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MACHINE LEARNING, COMPUTATIONAL PATHOLOGY, AND BIOPHYSICAL IMAGING
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Emerging data suggest that type 1 diabetes affects not only the b-cellecontaining islets of Langerhans, but
also the surrounding exocrine compartment. Using digital pathology, machine learning algorithms were
applied to high-resolution, whole-slide images of human pancreata to determine whether the tissue
composition in individuals with or at risk for type 1 diabetes differs from those without diabetes. Transplant-
grade pancreata from organ donors were evaluated from 16 nondiabetic autoantibody-negative controls, 8
nondiabetic autoantibody-positive subjects with increased type 1 diabetes risk, and 19 persons with type 1
diabetes (0 to 12 years’ duration). HALO image analysis algorithms were implemented to compare archi-
tecture of the main pancreatic duct as well as cell size, density, and area of acinar, endocrine, ductal, and
other nonendocrine, nonexocrine tissues. Type 1 diabetes was found to affect exocrine area, acinar cell
density, and size, whereas the type of difference correlated with the presence or absence of insulin-positive
cells remaining in the pancreas. These changes were not observed before disease onset, as indicated by
modeling cross-sectional data from pancreata of autoantibody-positive subjects and those diagnosed with
type 1 diabetes. These data provide novel insights into anatomic differences in type 1 diabetes pancreata
and demonstrate that machine learning can be adapted for the evaluation of disease processes from cross-
sectional data sets. (Am J Pathol 2021, 191: 454e462; https://doi.org/10.1016/j.ajpath.2020.11.010)
Once thought a disease primarily affecting insulin-producing b
cells, emerging evidence suggests that type 1 diabetes affects
both the endocrine and exocrine pancreatic compartments. The
exocrine pancreas, which comprises�80% of the organ’s mass,
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is responsible for the synthesis and secretion of digestive en-
zymes that flow via a series of converging ducts to the main
pancreatic duct, and ultimately to the duodenum, where they aid
in fooddigestion.1,2Recent studies highlighting thepotential role
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Machine learning in digital pathology
of the exocrine pancreas in type 1 diabetes have found the
following: i) pancreata are up to 50% smaller (as measured by
weight or volume) in persons with type 1 diabetes, approxi-
mately 25% smaller in nondiabetic islet autoantibody positive
(AAbþ) individuals, and about 10% smaller in autoantibody
negative (AAbe) first-degree relatives of type 1 diabetes patients
who share a genetic burden for the disease, compared with
nondiabetic AAbe controls3e7; ii) lower serum trypsinogen
levels in AAbþ subjects who have stage 1 to 2 preclinical type 1
diabetes8; iii) higher complement deposition throughout the
vessels and ducts of the exocrine region in type 1 diabetes pan-
creata9; iv) lower exocrine enzyme levels, assessed from stool
samples from patients with type 1 diabetes10; v) higher immune
cell infiltration within the acinar region of the exocrine pancreas
from persons with type 1 diabetes11; and vi) loss of peri-islet
amylase-negative cell clusters in type 1 diabetes pancreata.12

Given that the exocrine pancreas constitutes the largest portion
of cell mass, we hypothesized that the aforementioned findings
on pancreatic weight/volumemight be attributable to changes or
abnormalities in themain pancreatic duct or that fewer or smaller
acinar cells would exist in the pancreas from those with or at
increased risk for type 1 diabetes. Indeed,Wright et al13 recently
reported that acinar cells within pancreata from persons with
long-duration type 1 diabetes were fewer in number but com-
parable in size to those of age-matched controls. However, more
importantly, a quantitative description of exocrine and ductal
pancreas tissues before and after type 1 diabetes onset is lacking.

