes 38% Y, 

25% S, 25% G, and 12% R in each CDR-H3 position. Additionally, this library was 

designed to have variable length between 6 – 17 residues in CDR-H3. The prescribed 

restriction in amino acid types reduces the gap between the practical size of the library 

(~1011) and the theoretical diversity (>1050 if all CDR positions were randomized across all 

amino acid types). We carried out three rounds of phage display selection against the HCV 

IRES RNA. We obtained several clones that showed a positive RNA binding response in a 

phage ELISA assay. We expressed these Fabs individually as soluble proteins in E. coli 
using a phagemid expression vector, purified them by affinity and ion-exchange 

chromatography to obtain RNase free Fabs, and tested their binding affinity for the 333-nt 

HCV IRES using a filter binding assay. We found that two Fabs, termed HCV2 and HCV3 

hereafter, bound to the HCV IRES with dissociation constants (Kds) of 32 ± 7 nM and 37 ± 

8 nM, respectively, as determined by a filter binding assay in 10 mM Tris-HCl (pH 7.4), 10 

mM MgCl2 and 200 mM NaCl buffer at 23°C (Supplementary Fig. 3). These two Fabs were 

advanced to further analysis and crystallization trials.

Crystallization and structure determination of JIIIabc in complex with HCV2 and HCV3.

To test the ability of Fabs HCV2 and HCV3 to serve as chaperones for the HCV IRES 

crystallization, we set up crystallization trials for the intact, 333-nt HCV IRES in complex 

with either Fab HCV2 or HCV3 using the hanging drop vapor diffusion method. However, 

we did not obtain any useful crystals. Next, we performed truncation analysis to 

approximate the epitope regions recognized by Fabs HCV2 and HCV3 within the HCV 

IRES. Binding assays for Fabs HCV2 and HCV3 with several truncated RNA constructs 

derived from the wild-type HCV IRES revealed that both Fabs recognized a region located 

around the four-way junction structure – JIIIabc. Based on truncation analysis, we prepared 

an isolated JIIIabc construct (Supplementary Fig. 4) similar to that crystallized previously by 
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Kieft et al.33 in a dimeric form (Supplementary Fig. 2). This construct also bound to Fabs 

HCV2 and HCV3 with affinities (Kd = 28 ± 8 nM and 35 ± 11 nM, respectively, see 

Supplementary Fig. 4) similar to those of the full-length HCV IRES (Kd = 32 ± 7 nM and 

37 ± 8 nM with HCV2 and HCV3, respectively). Additionally, isolated sub-domain 

constructs IIIa, IIIc and IIIb/IIIc did not bind either Fab, indicating a requirement for the 

intact JIIIabc tertiary structure in Fab recognition (Supplementary Fig. 5). Following these 

tests, we set up crystallization trials of the JIIIabc – Fab complexes and obtained crystals 

that diffracted to ~ 5-Å resolution with poor data quality. Given the tendency of this 

construct to dimerize under the crystallization conditions, we prepared a second JIIIabc 

RNA construct for crystallization (Fig. 1b), which was similar to the previous construct but 

contained extended IIIb and III* helical stems (see supplementary note 1 and Supplementary 

Fig. 4 for details).

After preparing the Fabs HCV2 and HCV3 complexes with the RNA, we set up the 

crystallization trials. We observed robust crystals for both JIIIabc – HCV2 and JIIIabc – 

HCV3 complexes, but more co2nditions yielded crystals for former complex compared to 

the latter (44 and 8 different conditions, respectively, out of 480 conditions screened for each 

complex). We observed no crystals in analogous trials using only the RNA, implicating a 

role for the Fabs in facilitating the JIIIabc crystallization. The crystals for JIIIabc – HCV2 

and JIIIabc – HCV3 diffracted to 1.81-Å and 2.75-Å resolution, respectively. To solve the 

crystal structure of JIIIabc – HCV2 complex, we readily obtained the initial phases by 

molecular replacement using the Fab portion of the previous crystal structure of Fab HAVx 

in complex with domain V from the hepatitis A virus IRES (PDB code: 6MWN).42 The 

high-resolution electron density map obtained from the molecular replacement allowed 

unambiguous modeling of the RNA nucleotides. After iterative rounds of model building 

and refinement at 1.81-Å resolution, the final values of Rfree and Rwork were 20.89% and 

17.35%, respectively. For the JIIIabc – HCV3 complex, the structure of the RNA and Fab 

HCV2 without CDR loops were used as the molecular replacement models. After several 

rounds of model building and refinement process at 2.75-Å resolution, the final values of 

Rfree and Rwork were 22.22% and 18.60%, respectively. The structural models of the JIIIabc 

– HCV2 and JIIIabc – HCV3 complexes from the final refinements along with the 2|Fo|− |Fc| 

electron density maps are shown in Supplementary Fig. 6. Details of data collection and 

refinement statistics for both complexes are provided in Table 1.

Overall structure of the JIIIabc in complex with HCV2 and HCV3.

We observed crystals of JIIIabc – HCV2 and JIIIabc – HCV3 complexes in several 

overlapping crystallization conditions and most of the crystals were morphologically similar. 

