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Abstract

Aim: Polymorphous adenocarcinoma (PAC) usually follows an indolent course, but some cases 

may display recurrences and high-grade features. The genetic events associated with recurrences 

and high-grade versions are yet to be defined. Our aim was to determine the genetic underpinning 

of recurrent PACs of the salivary gland and the repertoire of somatic genetic alterations in cases 

with high-grade histology.

Methods and Results: Four PACs from three patients, including one case with matching 

primary and recurrent tumors, one de novo high-grade PAC, and a PAC that transformed to a high-

grade tumor following multiple recurrences, were subjected to targeted (MSK-IMPACT) or whole-

exome sequencing (WES). Both matching primary and recurrent tumor as well as the de novo 
high-grade PAC harbored clonal PRKD1 E710D hotspot mutations, whereas the PAC that 

underwent high-grade transformation upon recurrence, which was wild-type for PRKD1, harbored 

a PRKD2 rearrangement. The PACs analyzed here also harbored mutations targeting cancer genes 

such as PIK3CA, SETD2, ARID1A and NOTCH2. A clonal decomposition analysis of the 

matching primary and recurrent PACs revealed that a minor subclone from the primary tumor 

became dominant in the recurrent tumor following a clonal selection evolutionary pattern.
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Conclusions: Our findings demonstrate that recurrent and high-grade PACs are underpinned by 

PRKD1 E710D hotspot mutations or PRKD2 rearrangements, and that recurrences of PACs may 

stem from the selection of preexisting subclones in the primary tumor.
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Polymorphous adenocarcinoma; PRKD1; PRKD2; PRKD3; next generation sequencing; whole-
exome sequencing

INTRODUCTION

Polymorphous adenocarcinoma (PAC), previously known as polymorphous low-grade 

adenocarcinoma, was originally described as an infiltrative tumor with a variety of 

architectural patterns and tumor cells usually showing bland nuclei and scanty to moderate 

cytoplasm 1. Although the majority of PACs follow an indolent course, some tumors may 

display an aggressive behavior, high-grade transformation 2-6, local recurrences and rarely 

distant metastases 7. In addition, even high-grade variants of this lesion originally described 

as an ‘intrinsically’ low-grade tumor have been described 8.

We have previously shown that PACs are underpinned by pathognomonic PRKD1 E710D 

hotspot mutations 9. Rearrangements involving genes pertaining to the PRKD gene family, 

including PRKD1, PRKD2 and PRKD3, have been described in cribriform adenocarcinoma 

of the minor salivary glands, a neoplastic entity closely related to PACs 10, and potentially in 

a subset of PACs lacking hotspot mutations affecting PRKD1 10, 11. Here, we sought to 

determine the repertoire of somatic genetic alterations of recurrent and/or high-grade PACs 

of the salivary glands.

MATERIALS AND METHODS

Cases

Slides and formalin-fixed paraffin-embedded (FFPE) tissue blocks were retrieved from the 

archives of the Department of Pathology of University of Pittsburgh Medical Center 

Presbyterian (UPMC; Pittsburgh, PA, USA) after approval by the institutional review board 

(IRB). Four PACs, pertaining to three patients were analyzed, including one matched 

primary tumor and its recurrence (RS1-T1, RS1-T2), one de novo high-grade tumor (RS2T) 

and one PAC that transformed to high-grade after multiple recurrences (RS3T), for which 

clinicopathologic features were previously reported prior to transformation 12. Matched 

normal tissue was available for the latter two cases. Samples were anonymized prior to 

analysis. All cases were reviewed by three pathologists specialized in head and neck 

pathology (RS, SC and NK), and were classified as PAC according to the criteria put 

forward by the World Health Organization (WHO)1. In brief, all tumors displayed 

architectural diversity and areas of cytonuclear uniformity with ovoid vesicular nuclei. All 

cases showed prominent S100 reactivity and variable (non-patterned) to negative p63 

expression. High-grade was defined by the presence of at least two of the following features: 

i) Areas that lost cytonuclear uniformity with anisomorphism and at least a 4:1 nuclear size 
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variability, with or without prominent nucleoli, ii) necrosis, and iii) mitotic rates greater than 

5 per 10 high power fields (HPF).