Digital pathology is a rapidly evolving area of clinical and
investigative pathology. For many diseases, important clues
to pathogenesis are embedded in microscopic tissue sections.
However, a reoccurring issue in the assessment of pathology
specimens is related to its subjective nature, leading to high
interobserver variability.14 Moreover, subtle changes in
measurable parameters that can potentially enhance tissue
characterization are not always apparent or are difficult to
accurately quantify for human visual inspections.15 Recent
advances in a computer-aided examination of tissue sections
offer accuracy, efficiency, and reproducibility of extracted
information.16,17 The development of machine and deep
learning algorithms has enabled the characterization of
changes in tissue microenvironment that could play a critical
role in disease pathogenesis.18 Hence, in this study, the state-
of-the-art HALO quantitative image analysis platform
version 2.1 (Indica Lab, Albuquerque, NM) with built-in
machine learning algorithms was used to quantify the pro-
portion of endocrine, acinar, and ductal/other (nonendocrine,
nonexocrine tissues) tissue areas, as well as acinar and
endocrine cell density and size, in subjects with or at risk for
type 1 diabetes, as well as in controls without type 1 diabetes.

Materials and Methods

Donors and Samples

Pancreata from cadaveric organ donors were recovered ac-
cording to federal guidelines and as approved by theUniversity
The American Journal of Pathology - ajp.amjpathol.org
of Florida Institutional Review Board. Pancreata were pro-
cessed by the Network for Pancreatic Organ Donors with
Diabetes, as previously described.19,20 Organ Procurement
Organizations partnering with the Network for Pancreatic
Organ Donors with Diabetes to provide research resources are
listed (http://www.jdrfnpod.org//for-partners/npod-partners,
last accessed November 12, 2020). A total of 16 nondiabetic
AAbe persons, 8 nondiabetic AAbþ persons with increased
type 1 diabetes risk, and 19 type 1 diabetes donors were
evaluated, and statistical testing to verify matching was
performed (Supplemental Tables S1, S2, and S3). Herein,
increased risk is defined as the presence of�1 islet AAb in the
absence of the disease, which is considered preestage 1 to
stage 2 preclinical type 1 diabetes.21 An extensive body of
literature supports the notion that fewer single
AAbþ individuals will develop the disease than those with�2
AAbs, although the level of risk is largely determined by
number and type of AAbs.22e24

Histology and Immunohistochemistry

Each pancreas was divided into three regions: pancreatic head
(PH), pancreatic body (PB), and pancreatic tail (PT); each re-
gion was sectioned into sagittal blocks, followed by process-
ing.20 Paraffin sections (4 mm thick) from one representative
tissue block within each region were stained with hematoxylin
and eosin or by immunohistochemistry12 using the following
primary antibodies: rabbit monoclonal anti-insulin (RRID:
AB_2716761; 1:2000 dilution; Abcam, Cambridge, MA) and
mouse monoclonal anti-glucagon (RRID: AB_297642;
1:1000 dilution; Abcam). Stained tissue sections were digi-
tized at�20 magnification using an Aperio CS2 slide scanner
(Leica Biosystems, Inc., Wetzlar, Germany) (Figure 1A).

Morphometric Analysis of Pancreatic Tissue
Composition

The digitized tissue sections were analyzed using the HALO
version 2.1 quantitative image analysis platform. The anno-
tation pen tool was used to outline the tissue section to
determine total tissue area (mm2). Using color, texture, and
contextual features, the machine learning random forest tis-
sue classifier algorithm was trained to recognize and segre-
gate the following tissue types: i) endocrine, all cells staining
positive for insulin or glucagon; ii) acinar, insulin-negative,
glucagon-negative tissue, excluding regions classified as
ductal/other; and iii) ductal/other, morphologically identifi-
able ducts, vessels, nerves, fibrotic tissue, and adipose tissue
(Figure 1B). The tissue classifier was then applied to calcu-
late areas of all tissue types in each pancreatic region. The
proportional area of each tissue type (percentage) was
calculated as the tissue type area divided by total tissue area.
The Cytonuclear Algorithm (Indica Lab) version 1.6 was
then used for calculating average tissue type cell numbers and
size for each donor and pancreas region. The algorithm
threshold parameters were set to detect all nuclei and to
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discriminate endocrine cells on the basis of their immuno-
histochemistry immunopositivity. The algorithm was applied
across all images, and each image was automatically quan-
tified (Figure 1C). Total cell number and average cell area
(size) were reported for both endocrine and acinar tissue. Cell
size was ranked into 20 groups, which were binned into three
categories for visualization purposes only. Endocrine and
acinar cell densities were calculated as cell count in tissue
type/total class area measured.