However, the crystals that yielded the highest resolution diffraction datasets for solving the 

structures originated from non-overlapping crystallization conditions (see above) and had 

different crystal morphologies (rectangular prism and diamond shaped crystals for JIIIabc – 

HCV2 and JIIIabc – HCV3, respectively), underscoring the value of having multiple 

crystallization chaperones. Consistent with the morphological differences in the crystals, 

JIIIabc – HCV2 and JIIIabc – HCV3 complexes crystallized in the C 1 2 1 and P 43 space 

group lattices, respectively. The former contained one and the latter three RNA – Fab 

complexes per asymmetric unit (Supplementary Fig. 7). Nevertheless, the final structures of 
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each Fab and RNA from the JIIIabc – HCV2 and JIIIabc – HCV3 complexes (Figs. 1c and d, 

respectively) were almost identical except for Fab CDRs and two RNA nucleotides (Figs. 

1c–e and Supplementary Fig. 7). In the JIIIabc – HCV2 structure, the first G nucleotide 

remains stacked within the helical stem but in JIIIabc – HCV3, it flips out of the helix to 

make crystal contacts with the neighboring Fab molecule (Supplementary Fig. 7). 

Additionally, G233 flips out of the IIIc helical stack in both complexes but in opposite 

directions (Supplementary Fig. 7) to interact extensively with Fab residues form CDRs L3 

and H2 in HCV2 and L3, H2 and H3 in HCV3.

In the crystal structures of both JIIIabc – HCV2 and – HCV3 complexes, the majority of the 

macromolecular interactions involve either Fab-Fab or Fab-RNA interaction. Analysis of 

buried surface area of JIIIabc – HCV2 and JIIIabc – HCV3 structures using PDBePISA46 

revealed that including the Fab-RNA binding interface, Fab-mediated contacts account for 

72% and 89%, respectively, of the buried surface area in the crystal packing, suggesting a 

prominent role of the Fabs as RNA crystallization chaperones in both cases. Nevertheless, 

RNA – RNA contacts occur in these crystals, accounting for 28% and 11% of the buried 

surface area in the crystal lattice of JIIIabc – HCV2 and JIIIabc – HCV3, respectively. In the 

JIIIabc – HCV2 complex, two symmetry mate RNA molecules make two sets of tetra-loop – 

receptor interactions47,48 involving helical stem IIIa and the IIIb GAAA tetra-loop 

(Supplementary Fig. 8), whereas in JIIIabc – HCV3, the RNA-RNA contacts occur between 

two RNA copies within the asymmetric unit via GAAA tetra-loop – tetra-loop 

interactions47,48 (Supplementary Fig. 8).

In the JIIIabc crystal structure (Fig. 2a), a four-way junction architecture organizes the four 

helices designated III*, IIIa, IIIb and IIIc into two sets of co-linearly stacked helices, in 

which IIIa and IIIc stack on IIIb and III*, respectively (Figs. 2a, b). The IIIc and III* helices 

form a nearly continuous A-form helix with no unpaired nucleotides in between, whereas 

nucleotides A154, A155 and U228 interrupt the continuity of the IIIa and IIIb helical stack 

and make tertiary interactions with the IIIa – IIIb interface (Figs. 2a, b). This arrangement of 

the helices within the four-way junction juxtaposes the sub-domains IIIa and IIIc to enable 

loop (IIIa) – helix receptor (IIIc) type tertiary interactions (Figs. 2b, c), forming a platform 

for Fab HCV2 or HCV3 binding (Figs. 1c–e). Recognition of this tertiary structure by the 

Fabs accounts for the observation that isolated IIIa and IIIc hairpins fail to bind either Fab. 

The secondary structures within each helix match previous predictions for the full-length 

IRES (see Figs. 1b, 2b and Supplementary Fig. 1). Our crystal structure of JIIIabc supports 

the model of the HCV IRES – ribosome complex derived from 3.9-Å resolution cryo-EM 

data (Supplementary Fig. 9). The similarity of the RNA structures in all three complexes, the 

40S ribosome, Fab HCV2, or Fab HCV3, strongly suggests that the JIIIabc conformation is 

pre-organized for binding the ribosome and eIF3. If the RNA lacked pre-organization and 

sampled multiple conformations dynamically, then eS27, HCV2, and HCV3 would each 

have to bind and stabilize the same RNA conformation, which seems unlikely considering 

that the three proteins have overlapping but not identical binding epitopes.
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Structural features of the four-way junction in JIIIabc.

Here, we elaborate on the detailed structural features of the four-way junction and provide a 

comprehensive description of the JIIIabc architecture based on our two high-resolution 

crystal structures (Figs. 2b–i). In the III* – IIIb joining region, unpaired nucleotides A154 

and A155 engage in tertiary interactions with the A172-U227 and A173-U226 base pairs of 

IIIb as well as with unpaired U228 at the IIIb – IIIc junction (Figs. 2b–e). A155 makes 

Watson-Crick/Sugar Edge and Hoogsteen/Watson-Crick interactions with A172 and U228, 

respectively, forming a U228•A155•A172-U227 tetrad (Fig. 2e). Similarly, A154 makes 

Watson-Crick/Sugar Edge and Hoogsteen/Sugar Edge interactions with A173 and U227, 

respectively, thereby organizing a second tetrad U227•A154•A173-U226 (Fig. 2d). 

