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SUMMARY Hosts with compromised or naive immune systems, such as individuals
living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for
complications from cytomegalovirus (CMV) infection. Despite substantial progress in
prevention, diagnostics, and treatment, CMV continues to negatively impact both
solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this
article, we summarize important developments in the field over the past 10 years
and highlight new approaches and remaining challenges to the optimal control of
CMV infection and disease in transplant settings.
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INTRODUCTION

Human cytomegalovirus (CMV) is a member of the Betaherpesvirinae subfamily; with
a 236-kb genome, it is one of the largest identified human viruses (1). CMV was

originally reported in the 1950s after it was isolated from the urine of infants with
disseminated disease, at that time referred to as cytomegalic inclusion disease (2). In
immunocompromised hosts, the clinical presentation is likely influenced by multiple
host and viral factors. Among these, the type of infection (primary versus reactivation
versus superinfection), specific transplant setting (solid-organ transplant [SOT] versus
hematologic cell transplant [HCT]), and degree of immunosuppression appear to be
particularly important (3–5). The clinical manifestations range from mild flu-like febrile
illness (especially in primary infection, such as in donor-positive/recipient-negative [D�

R�] SOT recipients) to life-threatening tissue-invasive (end-organ) disease, most com-
monly involving the lungs, gastrointestinal (GI) tract, liver, eye (retinitis), or central
nervous system. With changing transplantation practices, the spectrum of CMV disease
continues to evolve (6, 7). Reactivation from latency is often initially asymptomatic.

The CMV disease incidence and associated short-term attributable mortality have
decreased with the use of various preventive strategies (3–5). Tables 1 and 2 summarize
current CMV incidences among SOT and HCT recipients; they include clinical trials
reported since 2010 in which the incidence of CMV disease was stratified by both D/R
serological status and the type of transplant performed. CMV continues to have a
significant negative impact on transplant recipients both as a consequence of direct
high-grade viral replication with the associated host response and tissue injury (CMV
disease) and through complex biological effects mediated by CMV that negatively
impact transplant outcomes (indirect effects) (8–18).

The goals of this review are to summarize important developments in the diagnosis,
prevention, and treatment of CMV in SOT and HCT populations over the past 10 years
and to identify unmet clinical and research needs. For updates on CMV biology,
pathogenesis, and immunology, readers are referred to several recent updates (8,
19–22).

DIAGNOSTICS
Detection of Virus in Blood

Quantitative PCR (qPCR) for CMV DNA in blood has become the preferred diagnostic
testing method due to its high sensitivity and high throughput. As such, it is widely
incorporated into clinical algorithms for diagnosing CMV disease, determining when to
initiate preemptive antiviral therapy (PET), and monitoring the course of infection
and/or disease (22–24). In the United States, for example, commercially available
platforms cleared or approved by the FDA for CMV DNA qPCR testing include the Artus
CMV RGQ MDX kit by Qiagen, the Cobas AmpliPrep/Cobas TaqMan CMV test by Roche,
and the RealTime CMV molecular test by Abbott (22, 25). Improved standardization and
calibration of CMV PCR testing are important ongoing priorities in the field. Significant
progress toward this goal was made in 2010, through the introduction of an interna-
tional reference by the World Health Organization (WHO). However, issues with vari-
ability across PCR testing platforms/assays persist (26–28). Recent studies have identi-
fied multiple additional components of CMV qPCR assays that contribute to variability,
including amplicon sizes and DNA extraction methods (29, 30). Variability is also
significantly impacted by the sample type (e.g., plasma versus whole blood versus
peripheral blood mononuclear cells) (31, 32). Newer methodologies such as droplet
digital PCR show promise for decreasing the variability in measurements of CMV DNA
loads, but these are not yet widely used (33–35). With the recognition that the
interassay variability in viral load quantitation remains despite the integration of the
WHO international standard, consensus guidelines recommend serial testing with a
single sample type and the same assay to improve interpretations of changes in viral
loads (22, 36, 37).

Despite the utility of blood viral load assays, several limitations constrain their use
in certain clinical circumstances: compartmentalization (localized CMV replication
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within an anatomical site without concomitant viremia [discussed for the diagnosis of
GI CMV disease below]), the absence of specific thresholds for the initiation of PET and
discontinuation of therapy, the potential impact of newer antiviral agents on DNA load
quantitation (e.g., letermovir, whose mechanism of action affects a target downstream
of DNA replication), ambiguity about viral load thresholds for predicting disease across
a range of clinical settings and disease types, and the need for standardization of viral
load result reporting (actual numeric international units [IU] per milliliter versus log10

units).
Important challenges of CMV prevention strategies that employ PET (i.e., initiation of