Main Pancreatic Duct Quantification

The HALO annotation pen tool was used to outline the main
pancreatic duct on hematoxylin and eosin images for internal
wall (bounded by the ductal epithelium) and external wall
(formed by bordering acinar cells). Total area was measured
as the area within the external wall, including luminal space.
The thickness was estimated as the distances between in-
ternal and external walls. Measurements (n Z 9 to 19 per
duct) were collected using a ruler tool at evenly spaced in-
tervals around the entire duct lumen (Figure 2A).

Statistical Analysis

Pancreas weights, defined as a percentage of whole-body
weight (termed relative pancreatic weight), were calculated
as previously described.5 Because pancreas weight has been
shown to mature during early postnatal stages in life,25 but
generally plateau by the age of 20 years,26 the analysis of
pancreas weight was stratified by age as follows: �1 year of
age was classified as developmental or neonatal, >1
and �12 years of age was classified as childhood, >12 to
�18 years of age was classified as adolescence, and >18
years of age was classified as adulthood. This grouping is
consistent with previously described quantified b-cell for-
mation in stages throughout life.27 Generalized linear mixed
effect models were used to evaluate differences in relative
pancreatic weight by donor group or length of diabetes
duration (subgroup analysis).28 The Kenward-Roger method
was used to compute denominator degrees of freedom in t
and f tests,29 and different intercepts were fit for each in-
dividual to address subject-to-subject variation.

For generalized linear mixed effect models involving
independent variables related to endocrine, acinar, ductal,
and main duct end points, differences by pancreas region
and donor group, and the interaction of the two were eval-
uated. Pancreas region was treated as a repeated measure-
ment variable, and different intercepts were fit for each
individual. Homogeneous and heterogeneous covariance
structures (eight total) were examined for each model
generated; final selection was based on the use of Akaike
and Bayesian Information Criteria.

For all model-based data, point estimates and 95% CIs of
least square mean differences between groups or pancreas
region were obtained; adjustments to P values and CIs for
individual comparisons were made using the method of
456
Tukey-Kramer. Interactions were reported if found to be
significant, and simple main effects included. All P values are
two sided and statistically significant if P < 0.05, unless
otherwise noted. Statistical analyses were performed using
SAS (SAS Insitute Inc., Cary, NC) version 9.4 TS Level
1M1. Jupyter Notebooks were prepared to enable sharing of
data and reproduction of all results and figures, available on
GitHub through Zenodo (https://doi.org/10.5281/zenodo.
4269672, last accessed November 12, 2020).

Results

Pancreatic Duct Anatomy in Type 1 Diabetes

The main pancreatic duct was assessed in the PH, PB, and PT
regions in nondiabetic AAbe controls and type 1 diabetes
donors, with or without insulin-containing islets (insulin-
positive and insulin-negative, respectively) (Figure 2A). No
statistically significant differences were observed in the wall
thickness or area of the main pancreatic duct by disease status
(overall P Z 0.8109 and P Z 0.6625, respectively). How-
ever, differences in both wall thickness (overall P < 0.0001)
(Figure 2B) and area (overall P < 0.0001) (Figure 2C) were
observed by pancreas region. Specifically, the duct area was
smaller (D Z �0.4772; 95% CI, �0.7357 to �0.2188;
P Z 0.0002) and thinner (D Z �54.5732; 95% CI,
�82.8027 to �26.3436; PZ 0.0001) in the PT versus that in
PB. No interactions between disease status and pancreas re-
gion were noted in the area (P Z 0.9725) or wall thickness
(P Z 0.8143).