Microdissection and DNA extraction

Tumor tissue and normal tissue samples, when available, were microdissected from five 

consecutive 8 μm-thick formalin-fixed paraffin-embedded histological sections under a 

stereomicroscope (Olympus SZ61) to ensure a tumor cell content >80%, as previously 

described 13. DNA was extracted using the DNAeasy Blood and Tissue Kit (Qiagen) 

according to manufacturers’ instructions 14.

Massively parallel sequencing and bioinformatics analysis

DNA from tumor and matching normal tissue from RST2 and RST3 was subjected to whole 

exome sequencing (WES) as previously described 13, 14. For RS1-T1 and RS1-T2, DNA was 

not of sufficient yield and/or quality to perform WES; hence, these samples were subjected 

to targeted massively parallel sequencing using the Memorial Sloan Kettering Mutation 

Profiling of Actionable Cancer Targets (MSK-IMPACT) assay, which targets all exons and 

selected introns of 468 cancer genes as previously described 14-16. Analysis of sequencing 

data was performed as previously described 13, 14, 17. In brief, reads were aligned to the 

reference human genome GRCh37 using the Burrows-Wheeler Aligner (BWA, v0.7.15)18. 

Local realignment, duplicate removal and base quality recalibration were performed using 

the Genome Analysis Toolkit (GATK, v3.1.1)19. Somatic single nucleotide variants (SNVs) 

were detected by MuTect (v1.0)20, small insertions and deletions (indels) by Strelka 

(v2.0.15)21, VarScan 2 (v2.3.7)22, Lancet (v1.0.0)23 and Scalpel (v0.5.3)24. Copy number 

alterations (CNAs) and loss of heterozygosity (LOH) were defined using FACETS 25, as 

previously described 13, 14, 17. The cancer cell fraction (CCF) of each mutation was inferred 

using ABSOLUTE (v1.0.6)26, and mutation was classified as clonal if its probability of 

being clonal was >50% 27 or if the lower bound of the 95% confidence interval of its CCF 

was >90% 28, 29, as described 13, 14, 17. A combination of mutation function predictors 30 

was employed to define the potential functional impact of each missense SNV, as previously 

described 13. Mutation hotspots were assigned according to Chang et al. 31.

Fluorescence in situ hybridization (FISH)

FISH analysis for PRKD1, PRKD2 and PRKD3 was performed on 4-μm-thick FFPE 

sections using dual-color break-apart probes following validated protocols at the MSKCC’s 

Molecular Cytogenetics Core as previously described 32. The probe mix consisted of 

bacterial artificial chromosome (BAC) clones mapping to 5′ PRKD1 (RP11-269C4, 

RP11-777L23; red) and 3′ PRKD1 (RP11-684G15, RP11-942P15; green), BAC clones 

mapping to 5′ PRKD2 (RP11-846M4, RP11-611I8; red) and 3′ PRKD2 (RP11-194H9, 

RP11-210G11; green), and BAC clones mapping to 5′ PRKD3 (RP11-695L15, 

RP11-278G12; red) and 3’ PRKD3 (RP11-1130K21, RP11-142K18; green). A minimum of 

50 interphase nuclei were analyzed for PRKD1, PRKD2 or PRKD3 rearrangements. 

Samples were considered positive for rearrangement if separation of 5’ (red) and 3’ (green) 

signals (>2 signal width apart) was identified in >15% tumor cells.
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Clonal frequencies and phylogenetic tree construction

To estimate the clonal architecture and composition of the primary tumor (RS1-T1) and 

recurrent tumor (RS1-T2) of case RS1, mutant allelic fractions from all somatic mutations 

were adjusted for tumor cell content, ploidy, local copy number and sequencing errors using 

PyClone 33 as previously described 13. To convert the mutant allelic fraction measurements 

to estimates of clonal frequencies for both primary and recurrent tumors, we applied the 

Dirichlet process clustering model implemented in PyClone 33, that simultaneously 

estimates the genotype and clonal frequency given a list of somatic mutations and their local 

copy number. Purity and ploidy estimates, and modal copy number from ABSOLUTE 26 

were employed as the input data for PyClone analysis 33. Clustering was performed using 

“mpear” as implemented in PyClone 33. Maximum parsimony trees were generated as 

previously described 13. In brief, binary presence/absence matrices were built from the 

somatic genetic alterations including SNVs and indels within the clonally-related primary 

and recurrent PACs, and the trees were constructed as described by Murugaesu et al 34.