antiviral therapy on the basis of detection of early CMV replication) are the need for
frequent blood-based monitoring to detect CMV replication and low adherence to
these monitoring schedules, especially at later time points after transplant (38). Novel
strategies are being explored to improve adherence by allowing patients to self-collect
and submit blood samples for monitoring without the need for a clinic visit or standard
phlebotomy. The use of dried blood spots, a methodology previously studied for the
diagnosis of congenital CMV, allows the assessment of CMV viral loads using a finger
stick blood sample. Dried blood spot quantitation of CMV DNA has been validated
in a small study of 35 SOT patients (39) and is currently being evaluated in a
multicenter NIH-supported randomized controlled trial (RCT) utilizing mobile
device-assisted CMV monitoring by dried blood spots in HCT patients at risk for late
CMV disease (ClinicalTrials.gov identifier NCT03910478). Devices designed for self-
collection of a blood sample (without the need for a patient-performed finger stick)
represent an important area of development, with products recently cleared by the FDA
or in development for other blood-based diagnostic and monitoring applications (40,
41). By providing simple at-home testing for patients, this technology has the potential
to improve adherence with frequent CMV monitoring (and has potential applications
for additional analyses such as other blood-borne viruses or immunosuppressant
levels). At-home CMV PCR testing modalities now have increased relevance given the
current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak. Cur-

TABLE 1 Incidence of CMV disease in SOT patients in clinical trials with current preventative strategies

Type of transplant
(references)

D� R� R�

Incidence
range
among
studies (%)

Weighted avg incidence
(%) (no. of patients with
CMV disease/total no.
of patients)

Follow-up
period

Incidence
range
among
studies (%)

Weighted avg incidence
(%) (no. of patients with
CMV disease/total no.
of patients)

Follow-up
period

Kidney (23, 137, 269–273) 0–50 25 (183/739) 24 wks–1,236
daysa

2–15 7 (42/603) 3 mos–3 yrs

Liver (106, 150) 8–40 13 (13/258) 6–12 mos 0–4 3 (1/39) 12 mos
Lung (274, 275) 10–33 15 (4/26) 3–3.9b yr 7–19c 17 (25/150) 3–3.9b yrs
Heart (86, 276, 277) 0–25 10 (2/20) 6 mos 0–14 6 (7/127) 6–12 mos
aMedian.
bMean.
cIncludes CMV disease events/patients.

TABLE 2 Incidence of CMV disease in HCT patients in clinical trials with current preventative strategies

Authors (reference) Yr
No. of
patients

Incidence (%)

Study design Follow-up periodPlacebo
Vaccine or
prophylaxis

Marty et al. (131) 2011 227 2.6 2.4 Maribavir vs placebo 100 days
Kharfan-Dabaja et al. (132) 2012 34 8.8 7.5 DNA vaccine vs placebo 1 yr
Marty et al. (133) 2013 59 3 4 Various doses of CMX001 (brincidofovir)

vs placebo
4–8 wks following the end

of drug administration
Chemaly et al. (134) 2014 33 0 0 Letermovir vs placebo 96 days
Boeckh et al. (38) 2015 89 2.2 2.1 Valganciclovir vs placebo and PET 270 days
Marty et al. (135) 2017 170 1.8 1.5 Letermovir vs placebo 24 wks
Marty et al. (136) 2019 149 3.4 4.3 Brincidofovir vs placebo 24 wks
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rently, there are limited data on the outcomes of transplant patients with SARS-CoV-2
(42–46). At-home testing would enable these vulnerable populations to receive
standard-of-care testing and monitoring while mitigating the risk of SARS-CoV-2 expo-
sure.

Detection of Virus at Specific Sites of Disease

Although blood has been the preferred specimen for the quantitation of viral loads
by PCR (discussed above), there have been important developments in the application
of qPCR methods to nonblood specimens for the diagnosis of site-specific CMV disease.
These methods show promise for either complementing existing gold-standard diag-
nostic methods (e.g., endoscopy with biopsy for histopathology) or potentially replac-
ing more invasive diagnostic methods in the future. The two clinical situations for
which site-specific CMV quantitation has been studied include GI disease and pneu-
monia.