Consistent with the important structural role of these interactions for the integrity of JIIIabc 

and IRES-mediated translation, mutation of any nucleotide associated with these networks 

of interactions (A154G, A155G, U248C, A172U, A173U) significantly lowered IRES-

mediated translation of a downstream reporter gene by disrupting the ribosome and eIF3 

interactions with JIIIabc.8,33 Compensatory base-pair mutations A172-U227 to U172-A227 

or A173-U226 to U173-A226 retained nearly wild-type IRES activity.33

The junction architecture intertwines the IIIa and IIIc stem loops (Figs. 2a, c). The 3’ strand 

of helix IIIc traverses the major groove of helix IIIa but makes no direct contact, and the 

terminal loop of helix IIIa docks into the minor groove of helix IIIc. This docking involves 

tertiary interactions between four nucleotides (G163, U164, A165 and C166) from helix IIIa 

and four base pairs (G229-C238, G230-C237, G231-C236 and C232-G235) from the IIIc 

helical stem (Figs. 2b, c). The phosphate oxygen of G229 interacts with the 2ꞌ-OH of G153 

of III* (Fig. 2f). The G163’s N1H and exocyclic amine make hydrogen bonding interactions 

with C232’s phosphate oxygen and G231’s O3ꞌ, respectively (Fig. 2g). Additionally, U164 

N3 and O2 make hydrogen bonds to G231’s 2ꞌ-OH and G163’s exocyclic amine (Fig. 2g). 

A165 engages in A-minor interactions with the G230-C237 base pair (Fig. 2h). Finally, 

C166 engages in a canonical base pair with G161 and uses its exocyclic amine and 

phosphate oxygen to form hydrogen bonds to the phosphate backbone at G231 and the 

exocyclic amine of G229, respectively (Figs. 2f, i). These interactions stabilize the 

juxtaposition of IIIa and IIIc to make a well-organized platform for Fabs HCV2 and HCV3 

binding.

Structural features of the Fab – RNA binding interface.

As expected, Fabs HCV2 and HCV3 interact with JIIIabc through their CDRs. In the JIIIabc 

– HCV2 complex, CDRs L3 and H2 interact with sub-domain IIIc and CDR H3 forms a 

topologically smooth surface that mediates interactions with sub-domain IIIa (Fig. 3a). In 

the JIIIabc – HCV3 complex, CDRs L3, H1, H2 and H3 form a deep pocket that 

accommodates the loop of sub-domain IIIc. In addition, the loop of the sub-domain IIIa 

wraps around CDR H3 and makes contact with the surfaces of CDRs L2 and H1 located on 

opposite sides of CDR H3 (Fig. 3b).

Although they bind in different global orientations (Fig. 1e), Fabs HCV2 and HCV3 

recognize a significantly overlapping surface of the RNA (Fig. 3c). Recognition involves 

stacking, electrostatic, and hydrogen bonding (direct and water-mediated) interactions (Figs. 

Koirala et al. Page 7

ACS Chem Biol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3f–m, see Supplementary Note 2 for detailed description of the interactions). Fab HCV2 

interacts with the four unpaired nucleotides (A162, G163, U164 and A165) from the IIIa 

loop and an unpaired nucleotide (G233) and three base-paired nucleotides (G231, C232 and 

C237) from IIIc (Supplementary Figs. 10, 11). Fab HCV3-RNA interactions involve two 

unpaired nucleotides (G163, U164) and three base-paired nucleotides (G159, U160 and 

G161) from IIIa, and two unpaired nucleotides (G233 and U234) and a base-paired 

nucleotide (C232) from IIIc (Supplementary Figs. 10, 11). Fab HCV2 utilizes six tyrosines, 

two serines, two arginines and a threonine from CDRs L3, H2 and H3 only (Fig. 3d), 

whereas Fab HCV3 utilizes five tyrosines, eight serines and three arginines from all CDRs 

except L1 (Fig. 3e).

Fabs HCV2 and HCV3 mimic ribosomal protein eS27 in binding JIIIabc.

In the 3.9-Å resolution cryo-EM structure,25 the ribosomal protein eS27 interacts directly 

with IIIa and IIIc sub-domains within JIIIabc via contacts to many of the same nucleotides 

that the Fabs HCV2 and HCV3 interact with (Figs. 4a–j). Specifically, two lysines (K42 and 

K82), an arginine (R80), a serine (S78) and an aspartic acid (D34) of eS27 interact with the 

sub-domain IIIc nucleotides G233, U234, C236 and C237 (Figs. 4e–h), whereas a tyrosine 

(Y41) and a lysine (K36) residue of the protein interact with the IIIa sub-domain nucleotides 

G163 and U164 (Figs. 4e, h). Thus, not only do all three proteins interact with the same five 

nucleotides (IIIa G163 and U164, and IIIc G233, U234 and C237) but use physiochemically 

congruous sets of protein residues to do so (see Figs. 3d–m, 4e–j, and Supplementary Figs. 

10, 11). The emergence of two Fabs that bind to the same region within the JIIIabc as eS27 

binds, despite phage display screening against the entire HCV IRES (333 nts), may suggest 

a tendency of Fabs to target functional RNA surfaces involved in protein interactions. On the 

other hand, this outcome may reflect the restricted amino acid types (YSGR) used for 

generating CDR diversity.