Compositional Analysis of Type 1 Diabetes and
Nondiabetic Pancreata

Using a tissue classifier, the proportions of endocrine, acinar,
and ductal/other (vessels, nerves, adipose tissue, and fibrotic
tissue in the pancreas) tissue areas were measured in the PH,
PB, and PT regions (Figure 1B). Differences by disease status
were observed in endocrine (overall P < 0.0001), acinar
(overall P Z 0.0248), and ductal/other (P Z 0.0037) tissue
area (Figure 3, A and C). Endocrine area was smaller in type 1
diabetes subjects with residual insulin-positive islets (average
disease duration, 2.3 � 2.6 years) versus either nondiabetic
AAbe (D Z �1.4082; 95% CI, �1.9761 to �0.8403;
P < 0.0001) or AAbþ donors (D Z �0.8883; 95% CI,
�1.5398 to�0.2368; PZ 0.0042). It was also smaller in type
1 diabetes insulin-negative versus either nondiabetic AAbe

(DZ�1.4396; 95%CI,�2.0743 to�0.8048; P< 0.0001) or
AAbþ donors (DZ�0.9197; 95% CI,�1.6302 to�0.2091;
P Z 0.0069). Acinar area was smaller in type 1 diabetes
insulin-negative versus either nondiabetic AAbe

(DZ�5.9737; 95% CI,�11.2450 to�0.7023; PZ 0.0212)
or AAbþ donors (D Z �5.9227; 95% CI, �11.8313 to
�0.01401;PZ 0.0493). Ductal/other tissue area was larger in
type 1 diabetes insulin-negative versus either nondiabetic
AAbe (DZ 7.4160; 95% CI, 2.1978e11.3440; PZ 0.0027)
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Tissue segmentation and cell analysis using two machine learning algorithms. A: Each pancreas from no diabetes autoantibody negative (ND); no
diabetes autoantibody positive (AAbþ), and type 1 diabetes (T1D) organ donors was sectioned into sagittal blocks, followed by processing into formalin-fixed,
paraffin-embedded tissue blocks. Paraffin sections from one representative tissue block within each pancreatic region were stained with hematoxylin and eosin
or by immunohistochemistry and digitized by the slide scanner to obtain whole-slide images. B: Three types of annotation classes were generated for training
the tissue classifier algorithm to recognize and segment pancreatic tissue into three tissue types: endocrine (red), acinar (yellow), and duct and other
nonendocrine/nonexocrine (green). The cytonuclear algorithm parameters were set to detect all nuclei on the image and discriminated endocrine cells on the
basis of immunohistochemistry positivity. C: Once trained, both algorithms were then applied in a two-step manner across all images, and each image was
automatically quantified. Scale bars: 50 mm (B); 5 mm (C).

Machine learning in digital pathology
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Figure 2 No observed effects of type 1 diabetes on the main pancreatic duct anatomy. A: The main pancreatic duct was identified (top panel) throughout
the organ in the head, body, and tail, and measurements were taken (bottom panel). Boxed area is shown at higher magnification below. B and C: Green
denotes luminal wall trace, yellow indicates duct perimeter wall, and lines between them indicate duct thickness (B). The duct area is defined as luminal space
plus duct wall (C). Green indicates those without type 1 diabetes who were autoantibody negative (nondiabetic AAbe); purple, those with type 1 diabetes with
insulin-positive islets remaining in the pancreas (T1D INSþ); and pink, those with type 1 diabetes without insulin-positive islets remaining in the pancreas
(T1D INSe). See Results for statistically significant differences between disease groups. n Z 16 for nondiabetic AAbe (B and C); n Z 12 for T1D INSþ (B and
C); n Z 4 for T1D INSe (B and C). ***P < 0.001. Scale bars: 5 mm (A, top panel); 500 mm (A, bottom panel).