For CMV GI disease, the identification of CMV in biopsy specimens by using standard
or immunohistochemical stains has been considered the gold standard for the diag-
nosis of proven disease. However, interpretation is subjective and interpreter depen-
dent (47). The detection of CMV in blood samples typically has a lower sensitivity in GI
disease than in other forms of end-organ CMV disease: up to 50% of patients may not
have detectable CMV DNA in blood despite biopsy-confirmed GI CMV disease (3,
48–50). The sensitivity of CMV plasma qPCR for GI disease varies by serological status
and is reportedly higher in D� R� than in R� SOT recipients (48, 51). Performing CMV
qPCR on stool samples has been explored as a noninvasive approach for diagnosing
CMV GI disease. In two studies of adult and pediatric immunocompromised patients
(including SOT and HCT recipients), qPCR for CMV DNA in stool was found to have a
relatively low sensitivity (67% to 71%) but high specificity (85% to 96%) compared to
a standard diagnostic methodology consisting of histopathology of a tissue biopsy
specimen (52) or histopathology, endoscopy, and CMV DNA levels in a tissue biopsy
specimen (53). Additionally, droplet digital PCR assays may improve the detection of
CMV in PCR-inhibition-prone stool specimens compared to laboratory-developed
qPCRs.

qPCR on tissue biopsy specimens is another approach with potential for the
diagnosis of GI CMV disease. Current guidelines developed for clinical trial standard-
ization consider a positive qPCR result from a GI biopsy specimen, in a compatible
clinical setting, to represent possible GI disease (54). qPCR has been evaluated in both
formalin�fixed paraffin�embedded and fresh tissue biopsy samples for this application;
Table 3 summarizes studies reported since 2010 that evaluated tissue PCR for the
diagnosis of GI CMV in transplant recipients (47, 55–58). Collectively, these data indicate
that qPCR on either formalin�fixed paraffin�embedded or fresh GI biopsy specimens
may have an adjunctive role for the diagnosis of GI CMV disease. Future studies are
needed to standardize these assays across a range of transplant populations, define
clinically meaningful thresholds, and assess the operating characteristics and clinical
role of stool and biopsy PCR for the diagnosis of GI CMV disease.

Another challenging area for the diagnosis of CMV in HCT and SOT recipients is CMV
pneumonia. Historically, diagnosis relied on a positive viral culture from bronchoalveo-
lar lavage (BAL) fluid, which has a high sensitivity for the diagnosis of CMV pneumonia
by histopathology (59, 60). However, interpreting positive BAL fluid CMV culture results
requires distinguishing between asymptomatic viral shedding (relatively common in
this setting) and tissue-invasive infection (pneumonia). Qualitative PCR (results reported
as positive or negative) is available for testing BAL fluid. However, while it may be useful
to rule out the presence of CMV DNA, qualitative PCR lacks specificity and may not be
as useful in discriminating between low-level viral shedding and end-organ disease (22,
61). Clinically, quantitative PCR is now widely available and preferred over qualitative
PCR on BAL fluid for diagnosing CMV pneumonia. In current guidelines, the definition
of probable CMV pneumonia now includes the detection of CMV DNA in BAL fluid by
quantitative PCR, combined with clinical symptoms and/or signs of pneumonia in the
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appropriate clinical setting (54). Recent studies (Tables 4 and 5) indicate the diagnostic
potential of qPCR for CMV DNA in BAL fluid but also highlight the challenges in
establishing a precise diagnostic viral load threshold. Tables 4 and 5 include studies
reported since 2010 that assessed the utility of BAL CMV qPCR for the diagnosis of CMV
pneumonia in recipients of a lung transplant or HCT (62–69). In these studies, transplant
recipients with CMV pneumonia had higher median CMV BAL fluid viral loads than did
non-CMV pneumonia cases, although there was an overlap between cases and controls.
In determining a viral load threshold to differentiate CMV pneumonia from pulmonary
viral shedding, a key concept to consider is the predictive value. The predictive value
takes into account the population prevalence of CMV pneumonia, while sensitivity and
specificity provide only one half of the diagnostic equation. For example, our group
used predictive models to calculate that a threshold of 500 IU/ml could have a positive
predictive value of �60% in a population with a CMV pneumonia prevalence of 10%,
but the positive predictive value of this threshold drops to �30% with a CMV pneu-
monia prevalence of 5% (Fig. 1). The corresponding negative predictive values of this
viral threshold at each population prevalence were �90% and �100%, respectively
(66). Limitations of studies of CMV qPCR on BAL fluid have included one or more of the
following: a small sample size, a single-center design, and variable definitions of CMV
pneumonia. Further studies of BAL fluid CMV PCR are warranted to standardize
collection and assay techniques and reporting and to identify optimal thresholds in
different clinical settings. If successful, such approaches have the potential to replace
the need for biopsy and obviate viral culture for the diagnosis of CMV pneumonia in the
appropriate clinical setting.