Similar to recognition site within the JIIIabc for eS27, HCV2 and HCV3, RNA recognition 

within signal recognition particle (SRP) – 14 kDa – 16 kDa protein complexes (PDB code: 

1E8O) also involves protein docking to an RNA surface created by the juxtaposition of two 

interacting RNA loops.49 This mode of molecular recognition renders protein binding 

dependent on RNA tertiary structure formation and therefore provides a strategy for 

enhancing binding specificity relative to recognition of isolated stem-loops, which occur in 

high frequency throughout the transcriptome.

Inhibition of HCV IRES-mediated translation by Fabs HCV2 and HCV3.

Previous studies including the cryo-EM structures of HCV IRES in complex with the human 

ribosome revealed that JIIIabc is one of the essential domains for the IRES interactions with 

the 40S ribosome,7–12,21,24–27,29,32 specifically, through the interactions of a ribosomal 

protein eS27 with the IIIa and IIIc sub-domains – the same region that Fabs HCV2 and 

HCV3 bind to. Consequently, we investigated whether these Fabs could hinder the IRES 

interactions with the ribosome to inhibit the translation mediated by the HCV IRES. We 

performed in vitro translation assays with rabbit reticulocyte lysate using a bicistronic 

reporter construct encoding both Firefly and Renilla luciferase (Fig. 5a).
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The canonical translation mechanism directs the Firefly luciferase expression, whereas the 

HCV IRES directs Renilla luciferase expression. We prepared the dsDNA template for the 

construct via PCR and generated the corresponding mRNA for translation via T7 promotor-

controlled transcription in situ. Firefly and Renilla luciferase expression levels within each 

reaction were quantified using a dual luciferase reporter assay that measures the 

luminescence activity of each luciferase. Specific binding of the Fab HCV2 or HCV3 to the 

JIIIabc RNA of HCV IRES would be expected to inhibit the Renilla luciferase expression 

without interfering with the Firefly luciferase expression.

In the presence of Fab HCV2 or HCV3 (5 μM), expression of Renilla luciferase decreased to 

the background level, whereas corresponding Firefly expression remained unaffected (Fig. 

5b). As a control, we tested the effect of a different RNA-binding Fab on translation. Fab 

BRG binds to a short sequence of RNA that adopts a stem loop conformation.39 Although it 

possesses the same scaffold domains as HCV2 and HCV3, it has distinct CDR sequences 

and does not bind to the HCV IRES. Inclusion of 5 μM Fab BRG in the translation assay had 

no effect on the expression of either luciferase (Fig. 5b), suggesting that Fab HCV2 or 

HCV3 specifically inhibit Renilla luciferase translation by binding to the HCV IRES, 

presumably hindering its interaction with the 40S ribosome. Similar translation assays with 

varying concentration of added Fabs revealed IC50 values of 115 ± 10 nM and 40 ± 10 nM 

for HCV2 and HCV3, respectively (Fig. 5c), which are similar to the dissociation constants 

of these Fabs with the HCV IRES (32 ± 7 nM and 37 ± 8 nM, respectively).

Implications for IRES domains as therapeutic targets.

Due to its central role in translation of the viral genome and strong conservation among 

isolates and strains, the HCV IRES has been recognized as an attractive target for the 

development of the therapeutics that inhibit viral translation. Our cell lysate-based in vitro 
translation assays demonstrate that binding of Fabs HCV2 and HCV3 to junction IIIabc of 

HCV IRES specifically inhibits IRES-mediated translation, presumably by blocking the 

interactions between the IRES and the 40S ribosome or the eIF3 complex, which represent 

essential interactions for initiating translation driven by HCV and HCV-like IRESs. Given 

that HCV infection causes widespread hepatitis C and hepatocellular carcinoma, affecting 

over 150 million humans worldwide50 and current therapeutic strategies, though effective, 

are expensive and can cause serious side effects,51,52 antibodies against HCV IRES could 

provide potential alternative therapeutic molecules. Of course, antibodies serve as highly 

effective drugs in their own right, but their targets generally reside outside of the cell. Future 

advances in protein delivery technologies may render intracellular targets, including viral 

RNA domains, vulnerable to the therapeutic potential of antibodies.

Numerous approaches have been developed to inhibit HCV translation by targeting highly 

conserved IRES elements, yielding a set of oligonucleotide, peptide and small molecule 

ligands.53–56 So far, domain II stands as the only HCV IRES element for which a small-

molecule translation inhibitor has been developed.53,57 Our finding that Fabs HCV3 and 

HCV2 can inhibit translation in a concentration-dependent manner suggests that disruption 

of the interaction between JIIIabc and the ribosome could provide a therapeutic strategy 

against HCV, implicating JIIIabc as a possible target also for small molecule inhibitors. In 
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this regard, the ability of Fabs HCV2 and HCV3 to facilitate crystallization of the RNA 

domain provides an avenue toward structure-based inhibitor design and optimization. The 

ability to engineer Fabs that bind RNA motifs with high affinity and specificity enables a 

targeted perturbation of RNA-RNA, RNA-protein, or RNA-ligand interactions. Analysis of 

the functional consequences of Fab binding in vitro and in cellulo (through reformatting as 

genetically encoded intrabodies) can facilitate dissection of RNA signaling networks and 

illuminate both the functional roles and druggability of the target motifs.58

CONCLUSIONS

The HCV IRES JIIIabc binds 40S ribosome and eIF3, playing an essential role in viral 

genome translation. Using phage display selection against the HCV IRES, we obtained two 