Tang et al
or AAbþ donors (D Z 6.8413; 95% CI, 0.9903e12.6924;
P Z 0.0166) (Figure 3, A and B).

Finally, the relative weights of endocrine, exocrine, and
ductal/other tissues were calculated for each organ as whole
pancreas weight multiplied by the ratio of each tissue type to
total tissue area, and divided by the whole-body weight of
that individual. The relative weights of pancreatic endocrine
and acinar tissues differed across donor groups (overall
P < 0.0001 and PZ 0.0308, respectively), but not of ductal/
other tissue (overall P Z 0.2170) (Figure 3B). Multiple
comparisons test revealed that the percentage of endocrine
tissue was smaller in type 1 diabetes insulin-negative versus
nondiabetic AAbe (D Z �0.0016; 95% CI, �0.0022 to
�0.0001; P < 0.0001) or AAbþ donors (DZ �0.0011; 95%
CI, �0.0018 to �0.0004; P Z 0.0009), and in type 1 dia-
betes insulin-positive versus nondiabetic AAbe

(D Z �0.0016; 95% CI, �0.0022 to �0.0010; P < 0.0001)
or AAbþ individuals (D Z �0.0011; 95% CI, �0.0018 to
�0.0005; P Z 0.0004). No other individual comparisons
were significant (after multiple comparison correction) for the
acinar or ductal/other tissue types across donor groups.

Differences between regions of the pancreas were observed
in endocrine (overall P < 0.0001) and ductal/other tissue area
(overall P Z 0.0113), regardless of donor group
(Supplemental Figure S1). Endocrine area was greater in the
PT versus either PB (D Z 0.7087; 95% CI, 0.4751e0.9424;
P < 0.0001) or PH region (D Z 0.8687; 95% CI,
0.6343e1.1030;P< 0.0001). Ductal/other areawas smaller in
the PT versus PH (D Z �3.0559; 95% CI, �5.4131 to
�0.6987; PZ 0.0086) region.

Morphologic Changes in the Pancreata of Donors with
Type 1 Diabetes

For tissues with round-like cell morphology (ie, endocrine and
acinar), cell density and size were evaluated (Figure 4). Dif-
ferences in endocrine and acinar cell density by disease status
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(overall P < 0.0001 and P Z 0.0318, respectively), but not
pancreas region (overall P Z 0.3133 and P Z 0.2222,
respectively), were observed. Endocrine tissue was denser in
type 1 diabetes insulin-positive versus either nondiabetic
AAbe (DZ 2004.07; 95%CI, 884.93e3123.21;PZ 0.0002)
or AAbþ donors (D Z 1726.96; 95% CI, 443.72e3010.20;
P Z 0.0048); it was also denser in type 1 diabetes insulin-
negative versus nondiabetic AAbe (D Z 1721.61; 95% CI,
470.82e2972.40; P Z 0.0038) or AAbþ individuals
(D Z 1444.50; 95% CI, 44.9584e2844.04; P Z 0.0409)
(Figure 4A).Acinar tissuewas significantly denser in only type
1 diabetes insulin-positive versus nondiabetic AAbe donors
(D Z 1314.55; 95% CI, 123.16e2505.93; P Z 0.0259)
(Figure 4B). Likewise, variability in cell size was observed in
endocrine and acinar tissues. Endocrine cells were smaller in
type 1 diabetes insulin-positive versus either nondiabetic
AAbe (D Z �7.7155; 95% CI, �12.4897 to �2.9414;
P Z 0.0006) or AAbþ donors (D Z �6.1353; 95% CI,
�11.6089 to�0.6617; PZ 0.0230); they were also smaller in
type 1 diabetes insulin-negative versus nondiabetic AAbe

(DZ�6.7501; 95% CI,�12.0868 to�1.4135; PZ 0.0085)
individuals (Figure 4A). Acinar cells were smaller only in type
1 diabetes insulin-positive versus nondiabetic AAbe donors
(DZ�6.7935; 95% CI,�12.0564 to�1.5307; PZ 0.0071)
(Figure 4B).
Discussion