Host Response to Virus (CMV-Specific Immunity)

Until recently, direct quantitation of CMV in blood and other samples, typically by
qPCR, has been the focus of diagnostic methods, based on a well-established relation-
ship between CMV viral loads and the risk for progression to CMV disease (8–17).
However, the use of highly sensitive CMV qPCR assays can lead to overtreatment.
Additional risk stratification is needed to individualize treatment and avoid unnecessary
antiviral exposure. Multiple risk factors for significant CMV replication and/or disease in
transplant recipients are known, but precise quantitation of risk in an individual patient
remains challenging. Standardized methods for the detection and quantitation of
CMV-specific immunity have been developed to complement existing CMV viral load
assays and offer an opportunity to identify patients capable of controlling viral repli-
cation through host immune mechanisms, without the need for antiviral therapy.
Several studies have evaluated CMV-specific and nonspecific immune functions (e.g.,
lymphopenia and CD4 counts) (70–74) as tools for individualizing CMV risk, and a
recent review of studies evaluating CMV-specific cell-mediated immunity (CMI) in
transplantation summarizes the available data (75). Nonspecific immune markers such
as lymphopenia have also been associated with an increased risk for CMV infection or
disease but do not appear to have adequate positive and negative predictive values to
make them useful for clinical routine use (76, 77). A summary of the types of commer-
cially available immune monitoring assays, and their advantages and limitations, can be
found in recent guidelines for the management of CMV in SOT (22). Commercially
available assays include the QuantiFERON-CMV enzyme-linked immunosorbent assay
(QFN) as well as T-Track and T-Spot.CMV, which are enzyme-linked immunosorbent
spot (ELISpot) assays. Most of these assays detect interferon gamma (IFN-�) release
from cells (in blood or peripheral blood mononuclear cells) stimulated with CMV-
specific antigens or peptides.

Studies of CMV-specific CMI in SOT, the majority of which have been conducted in
kidney transplant (KT) recipients, have demonstrated that CMV-specific CMI correlates
with virologic outcomes. A positive CMV IFN-� release assay result was associated with
reduced CMV infection/disease, lower initial and peak viral loads, freedom from CMV
events, and a decreased incidence of CMV recurrence (78–94). In a recent large
multicenter study of KT transplant recipients (n � 368), positive CMV-specific CMI at the
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end of prophylaxis (by T-Spot) predicted freedom from CMV events (93). However, an
important limitation of this study was the inability of the assay to predict CMV events
in the highest-risk group (D� R� patients), limiting its clinical utility in this high-need
population. Indeed, both the predictive value and the optimal CMI threshold for
predicting CMV infection and disease may differ for transplant recipients with specific
risk factors (e.g., antithymocyte globulin induction), and assay sensitivities and speci-
ficities may vary across the available platforms (82, 85, 95).

In HCT, observational studies have evaluated CMV-specific CMI as a tool for risk
stratification of CMV infection and disease posttransplantation (96–103). In these
studies, CMI testing has been done both pretransplantation and posttransplantation, at
various intervals up to 1-year posttransplantation. qPCR was concurrently performed to
monitor for viremia. Patients with detectable CMV-specific immunity had higher rates
of spontaneous viremia clearance, lower rates of CMV reactivation, and decreased peak
viral loads (96–102). The sensitivities and specificities varied across testing modalities
and studies. However, these studies collectively demonstrate that CMV-specific CMI has
the potential to guide antiviral prophylaxis and therapy in the future.

At present, data to demonstrate the clinical utility of CMV-specific CMI assays in
large, well-designed interventional studies are lacking. Currently available standardized
CMV-specific CMI testing platforms are limited by low utility in the setting of profound
lymphopenia and the absence of assessments of polyfunctionality and markers such as
the T-box transcription factor T-bet, which may play a role in predicting CMV-specific
immunity (104, 105). Neutralizing antibodies, which may have an important role in
primary infection (106), are likewise not included in these CMI-based testing platforms.
Conversely, an important advantage of commercially available platforms is their relative
ease of use, standardized format, and suitability for comparing results across studies/
populations (22).

In addition to the observational studies described above, small interventional
studies have described the integration of CMV-specific CMI testing to guide antiviral
therapy. With this approach, CMI testing (at one or more time points) is used to
determine the duration of antiviral treatment or prophylaxis based on the predicted risk
of subsequent CMV viremia. Kumar et al. assessed the use of CMV-specific CMI testing
(by QFN) to guide antiviral therapy following the treatment of CMV viremia in 27 SOT
patients (7 kidney transplant, 10 liver, 6 lung, and 4 combined) (92). Patients (predom-
inantly D� R� [44.4%] and R� [48.1%]) were treated until the CMV viral load was
undetectable by PCR at one time point or �137 IU/ml at two consecutive time points.
At the end of antiviral therapy, the CMV QFN result was used to assign patients to
observation without further therapy (positive QFN result, 51.9% of patients) or to
additional antiviral prophylaxis for 2 months (negative QFN result, 48.1% of patients).