RESULTS

Cases

This study included tumors from three patients. The first case corresponds to a primary 

mixed patterned PAC (RS1-T1) of the right upper lip in an 82-year-old male patient, which 

recurred 28 months after the initial surgical treatment (RS1-T2). The primary and recurrent 

lesions displayed similar histologic features, showing various architectural patterns 

including tubulofascicular, glomerulopapillary and solid areas. Although the tumor cells 

were ovoid and vesicular, the solid areas displayed uniform nuclear enlargement, high 

mitotic rates (12 per 10 HPFs) and necrosis (Figures 1A and 1B). The remaining two cases 

analyzed here consisted of one de novo high-grade PAC and one PAC that transformed on 

recurrence. The de novo high-grade PAC (RS2T) originated in the palate of a 58-year-old 

male patient, and displayed glomerulopapillary-to-solid growth with considerable nuclear 

size variation and an elevated mitotic rate (8 per 10 HPFs; Figure 1C). The recurrent 

transformed case (RS3T) corresponded to the fourth locoregional recurrence in the face of a 

73-year-old female who originally presented with a palatal tumor 336 months prior to the 

current case. The recurrent tumor showed tubular, trabecular/canalicular and solid growth 

with focal necrosis and a mildly elevated mitotic rate (6 per 10 HPFs; Figure 1D).

Genomic analysis of recurrent polymorphous adenocarcinomas of the salivary glands

We subjected the matching primary (RS1-T1) and recurrent (RS1-T2) PACs to MSK-

IMPACT sequencing, and the de novo high-grade PAC (RS2T) and the recurrent 

transformed PAC (RS3T) to WES (Supplementary Table S1). Both primary (RS1-T1) and 

recurrent (RS1-T2) PACs of case RS1, as well as the de novo high-grade PAC RS2T, 

harbored clonal PRKD1 E710D hotspot mutations, whereas the recurrent PAC RS3T was 

wild-type for PRKD1 (Figure 2A and Supplementary Figure 1). The presence/ absence of 

PRKD1 E710D hotspot mutations were validated by Sanger sequencing analysis (Figure 

2B). To determine whether RS3T, which was found to be wild-type for PRKD1, would 

harbor a PRKD1, PRKD2 or PRKD3 rearrangement, FISH was performed. This analysis 

revealed that whilst no PRKD1 and PRKD3 rearrangements were identified, RS3T harbored 
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a rearrangement of PRKD2 (Figure 2C), consistent with the observation that a subset of 

PACs lacking the PRKD1 hotspot mutations harbor rearrangements involving PRKD1, 

PRKD2 or PRKD3 10.

A paucity of somatic genetic alterations was detected in the PACs analyzed. It should be 

noted, however, that the PACs with PRKD1 E710D hotspot mutations were also found to 

harbor mutations targeting cancer genes, including a PIK3CA D350G hotspot missense 

mutation, which has been previously described in salivary ductal carcinoma (c.1049A>G) in 

association with ERBB2 amplification 35, an EIF1AX R13H hotspot missense mutation, a 

SETD2 L2012Wfs*7 frameshift mutation, a Q288Pfs*71 frameshift deletion targeting the 

chromatin remodeling gene ARID1A, which has been previously reported in tumors of the 

salivary gland 16, and an ERBB2 V839M likely-pathogenic missense mutation targeting its 

tyrosine kinase domain (Figure 2A and Supplementary Table S2). In addition to the PRKD2 
rearrangement, the recurrent PAC RS3T also harbored a clonal NOTCH2 Q2409* truncating 

mutation and a MEF2B P315Qfs* frameshift mutation (Figure 2A and Supplementary Table 

S2). Mutations affecting genes of the Notch signaling pathway have been described in 

salivary gland cancers, particularly in adenoid cystic carcinoma 36-38. Consistent with the 

previously described paucity of gene copy number alterations in PACs 9, 39, the gene copy 

number analysis performed here did not reveal complex patterns of copy numbers alterations 

or any recurrent copy number alteration, despite the fact that all PACs analyzed here were of 

high-grade histologically (Figure 3).