Findings that AAbþ individuals at risk for type 1 diabetes
and those with new-onset or established disease have
smaller relative pancreatic weight and relative pancreas
volume3e7 (Supplemental Figure S2), taken together with
lower serum levels of trypsinogen,8 support the hypothesis
that exocrine pancreas mass and function may be subclini-
cally altered during the preclinical phase of type 1 diabetes
pathogenesis.
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Figure 3 Compositional analysis of type 1 and nondiabetic pancreata. Tissue types were identified, then quantified as a percentage of total tissue area or
body weight. A and B: For tissue type area (A) and weight (B), green represents nondiabetic autoantibody negative (ND AAbe); orange, nondiabetic
autoantibody positive (ND AAbþ); purple, type 1 diabetes with insulin-positive islets (T1D INSþ); and pink, type 1 diabetes without insulin-positive islets (T1D
INSe). C: Images of pancreatic tissue stained for hematoxylin and eosin, insulin, glucagon, and trichrome from the tail region of Network for Pancreatic Organ
Donors with Diabetes Case 6237, an 18-year-old white female with type 1 diabetes for 12 years at the time of death. Islets observed in ductal and other
nonendocrine/nonexocrine tissue were devoid of contact with acinar cells. Individual differences are noted. nZ 14 ND AAbe (A); nZ 12 ND AAbe (B); nZ 3
single ND AAbþ (A); n Z 5 double ND AAbþ (A); n Z 8 total ND AAbþ (A); n Z 2 single ND AAbþ (B); n Z 5 double ND AAbþ (B); n Z 7 total ND AAbþ (B);
nZ 10 T1D INSþ (A); nZ 8 T1D INSþ (B); nZ 7 T1D INSe (A and B). *P < 0.05, **P < 0.01, ***P < 0.001, and **** P < 0.0001. Scale bars: 2 mm (C, top
row); 100 mm (C, bottom row).

Machine learning in digital pathology
Recent advances in whole-slide imaging technology,
development of machine learning algorithms, and
computer-based specialized image analysis software allow
automated discrimination and measurements of cellular
and tissue components on the digital images of tissue
samples. An automated analysis of digitized tissue section
generates highly reproducible quantitative tissue-derived
data sets and has an advantage over manual visual quan-
tification because of significantly reduced human bias,
making it the method of choice for the evaluation of
pathologic specimens.18 Thus, this study employed the
state-of-the-art HALO image analysis platform with built-
in machine learning algorithms to assess whether changes
in pancreas mass and exocrine function in subjects with
type 1 diabetes might be attributable to abnormalities
affecting the main pancreatic duct and/or smaller or fewer
acinar cells in pancreata from subjects with type 1 diabetes
and nondiabetic AAbþ individuals at increased risk of
disease.
The American Journal of Pathology - ajp.amjpathol.org
The main pancreatic duct was thinner and occupied
smaller tissue area within the cross-section from the PT
versus PB region, likely reflective of normal variation based
on anatomic location30; however, the main pancreatic duct
area in type 1 diabetes donors was comparable to nondia-
betic individuals. Dilated duct has been reported in patients
with insulin-dependent diabetes.31 In our study, the main
pancreatic duct area was unaltered in subjects with type 1
diabetes, and the thickness of the main pancreatic duct wall
was similar across all study groups.