FIG 1 Predictive models of positive (A) and negative (B) predictive values with thresholds of 100, 500, and 1,000 IU/ml across a range
of cytomegalovirus (CMV) pneumonia prevalences in patients who underwent bronchoalveolar lavage for evaluation of pulmonary
infiltrates (132 patients with CMV pneumonia and 118 controls with non-CMV pneumonia). (Reproduced from reference 66 with
permission of Oxford University Press.)
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For those with a positive QFN result (for whom antiviral therapy was discontinued), only
1/27 developed subsequent low-level viremia and required treatment, while the recur-
rence rate among CMV QFN-negative patients was 69.2% despite an additional 2
months of antiviral prophylaxis (92). In a second study, Westall et al. evaluated
CMV-specific CMI testing (by QFN) to direct the length of antiviral prophylaxis following
lung transplantation (91). Lung transplant recipients (n � 118) 5 months after trans-
plant were randomized 1:2 to either cessation of antiviral prophylaxis or continuation
of prophylaxis for a duration guided by serial CMV QFN testing (up to 11 months). CMV
infection in the lung allograft within 18 months of transplantation was significantly
decreased in the QFN-guided prophylaxis duration arm (37% versus 58%). Among
patients who stopped antiviral prophylaxis at 5 months based on a positive QFN result,
compared to patients without protective immunity, significant reductions were ob-
served in the incidences of viremia (13% versus 67%) and high-grade viremia (defined
as �10,000 copies/ml) (3% versus 50%) (91). A positive recipient CMV serostatus was
associated with a positive QFN result. Among R� patients (n � 88) at the time of lung
transplantation, 72% had a positive QFN result, compared to only 7% (2/30) of D� R�

patients at study inclusion. These preliminary interventional studies suggest that the
incorporation of CMV-specific CMI into clinical care is feasible and has the potential to
refine current prevention and/or treatment strategies in the SOT setting. However,
additional studies are needed to define the specific patient populations and indications
for the use of CMV CMI-based testing in SOT recipients.

In the HCT setting, a prospective multicenter matched-control trial utilized serial
CMV-specific CMI (via ELISpot assays) and viral load monitoring to guide the duration
of antiviral therapy in R� and D� R� HCT recipients (n � 61) for CMV viremia within
100 days of transplantation (101). CMV-specific CMI was assessed on days 7, 14, 21, and
28 after the initiation of antiviral therapy. In 11 (18%) of the 61 patients, antiviral
therapy was discontinued based on the fulfillment of viral and immunological criteria
(a positive CMI result and clearance of CMV DNAemia). The rate of CMV viremia
recurrence was significantly lower among patients who met immunological criteria for
discontinuing treatment (9%) than in the comparator group that was guided solely by
plasma CMV DNA loads (�40%). The duration of antiviral therapy was also shorter in
these patients, by approximately 1 week.

Collectively, these studies suggest that CMV-specific CMI shows significant promise
for individualizing risk prediction and prophylaxis/therapy duration, especially with the
availability of standardized commercially available platforms. However, future studies
directly comparing the various platforms will be required, since each assesses different
CMI parameters and appears to have different operating characteristics. Additionally,
carefully designed prospective randomized interventional studies integrating CMV-
specific CMI testing to guide clinical decision-making should be done to define the
potential clinical utility of these assays to complement or potentially even replace the
information provided by currently available CMV viral load assays. Analogous ap-
proaches might have the potential for other transplant-associated viruses (e.g., Epstein-
Barr virus and BK virus).

PREVENTION: STRATEGIES
Overview

CMV infection and disease have a substantial negative impact on graft and patient
outcomes in both SOT and HCT populations (10, 22, 107–110), as demonstrated by
natural history studies and high rates of morbidity and mortality in the preantiviral era
(111–113). Even in the context of PET, higher CMV viral loads carry an increased risk of
mortality (107) (Fig. 2) and are considered an appropriate surrogate endpoint for clinical
trials in HCT and SOT (114, 115). Consequently, the use of a CMV prevention strategy
is considered the standard of care in all transplant patients at risk (most commonly
defined on the basis of donor and recipient serological status). Major guidelines
consider the use of a specific CMV prevention strategy a grade A1 recommendation.
Indeed, it is no longer considered ethical to perform trials of CMV prevention in
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transplant recipients with a comparator group that does not receive any CMV-
preventive strategy.

PET and antiviral prophylaxis are the two most widely used CMV prevention
strategies in HCT and SOT for patients at risk for CMV infection/disease based on
recipient and/or donor CMV-seropositive status. These two strategies are depicted in
Fig. 3 and 4 and are described and compared below.