Fabs, HCV2 and HCV3 that bind the RNA with high affinity, specifically recognizing the 

JIIIabc region. Using these Fabs as crystallization chaperones, we determined the high-

resolution crystal-structures of JIIIabc – HCV2 and – HCV3 complexes at 1.81-Å and 2.75-

Å resolution, respectively, revealing an anti-parallel four-way junction with the IIIa and IIIc 

domains juxtaposed through tertiary interactions. The structure of the junction strongly 

agrees with the RNA model derived from 3.9-Å resolution cryo-EM structure of HCV IRES 

– 40S ribosome complex, suggesting that the domain adopts a pre-organized architecture for 

ribosome interactions. In these structures, the IIIa – IIIc juxtaposition creates a platform for 

protein recognition by Fabs HCV2 and HCV3 and ribosomal protein eS27. Strikingly, both 

Fabs and eS27 interact with a common subset of nucleotides, suggesting that this surface 

could be a “hot spot” for protein docking. In rabbit reticulocyte lysate translation assays 

using a bicistronic reporter assay, Fabs HCV2 and HCV3 specifically inhibited HCV IRES-

directed translation, implicating disruption of the JIIIabc – eS27 interaction as a potential 

therapeutic strategy against HCV. Consistent with our previously reported Fab-RNA 

complexes, the RNA recognition strategies adopted by Fabs HCV2 and HCV3 are mostly 

similar to those observed for natural RNA binding proteins, suggesting that Fabs could serve 

as a unique and versatile scaffold with the potential to bind a wide variety of RNAs for 

applications beyond RNA crystallography.

METHODS

RNA synthesis and purification.

DNA templates for transcription reactions of full-length HCV IRES constructs used for 

phage display selection and crystallization were produced by PCR amplification of a 

plasmid (generously provided by Evgeny V. Pilipenko, University of Chicago) template 

containing the HCV IRES sequence following a T7-promotor, whereas the DNA templates 

for transcription reactions of isolated JIIIabc constructs were prepared by PCR amplification 

of ssDNA oligomer with T7-promotor sequence purchased from Integrated DNA 

Technologies (IDT, www.idtdna.com). The first two nucleotides of the reverse primer 

contained 2′-OMe modifications to reduce transcriptional heterogeneity at the 3′ end.59 

RNA was prepared by in-vitro transcription for 3 hours at 37 °C in buffer containing 40 mM 

Tris-HCl pH 8.0, 2 mM spermidine, 10 mM NaCl, 25 mM MgCl2, 10 mM DTT, 40 U/ml 

RNase Inhibitor, 5 U/ml TIPPase, 5 mM of each NTPs, 50 pmol/ml DNA template, 50 μg/ml 
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homemade T7 RNA polymerase.60 Transcription reactions were quenched by adding 5 U/ml 

RNase free DNase I (Promega, www.promega.com) and incubating at 37 °C for 30 minutes. 

Following DNase treatment and phenol-chloroform extraction, the RNA was purified by 

denaturing polyacrylamide gel electrophoresis. The corresponding RNA band was visualized 

by UV shadowing and excised from the gel. RNA was eluted overnight at 4°C in 10 mM 

Tris, pH 8.0, 2 mM EDTA, 300 mM NaCl buffer. The buffer for eluted RNA was exchanged 

3 times for pure water using 10 kDa-cutoff size-exclusion column (Amicon, 

www.emdmillipore.com). RNA was collected, aliquoted and stored at −80 °C until further 

use.

Phage display selection.

Phage display to select a Fab that binds the RNA of interest was performed by following a 

similar strategy as described elsewhere.36,37 The HCV IRES RNA construct that contained 

an additional 3ꞌ overhang sequence, 5ꞌ-AGG UCG ACU CUA GAG GAU CCC CGG (x-

module) was hybridized with the biotinylated DNA oligonucleotide, 5ꞌ-Biotin-ACC GGG 

GAT CCT CTA GAG TC (see Supplementary Fig. 3) and this RNA-DNA hybrid was 

immobilized on the streptavidin-coated magnetic beads via biotin-streptavidin interaction. 

For the first round, 500 nM of RNA was immobilized by using a pre-determined amount of 

beads required for complete immobilization and then incubated with 1013 cfu (colony 

forming units) of phage for 15 min in 1 ml of selection buffer, PBS (8 mM Na2HPO4, 1.5 

mM KH2PO4, 137 mM NaCl, and 3 mM KCl, pH 7.4), 0.05% Tween 20, 10 mM Tris-HCl 

(pH 7.4), 10 mM MgCl2 and 200 mM NaCl, supplemented with 0.1 mg/ml BSA, 0.1 mg/ml 

streptavidin, and 1 unit/μL RNase inhibitor (NEB, www.neb.com). The solution was then 

removed, and the beads were washed twice with the selection buffer. In subsequent rounds, 

purified phage pools were first incubated with streptavidin beads in the selection buffer for 

30 min, and the supernatant was used for the subsequent selection on a King Fisher 

magnetic particle processor (Thermo Electron Corporation, www.gogenlab.com). The 1011 

cfu of Phages were incubated for 15 min with (50 nM in 2nd and 5 nM in 3rd round) of the 

RNA in 100 μl of the selection buffer, supplemented with 0.1 mg/ml BSA, 1 unit/μl RNase 

inhibitor, and 1.5 μM x-module DNA-RNA hybrid as a competitor. Streptavidin magnetic 

beads were then added to the solution for 15 min to allow the capture of the biotinylated 

RNA construct together with the bound phage. The beads were then blocked with 50 μM 

biotin, washed five times with the buffer, and eluted in 50 μL of elution buffer (PBS, and 1 

μg/ml biotinylated RNaseA). The biotinylated RNase A was removed from the resulting 

phage library by incubation with streptavidin beads. After each round of selection, recovered 

phages were amplified as described previously.36,37 After 3rd round of selection, the phages 

were sequenced.