Recurrence of polymorphous adenocarcinomas of the salivary gland involves clonal 
selection

A clonal decomposition analysis of the somatic mutations of the matching primary (RS1T1) 

and recurrent (RS1T2) PACs revealed intra-tumor genetic heterogeneity in both lesions. 

Truncal clonal mutations included PRKD1 E710D and EIF1AX R13H, suggesting that these 

mutations were early events in the genesis of these tumors. A minor subclone in the primary 

tumor (RS1T1), which harbored mutations in PIK3CA (D350G) and SETD2 (L2012Wfs*7), 

became dominant in the recurrent tumor (RS1T2; Figure 4). The recurrent PAC (RS1T2) 

acquired additional mutations in ZFHX3 (G3527dup) and ERBB2 (V839M). Taken together, 

these findings suggest that in this recurrent PAC, recurrence stemmed from a minor subclone 

from the primary tumor.

DISCUSSION

Akin to other forms of salivary gland tumors, which have been shown to be driven by highly 

recurrent if not pathognomonic somatic genetic alterations 40, PACs have been shown to be 

underpinned by a PRKD1 hotspot mutation (E710D), which is present in >70% of cases 9. 

In the remaining cases, PRKD2 or PRKD3 hotspot mutations have not been detected 11; 

rather PRKD1, PRKD2 or PRKD3 rearrangements with a multitude of 5’ partners have been 

identified 10. Given the diversity of histologic patterns observed in PACs, these genetic 

alterations have proved helpful in diagnosing these lesions. Here, we have employed these 

molecular characteristics of PACs to define the repertoire of genetic alterations of PACs that 

have recurred and/or displayed high-grade histologic features.
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Our analyses revealed that consistent with primary PACs, recurrent PACs also displayed the 

canonical alterations affecting PRKD genes, including PRKD1 hotspot E710D mutations or 

a PRKD2 rearrangement. The maintenance of the highly recurrent/pathognomonic genetic 

alteration that characterizes these tumors in the recurrences and after the acquisition of high-

grade histologic features is consistent with the observations made in other tumor types 

driven by pathognomonic genetic alterations 41-44 and is consistent with the notion that these 

alterations constitute drivers of the disease. For instance, in the progression of adenoid cystic 

carcinomas to high-grade tumors, the MYB-NFIB fusion genes is maintained 41; likewise, in 

the progression of granulosa cell tumors, the FOXL2 C134W mutation is conserved 42-44. 

Consistent with the notion that in the progression of tumors driven by pathognomonic 

mutations, additional genetic alterations are acquired or subclonal genetic alterations present 

in minor subclones of the primary tumor are selected 41-44, we observed that the recurrent 

tumor RS1T2 acquired additional subclonal ERBB2 (V839M) and ZFHX3 (G3527dup) 

mutations. Moreover, our analyses revealed that a minor sub-clone of the primary tumor 

(RS1T1), which harbored the PIK3CA D350G hotspot mutation, became dominant in the 

recurrent tumor (RS1T2; Figure 4), suggesting that recurrence of PACs may be driven by 

selection of pre-existing subclones.

Our study has important limitations. First, owing to the rarity of high grade PACs, the 

sample size is small. Hence, the biological and clinical significance of the somatic genetic 

alterations in addition to those affecting PRKD1/2/3 remains to be defined. Second, we 

could not establish the fusion partner of PRKD2 in the rearrangement identified in the 

recurrent PAC wild-type for PRKD1, due to insufficient material to conduct RNA 

sequencing analysis. Third, we could not perform a clonal decomposition analysis for 

recurrent PACs RS3T given the lack of a matching primary tumor sample. Despite the 

limitations of our study, our findings support the notion that, in a way akin to primary 

tumors, recurrent PACs are underpinned by PRKD1 E710D hotspot mutations or 

rearrangements involving members of the PRKD family. Moreover, our analysis revealed 

that recurrences may be driven by clonal selection of preexisting subclones of the primary 

tumor.
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Figure 1. Histologic features of recurrent polymorphous adenocarcinomas (PACs) of the salivary 
gland.
(A-B) Representative hematoxylin and eosin (H&E) photomicrographs of matched primary 