Description of the PET Strategy

PET consists of scheduled monitoring to detect early CMV replication, with the
initiation of an antiviral drug at a predetermined threshold to prevent the progression
of CMV replication that may ultimately result in CMV disease (Fig. 3 and 4). The
availability of qPCR, a highly sensitive test, has made PET a feasible prevention strategy.
qPCR is now the preferred modality for CMV monitoring in PET (11, 14, 22, 116–120).
Because of the significant toxicity of previously available antivirals, and despite several
challenges and limitations (Table 6), PET has until now been the preferred CMV

FIG 2 Cumulative incidence of overall mortality in survivors at day 100 (n � 832) stratified by the maximum
cytomegalovirus viral load before day 100 (A) and multivariable Cox proportional-hazard models assessing
maximum cytomegalovirus viral load before day 100 as a risk factor for overall mortality (B). Covariates for overall
mortality models were age, donor relation, transplantation year, underlying disease, disease risk, hemopoietic stem
cell transplantation-specific comorbidity index score, neutropenia before day 100, and cytomegalovirus viremia
after day 100 (time dependent). CI, confidence interval. (Reproduced from reference 107 with permission of
Elsevier.)
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prevention strategy in HCT recipients, primarily because of the toxicity of available
antiviral drugs (e.g., ganciclovir). However, with the availability of newer antiviral drugs
without significant hematological toxicity (i.e., letermovir and the investigational agent
maribavir), prophylaxis has also become feasible in the HCT setting.

Description of the Prophylaxis Strategy

Antiviral prophylaxis entails the administration of antiviral medication around the
time of transplantation for all at-risk patients for a defined duration posttransplantation,
with the goal of maintaining viral suppression during the period of greatest risk for
infection/reactivation (Fig. 3 and 4). Prophylaxis is generally effective in preventing
viremia and disease during the prophylaxis period in those who can tolerate the drug
but has been associated with relatively high rates of postprophylaxis late-onset CMV
disease, especially among D� R� SOT patients (73, 121, 122). D� R� or R� SOT patients
are typically given prophylaxis for 3 to 6 months posttransplantation and up to
12 months for lung transplant recipients (22). There is a large body of evidence
demonstrating the efficacy of this strategy for preventing CMV disease and beneficially
impacting CMV-associated indirect effects (bacterial and fungal infections, graft func-
tion, and overall survival), and it has been the dominant strategy for CMV prevention
in SOT recipients. It is also becoming more widely used in HCT recipients with the
availability of less myelotoxic antiviral agents (discussed below) (123).

Combined Approaches to CMV Prevention

Because postprophylaxis delayed-onset CMV disease is a well-recognized limitation

FIG 3 CMV prevention strategies in HCT, including potential combined approaches. Red circles indicate weekly monitoring for CMV viremia; open circles indicate test
time points that yielded viral loads below the threshold for the initiation of antiviral therapy, while filled shapes indicate test time points with values above this
threshold. Black arrows indicate the administration of antivirals as preemptive therapy (PET). Black bars indicate the administration of antivirals as prophylaxis. Blue
triangles indicate the administration of a dose of vaccine. All strategies include clinical surveillance. IM, immune monitoring; Exp, experimental; Tx, therapy. a,
vaccination of transplant donor and/or recipient; b, various vaccination schedules have been used; c, see references 171, 175, and 267.
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of antiviral prophylaxis, a hybrid strategy that combines a duration of prophylaxis
followed by PET (i.e., monitoring for CMV replication after discontinuation of antiviral
prophylaxis) has also been proposed (124–127). This approach (Fig. 3 and 4) aims to
address the important clinical problem of postprophylaxis delayed-onset CMV disease
but has multiple limitations, including logistical issues related to frequent blood draws
and the implementation of antiviral therapy at a time point when patients are at a

FIG 4 CMV prevention strategies in SOT, including potential combined approaches. Red circles indicate weekly monitoring for CMV viremia; open circles
indicate test time points that yielded viral load below the threshold for the initiation of antiviral therapy, while filled shapes indicate test time points with values
above this threshold. Black arrows indicate the administration of antivirals as preemptive therapy (PET). Black bars indicate the administration of antivirals as
prophylaxis. Blue and purple triangles indicate the administration of a dose of vaccine or monoclonal antibodies (mAb), respectively. All strategies include
clinical surveillance. LiT, liver transplant; LT, lung transplant; PCR, CMV viral load monitoring by PCR; IM, immune monitoring; Exp, experimental. a, see reference
168; b, see reference 169; c, see reference 23; d, the dotted line represents the duration of prophylaxis for lung transplantation.