Fab expression and purification.

Enriched output clones from the 3rd round of selection was tested for binding to target RNA 

using phage ELISA. For the phage ELISA assay, the RNA construct was immobilized 

through the x-module via biotin-neutravidin interactions, and ELISA assay was performed 

according to published protocols.61 Clones that showed a positive binding response in a 

phage ELISA assay were reformatted for soluble protein expression with the introduction of 

a stop codon on phagemids using Q5 site-directed mutagenesis kit (NEB, www.neb.com). 
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Fabs were expressed and purified first on a small scale (100–250 mL culture) as described 

elsewhere.36,37,61 No affinity tag was employed in the purification, which is described 

briefly below. Binding affinity of each clone with the RNA lacking the x-module was 

determined by filter binding assay. Fabs that bound the RNA with desirable affinity were 

then expressed on a larger scale (4 liter culture) according to published protocols.29,30,55 

Both small and large scale Fab production methods essentially followed similar steps and 

yielded pure and RNase free Fabs. Briefly, phagemids with stop codon were transformed 

into 55244 chemical competent cells (www.atcc.org) and directly inoculated a starter culture 

with 100 μg/ml ampicillin. This overnight culture was then used to inoculate 2xYT media 

and grown for 24 hours at 30°C. Culture was centrifuged at room temperature, cell pellet 

was resuspended in the same volume of CRAP-Pi media61 with 100 μg/ml ampicillin and 

grown for 24 hours at 30°C. Collected cell pellets were lysed in PBS buffer using 0.4 mg/ml 

of lysozyme (Millipore Sigma, www.sigmaaldrich.com), and Fab proteins were purified 

using the AKTAxpress fast protein liquid chromatography (FPLC) purification system 

(Amersham, www.gelifesciences.com) as described previously.36,37 The lysate in PBS buffer 

(pH 7.4) was loaded into a protein A column, the eluted Fab in 0.1 M acetic acid was 

dialyzed back into the buffer PBS (pH 7.4) and loaded into a protein G column. The eluted 

Fab from protein G column in 0.1 M glycine (pH 2.7) dialyzed into 50 mM NaOAc, 50 mM 

NaCl buffer (pH 5.5) and loaded into a heparin column. Finally, the eluted Fab in 50 mM 

NaOAc, 2 M NaCl (pH 5.5) was dialyzed back into 1x PBS (pH 7.4), concentrated, and 

analyzed by 12% SDS-PAGE using Coomassie Blue R-250 staining for visualization. 

Aliquots of Fab samples were tested for RNase activity using the RNaseAlert kit (Ambion, 

www.thermofisher.com). The aliquots of Fab samples were flash frozen in liquid nitrogen 

and stored at −80°C until further use.

Fab-RNA binding affinity measurements.

The binding constants of the HCV IRES and JIIIabc constructs to our identified binders 

were determined by nitrocellulose filter binding assay as reported previously.38 Briefly, ~30 

pmol of RNA was 5’−32P radiolabeled and purified using size exclusion spin columns Micro 

Bio-Spin™ P-30 (Bio-Rad, www.bio-rad.com). A constant amount of radiolabeled RNA was 

incubated at 90°C for 1 minute and then at 50°C for 10 minutes in a binding buffer 

containing either 10 mM Tris-HCl (pH 7.4), 10 mM MgCl2 and 200 mM NaCl. The sample 

was cooled to room temperature for 10 minutes and incubated for 30 minutes with Fab 

HCV2 or HCV3 ranging from 2 nM to 2 μM in a final volume of 40 μL. The Bio-Dot 

apparatus from Bio-Rad was assembled by placing a BA85 nitrocellulose filter (Whatman, 

www.gelifesciences.com) at the top and Hybond filter at the bottom (Amersham, 

www.gelifesciences.com) and wells were pre-equilibrated with 100 μL of the binding buffer. 

The Fab-RNA complex was applied and washed 2 times with 100 μl of the same buffer at a 

time. Both filters were air dried, exposed to Phosphor-Imager screens, scanned with a 

Typhoon Trio imager (GE Healthcare) and the amount of RNA retained in each of the filters 

was quantified by using Image Quant software (Molecular Dynamics). The dissociation 

constants were calculated by fitting the data of fraction of RNA retained in the nitrocellulose 

membrane versus the concentration of the Fab to the equation: F = F0 + Fmax
Fab

Kd + Fab , 

where F represent the fraction of bound RNA at a given concentration of the Fab, Kd is the 
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dissociation constant and F0 and Fmax are the minimum and maximum fractions of the 

bound RNA, respectively.

Crystallization.