Tissues were classified as endocrine, acinar, or duct/other
(nonendocrine/nonexocrine) areas, and cell size and density
of endocrine and acinar tissue within each pancreas region
were calculated. Endocrine tissue area was reduced, whereas
endocrine cell density was increased, in type 1 diabetes do-
nors compared with controls, regardless of the presence of
residual insulin-positive islets. Interestingly, in type 1 dia-
betes subjects with residual insulin-positive islets, the per-
centage of pancreas cross-sectional area corresponding to
459
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Figure 4 Morphologic changes in the pancreata of donors with type 1 diabetes. Cell size and density data were obtained from the head, body, and tail
regions of each pancreas for endocrine (A) and acinar (B) tissue types, then averaged and plotted for each individual. Cell size was ranked and binned into
three categories for visualization purposes only. Green represents nondiabetic autoantibody negative (ND AAb�); orange, nondiabetic autoantibody positive
(ND AAbþ); purple, type 1 diabetes with insulin-positive islets (T1D INSþ); and pink, type 1 diabetes without insulin-positive islets (T1D INS�). See Results for
additional details. Individual differences noted.n Z 14 ND AAbe (A and B); n Z 3 single ND AAbþ (A and B); n Z 5 double ND AAbþ (A and B); n Z 8 total
ND AAbþ (A and B); n Z 10 T1D INSþ (A and B); n Z 7 T1D INSe (A and B).*P < 0.05, **P < 0.01, and ***P < 0.001.
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acinar tissue was similar to that in nondiabetic donors with or
without AAbs, but the acinar cell density was greater. In
humans, the sizes of acinar and b cells have been shown to
remain stable throughout postnatal life.32 Hence, the
observed reductions in acinar cell size could reflect anatomic
differences that may have existed before pathogenesis of the
disease, which possibly could have contributed to type 1
diabetes development. Nevertheless, in the current study, the
acinar cell size was comparable between nondiabetic
AAbþ donors and nondiabetic AAbe donors, suggesting that
smaller acinar cells may not necessarily precede disease
onset, but result from factors associated with type 1 dia-
betes.33 Indeed, factors such as a progressive loss of trophic
effect of insulin on acinar cells due to loss of functional b-cell
mass,34 increased presence of proinflammatory cytokines and
inflammatory cell infiltrate in exocrine pancreas,11 persistent
endoplasmic reticulum stress, and altered unfolded protein
response in endocrine and exocrine pancreas35,36 generate
prolonged cell stress, possibly forcing cells to adapt by
changing their size.37 Alternatively, different mechanisms
could potentially contribute first to smaller pancreas size and
reduced exocrine function before clinical diagnosis and, then,
smaller acinar cell size following disease onset. In contrast, in
type 1 diabetes donors without residual insulin-positive islets,
the acinar cross-sectional tissue area was reduced, but that of
ducts, vessels, nerves, fibrotic tissue, and adipose tissue was
greater compared with that in nondiabetic AAbþ or AAbe

donors. Therefore, these findings confirm earlier observations
of extensive intralobular and perilobular fibrosis and severe
acinar atrophy in the pancreas of patients with long-standing
type 1 diabetes.38,39 The data also show that the formation of
excess fibrous tissue coincides with acinar tissue loss, sug-
gesting that complete loss of insulin accompanied by long-
standing autoimmunity promote structural alterations within
460
the exocrine compartment, leading to the changes in organ
tissue composition in type 1 diabetes. Although the algorithm
employed in this study cannot differentiate between acinar
and immune cells, the reported findings are unlikely to be
altered by the presence of immune cell infiltration in the
exocrine pancreas tissue, which has been reported to similarly
affect insulin-containing and insulin-negative pancreata from
individuals with type 1 diabetes.11

The data reported herein provide important insights into
anatomic differences within the human pancreas at various
stages of type 1 diabetes and further emphasize interactions
between endocrine and exocrine cells during disease path-
ogenesis. Although the previous observations of reduced
organ mass and exocrine function before and following type
1 diabetes onset3e8 suggest that such variations could
conceivably precede diagnosis, the current findings support
the notion that the factors associated with type 1 diabetes
pathogenesis have an influence on the exocrine compart-
ment, and possibly stipulate the multifactorial etiology of
diabetic pancreatic atrophy. Further research is needed to
elucidate the events leading to whole-organ defects and their
possible role in potentiating type 1 diabetes progression.
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