(RS1-T1) and recurrent (RS1-T2) PACs with high-grade histologic features. (A) Low-power 

magnification of RS1-T1 (left), a heterogeneous lesion with intermingled hypocellular and 

hypercellular areas displaying high-grade features (scale bar, 500 μm). Intermediate-power 

magnification of RS1-T1 (right) displaying a solid architecture, conspicuous nucleoli, 

frequent mitoses and necrosis (scale bar, 100 μm) (B) Low-power magnification of the 

recurrent high-grade PAC (RS1-T2; left) displaying solid architecture with extensive 

necrosis (scale bar, 200 μm). Intermediate-power magnification of RS1-T2 (right) showing 

frequent mitoses and focal necrosis (scale bar, 100 μm). (C) Representative H&E 

photomicrographs of a de novo high-grade PAC (RS2T; left) showing glomerulopapillary 

growth pattern (scale bar, 200 μm). The inset shows pronounced nuclear size variation. 

Intermediate-power magnification of RS2T (right) showing focal necrosis (scale bar, 200 

μm). (D) Representative H&E photomicrographs of RS3T, a PAC that transformed upon 

recurrence (left), displaying tubular and canalicular architectural patterns with myxoid 
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stroma (scale bar, 200 μm). High-power magnification of RS3T (right) showing solid 

growth, nuclear size variation and mitoses (arrow; scale bar, 100 μm).
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Figure 2. Recurrent polymorphous adenocarcinoma (PAC) of the salivary glands harbor 
recurrent PRKD1 E710D hotspot somatic mutations or rearrangements of PRKD genes, and 
mutations in other cancer genes.
(A) Somatic mutations identified in primary and recurrent PACs by whole-exome (n=2) or 

MSK-IMPACT sequencing (n=2). Cases are shown in columns and genes in rows. Clinical 

presentation, histologic grade, and presence of PRKD2 rearrangement are shown in 

phenotype bars (top). Mutation types are color-coded according to the legend. (B) 
Representative Sanger sequencing electropherograms of PRKD1. (C) Representative 

micrographs of fluorescence in situ hybridization (FISH) for PRKD1, PRKD2 and PRKD3 
in recurrent PRKD1 wild-type PAC (RS3T). Arrows highlight the break-apart red and green 

signals in one allele, consistent with PRKD2 rearrangement (middle) or the close or 

overlapping red and green signals consistent with no PRKD1 (left) or PRKD3 (right) 

rearrangement. Scale bars, 10 μm. SNV, single nucleotide variation.
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Figure 3. Copy number profiles of polymorphous adenocarcinomas subjected to MSK-IMPACT 
(n=2) or whole-exome sequencing (n=2).
Copy number plots depicting segmented Log2 ratios (y-axis) plotted according to their 

genomic positions (x-axis). Alternating blue and gray demarcate the chromosomes. Note the 

lack of any high-level gene amplifications or homozygous deletions.
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Figure 4. Clonal composition of a matched primary and recurrent polymorphous 
adenocarcinoma (PAC).
Clonal frequency heatmaps of mutations in a matched primary (RS1-T1) and recurrent 

(RS1-T2) PAC, grouped by their clonal/subclonal structure (clusters) as inferred by 

Pyclone33 (top right). Cancer cell fractions are color-coded according to the legend in the 

right-hand side. PyClone clusters are shown across the bottom of the clonal frequency 

heatmap. Parallel coordinates plot generated by PyClone (top left) and cluster-based 

phylogenetic tree (bottom) of matched primary and recurrent polymorphous 

adenocarcinomas. Trunk and branches are colored according to cluster as per PyClone. The 

branch lengths are proportional to the number of genetic alterations. CCF, cancer cell 

fraction.
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