An aliquot of RNA sample was refolded in a folding buffer containing 10 mM Tris-HCl (pH 

7.4), 10 mM MgCl2 and 200 mM NaCl. For refolding, RNA was heated at 90°C for 1 

minute in water, added appropriate volume of 10x folding buffer and then incubated at 50°C 

for 10 minutes in 1x folding buffer followed by incubation at room temperature for 10 

minutes and in ice for 5 minutes. The refolded RNA was then incubated with 1.1 equivalents 

of the Fab and concentrated to 5 mg/ml using 10 kDa-cutoff, Amicon Ultra-15 column 

(www.emdmillipore.com). The formation of Fab–RNA complex was confirmed by native 

polyacrylamide gel electrophoresis (nPAGE). To decrease the number of nucleation events, 

Fab-RNA complexes were then passed through 0.2 μm cutoff, Millipore centrifugal filter 

units (www.emdmillipore.com). A Mosquito liquid handling robot (TTP Labtech, 

ttplabtech.com) was used to set up high-throughput hanging-drop vapor-diffusion 

crystallization screens at room temperature using commercially available screening kits from 

Hampton Research and Jena Bioscience. Crystals appeared and grew to full size within a 

week at 22 °C. Select conditions were further optimized for pH, precipitant and salt 

concentration to grow larger crystals using the hanging drop vapor diffusion method. For 

cryoprotection, drops containing suitable crystals were brought to 10% glycerol, keeping all 

other compositions same. Crystals were immediately flash-frozen in liquid nitrogen after 

being fished out from the drops and taken to Argonne National Laboratory for collecting the 

X-ray diffraction data. The crystals that were grown in 0.2 M ammonium acetate, 0.1 M bis-

tris pH 5.5, 45% 2-methyl-2,4-pentanediaol at 22°C for JIIIabc – HCV2, and 0.1 M HEPES 

pH 7.5, 1.4 M sodium citrate tribasic dihydrate at 22°C for JIIIabc – HCV3 diffracted to 

1.81-Å and 2.75-Å resolution, respectively.

Structural data collection, processing and analysis.

The X-ray diffraction data sets were collected at the Advanced Photon Source NE-CAT 

section beamline 24-ID-C and 24-ID-E. All the datasets were then integrated and scaled 

using its on-site RAPD automated programs (https://rapd.nec.aps.anl.gov/rapd/). Initial 

phases were obtained by molecular replacement with the Fab portion of the previously 

reported structure of Fab HAVx in complex with domain V from the hepatitis A virus IRES 

(PDB code: 6MWN)42 as the search model using Phaser on Phenix.62 Except for the CDRs, 

sequences of Fab HCV2, HCV3 and HAVx are identical. Iterative model building and 

refinement was performed by using COOT,63 and Phenix package.62 RNA was built 

unambiguously by modeling the individual nucleotides into the electron density map 

obtained from the molecular replacement. During the refinement, default NCS option in 

Phenix was selected. Most of the water molecules were automatically determined by Phenix 

during refinement. However, some water molecules were added manually for the positive 

electron density in the map based on their possibility to form hydrogen bonds with protein or 

RNA residues. Solvent-accessible surface area and area of interaction were calculated using 

PDBePISA (http://www.ebi.ac.uk/pdbe/pisa/).46 All structure related figures were made in 

PyMOL (Schrodinger, www.pymol.org) and figure labels were edited in CorelDraw (Corel 

Corporation, http://www.corel.com).
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Translation inhibition assay.

The DNA template for the in vitro translation assay (see Fig. 4a) was generated via PCR 

amplification of pFR_HCV_xb plasmid, which was a gift from Phillip A. Sharp (Addgene 

plasmid # 11510, http://www.addgene.org/11510/).64 The rabbit reticulocyte lysate-based 

translation assay was performed by using a coupled transcription-translation kit (TnT® 

Coupled Reticulocyte Lysate Systems, www.promega.com) according to the manufacturer’s 

protocol. About 10 μg of the DNA template was used and the reaction was carried out with 

or without the Fab in a final volume of 50 μL for 2 hours at 30°C. After translation, the 

expression levels of the luciferases were detected by measuring the luminescence signals 

(Synergy Neo2 plate reader, www.biotek.com), which were obtained by using a dual-

luciferase reporter assay kit (Dual-Luciferase® Reporter Assay System, www.promega.com) 

according to the manufacturer’s protocol. The luciferase activity measurements were 

performed for a 10 μL of the reaction aliquot and each reaction sample was measured in 

triplicate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overall structures of the HCV IRES JIIIabc in complex with Fabs HCV2 and HCV3. (a) 

Secondary structure of HCV IRES (genotype 1b) showing domains I – IV according to 

Brown et al.14 and Honda et al.16 Dotted box highlights the JIIIabc. Numbering depicts the 

approximate nucleotide position (b) The JIIIabc crystallization construct. Nucleotides in 

gray represent mutations or insertions compared to the wild-type (genotype 1b)13,15 

sequence. (c) Crystal structure of the JIIIabc – HCV2 and (d) JIIIabc – HCV3 complexes 

solved at 1.81-Å and 2.75-Å resolution, respectively. (e) Superposition of the JIIIabc 

structures from JIIIabc – HCV2 and JIIIabc – HCV3 complexes. The JIIIabc structure is 

almost identical in both complexes; the HCV2 and HCV3 Fabs bind to the same region of 

the RNA with different orientations. Figures b-d and the corresponding labels are colored 

analogously for facile comparison.
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Fig. 2. 
Structural features of the JIIIabc four-way junction. (a) Overall architecture of the JIIIabc 

based on the crystal structure of JIIIabc – HCV2 complex. (b) Secondary structure of the 

JIIIabc derived from the crystal structure. The dotted lines represent the tertiary interactions. 