TABLE 6 Challenges with the use of a PET prevention strategy

Challenge(s) Consideration(s)

Lack of consensus regarding the threshold for initiation
of antiviral therapy

Preventing disease progression
Allowing sufficient antigen stimulation to prevent late episodes of viremia

Unclear optimal testing frequency and duration Rapid viral replication necessitating frequent testing
Logistics and cost of frequent testing

Testing adherence at late time points Frequent testing is logistically challenging at late time points after transplant

Choice of monitoring test PCR is most frequently used, but antigenemia is still used by some centers
Variability among qPCR assays
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significant distance from the transplant center and may have less access to diagnostic
testing, evidence from small studies that did not demonstrate a benefit of this ap-
proach, and the same limitations inherent to PET in general (e.g., the lack of consensus
on a specific threshold for the initiation of therapy).

The landscape of CMV prevention is evolving. As depicted in Fig. 3 and 4, newer
diagnostic or therapeutic modalities could be combined with existing preventative
strategies (PET or prophylaxis) to further augment the suppression of CMV. For exam-
ple, the duration of antiviral therapy could be guided by CMV-specific CMI, as discussed
above (91, 92, 101). Alternatively, the administration of a CMV vaccine later in the
posttransplant period, at a time when lower levels of immunosuppression are present,
might enhance vaccine responses.

Updates in Prophylaxis

A major development in the field has been the approval of letermovir, a novel
CMV-specific terminase complex inhibitor that was approved by the FDA in 2017 and
the European Medicines Agency in 2018 for the prophylaxis of CMV in seropositive HCT
recipients. Evidence supporting the safety and efficacy of letermovir for this application
is discussed further in Prevention: Novel Agents and Approaches, below. The availability
of letermovir has altered the landscape of CMV prevention in HCT; the absence of
significant myelotoxicity has made prophylaxis with this drug feasible for HCT recipi-
ents (123). However, as seen in other trials of antiviral prophylaxis, delayed-onset
postprophylaxis CMV infection occurred in those who received letermovir. Thus, an
ongoing trial (ClinicalTrials.gov identifier NCT03930615) is evaluating the efficacy of
longer-duration prophylaxis (i.e., 200 days versus 100 days of letermovir prophylaxis
in R� HCT recipients). Letermovir is also being directly compared to valganciclovir
for prophylaxis in D� R� kidney transplant recipients in an ongoing phase 3 RCT
(ClinicalTrials.gov identifier NCT03443869), with the results of this study anticipated in
�2021.

Updates in Preemptive Therapy

Current guidelines generally favor prophylaxis over PET for CMV prevention in
high-risk D� R� SOT recipients (22). However, late-onset CMV is observed frequently in
the months following the cessation of antiviral prophylaxis and is associated with graft
failure and mortality in SOT (128) and with mortality in HCT (129) recipients. A recently
completed, NIH-supported, multicenter RCT offers new evidence suggesting that PET,
compared to prophylaxis, decreases the incidence of late-onset CMV disease in D� R�

liver transplant recipients (130). The proposed underlying mechanism is preferentially
enhanced CMV-specific immunity with PET compared to prophylaxis (increased multi-
functional T cells and neutralizing antibody titers), as demonstrated in a small obser-
vational study and, more recently, in a multicenter RCT directly comparing PET to
prophylaxis in D� R� liver transplant recipients (106, 130). Among HCT recipients, the
incidence of CMV disease is low with current PET regimens incorporating qPCR and
ganciclovir/valganciclovir (38, 131–136).

Preemptive Therapy versus Prophylaxis

There are relative advantages and disadvantages of PET and prophylaxis. While PET
may reduce unnecessary drug exposure and reduce the risk of drug-induced myelo-
suppression in HCT patients, universal prophylaxis may be preferred for higher-risk
transplant recipients, including unrelated, HLA-mismatched, and umbilical cord blood
transplants. In SOT, only two new RCTs since 2010 have directly compared these two
approaches using valganciclovir (Table 7). Witzke et al. randomized R� KT transplant
patients (n � 299) to PET (n � 151) or valganciclovir prophylaxis (n � 148) (137, 138).
Significantly fewer patients in the prophylaxis arm developed CMV disease at both 12
and 84 months of follow-up, while rates of mortality and graft loss were similar
between the two strategies. An important limitation of the study that might explain the
relatively high incidence of CMV disease in the PET group (15.2%) was the infrequent
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monitoring schedule used (weekly for 4 weeks and then every 3 weeks until 28 weeks
posttransplantation). Thus, these results demonstrating an apparent reduction in CMV
disease with prophylaxis over PET in R� kidney transplant recipients should be inter-
preted cautiously, and future studies should incorporate weekly monitoring for
3 months to guide the initiation of antiviral therapy in PET strategies. In the single
largest direct comparative study of PET versus prophylaxis in high-risk SOT recipients to
date, Singh et al. randomized D� R� liver transplant recipients to PET (n � 100) versus
universal prophylaxis (n � 105) with valganciclovir (130). PET significantly reduced the
incidence of CMV disease compared to prophylaxis (9.1% versus 19.1%). Rates of
mortality and graft loss were similar for both arms at 12 months posttransplantation
and during longer-term follow-up. The feasibility of PET across a range of clinical
settings and generalizability to nonliver D� R� SOT populations deserve further study.