(c) Structural features of the JIIIabc four-way junction. (d-i) Specific interactions between 

the nucleotides organizing the four-way junction. The dashed lines reflect heteroatoms 

within hydrogen bonding distance. Blue mesh represents the 2|Fo| - |Fc| electron density map 

at 1σ contour level and carve radius 1.8 Å. All figures and the labels are colored analogously 

for facile comparison.
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Fig. 3. 
Structural features of the Fab-RNA binding interfaces. (a) Overall view of the binding 

interface of JIIIabc bound to Fab HCV2 or (b) Fab HCV3. (c) RNA surface within the 

binding interface, highlighting the common and specific regions recognized by Fabs HCV2 

and HCV3. (d) Surface of the RNA interface and the Fab residues involved in binding 

interactions for JIIIabc – HCV2 and (e) for JIIIabc – HCV3 complexes. (f-m) Interactions 

between the RNA and the Fab CDR residues for JIIIabc – HCV2 (f-i) and JIIIabc – HCV3 

complexes (j-m). Orange-red spheres represent water molecules and the dashed lines reflect 

heteroatoms within hydrogen bonding distance. Blue mesh represents the 2|Fo| - |Fc| electron 

density map at 1σ contour level and carve radius 1.8 Å. All figures and the labels are colored 

analogously for facile comparison.
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Fig. 4. 
Comparison of binding interfaces of JIIIabc – HCV2, JIIIabc – HCV3 and JIIIabc – eS27 
complexes. (a) Superposition of the JIIIabc portion of the JIIIabc – HCV2, JIIIabc – HCV3 
(crystal structures) and JIIIabc – eS27 (3.9-Å cryo-EM model, PDB code: 5A2Q)25 

complexes. Molecular surfaces of the Fabs HCV2, HCV3 and protein eS27 are shown in 
orange, purple and lime-green colors. (b-d) Overall view of the binding interfaces for JIIIabc 
– eS27 (b), JIIIabc – HCV2 (c) and JIIIabc – HCV3 (d) complexes, highlighting that these 
proteins recognize a common epitope (IIIa and IIIc sub-domains) within the JIIIabc RNA. 
X, Y and Z in eS27 molecular surface are arbitrary assignments. (e) Molecular surface of the 
JIIIabc interface (3.9-Å cryo-EM model) and the eS27 residues that are involved in binding 
interactions with the RNA epitope. (f-h) Specific interactions between the RNA epitope and 
the eS27 residues. The dashed lines reflect hetero-atoms within hydrogen bonding distance. 
(i-j) Molecular surfaces of the JIIIabc showing a common and different recognition surfaces 
within the RNA epitopes by HCV2 and eS27 (i) and by eS27 and HCV3 (j). Unless 
specified, all figures and the labels are colored analogously for facile comparison.
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Fig. 5. 
Inhibition of HCV IRES-mediated in vitro translation by Fabs HCV2 and HCV3 in a rabbit 

reticulocyte lysate-based assay. (a) Schematic of the dsDNA template used for generating 

the corresponding bicistronic mRNA for translation via a T7 promotor-controlled 

transcription. (b) Normalized luminescence corresponding to the expression of Firefly (red 

bars) and Renilla (blue bars) luciferases in the absence and presence of 5 μM of Fab HCV2, 

HCV3 or BRG. Fab BRG possesses the same scaffold domains as Fabs HCV2 and HCV3 

but does not bind to the HCV IRES. (c) Normalized luminescence corresponding to the 

expression of Renilla luciferase with varying concentration of Fab HCV2 (solid circles) and 

HCV3 (hollow circles). Error bars in b and c represent the standard deviations from three 

independent experiments.
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Table 1:

X-ray crystallography data collection and structure refinement statistics.

Data collection JIIIabc – HCV2 complex JIIIabc – HCV3 complex

Space group C 1 2 1 P 43

Resolution (Å) 61.36 – 1.807 (1.872 – 1.807) 173.29 – 2.75 (2.848 – 2.75)

Cell dimensions

 a, b, c (Å)
α, β, γ (°)

49.705, 161.223, 96.978
90, 102.658, 90

173.289, 173.289, 140.49
90, 90, 90

Rmerge (%) 4.042 (113.4) 14.75 (107.2)

I/σI 15.66 (0.92) 9.31 (1.11)

CC1/2 0.999 (0.481) 0.965 (0.399)

Completeness (%) 98.73 (94.58) 98.54 (99.03)

Redundancy 3.9 (3.7) 4.7 (4.8)

Refinement

No. reflections 67010 (6420) 106172 (10622)

Rwork/Rfree (%) 17.35/20.89 18.60/22.22

R.M.S deviations

 Bond angles (°) 0.970 1.06

 Bond length (Å) 0.006 0.008

Average B-factor, all atoms (Å2) 55.0 76.00

Ramachandran plot of protein residues

 Preferred regions (%) 96.79 96.00

 Allowed regions (%) 3.21 4.00

Number of residues

 RNA 68 68

 Protein 440 437

Values in the parentheses are for the highest resolution shell
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