For HCT, a multicenter RCT directly compared the efficacies of real-time PET versus
prophylaxis (n � 89 and 95, respectively) to prevent late-onset CMV-associated com-
plications. The composite endpoints incorporating mortality, CMV disease, and non-
CMV invasive infections were similar between the two preventative strategies at day
640 posttransplantation (38). CMV DNAemia was reduced in the prophylaxis arm, but
rates of CMV disease were similarly low in both arms. Importantly, no differences in
immune reconstitution (T-cell responses to CMV, varicella-zoster virus, and herpes
simplex virus) or toxicity were observed between the groups. This study supports the
current clinical practice of PET in HCT for CMV prevention by demonstrating that
universal prophylaxis was not superior to PET in preventing late-onset CMV complica-
tions. However, prophylaxis may be an alternative if weekly surveillance is not feasible,
especially in high-risk patients.

Summary

There is strong evidence to support the use of a CMV-preventive strategy for all
at-risk (i.e., donor or recipient seropositive) transplant patients. The relative efficacies of
PET and prophylaxis may vary by risk category and transplant setting. New studies
incorporating less myelotoxic agents (i.e., letermovir) demonstrate the superiority of
prophylaxis over PET in HCT. In contrast, a recent study demonstrated the superiority
of PET over prophylaxis for the prevention of CMV disease in high-risk D� R� liver
transplant recipients, primarily due to a reduction in late-onset CMV disease; however,
feasibility and generalizability to other high-risk SOT populations require further study.
Due to the relatively low incidence of disease (as a result of the success of PET and
prophylaxis strategies) in HCT settings, future studies should focus on outcomes other
than CMV disease endpoints alone. The integration of CMV-specific CMI diagnostic
tools for risk stratification and guidance of preventative strategies will likely refine
preventative approaches in clinical practice in the future.

PREVENTION: NOVEL AGENTS AND APPROACHES
Novel Agents

Over the last decade, new antiviral medications, including letermovir, maribavir, and
brincidofovir, have been clinically evaluated for CMV prophylaxis in transplant recipi-
ents.

Letermovir, a 3,4-dihydro-quinazoline-4-yl-acetic acid derivative, binds the CMV
terminase complex and inhibits the processing and packaging of DNA concatemers
into smaller viral particles (139, 140). Importantly, this mechanism of action disrupts a
later stage in the viral life cycle (i.e., after DNA replication has occurred) than currently
approved DNA replication inhibitors. This difference might have implications for as-
sessments of CMV loads by qPCR, especially in patients receiving letermovir for
established CMV infection rather than prophylaxis. In the pivotal phase 3 double-blind
RCT in R� HCT recipients, 12 weeks of letermovir significantly reduced the incidence of
clinically significant CMV infection, defined as the initiation of PET for viremia or
end-organ disease (37.5% in the letermovir arm versus 60.6% in the placebo arm),
24 weeks after HCT (135). Follow-up analysis showed that letermovir was effective even
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among patients with CMV viremia at randomization (141). Letermovir was well toler-
ated, with a low incidence of overall adverse events and no significant hematological
toxicity. There was a nonsignificant reduction in all-cause mortality at week 48 post-
transplantation: 20.9% in letermovir recipients and 25.5% in the placebo group (135). In
a post hoc analysis (142), in the letermovir group, there was no difference in mortality
between those with and those without clinically significant viremia (CS-CMVi). In
contrast, in the placebo group, the all-cause mortality rate at week 48 post-HCT was
higher in patients with than in those without CS-CMVi (31.0% versus 18.2%). These
results suggest that letermovir may reduce mortality by preventing or delaying CS-
CMVi in HCT recipients.

Similarly, letermovir provides the option of prophylaxis in SOT patients without the
adverse hematological profile of valganciclovir or ganciclovir. A phase 3 clinical trial of
letermovir prophylaxis in D� R� KT patients is ongoing (ClinicalTrials.gov identifier
NCT03443869). Limitations of letermovir include a potentially lower barrier to the
emergence of resistance (143, 144) and a lack of activity against other herpesviruses,
necessitating the use of additional antiviral agents for the prevention of herpes simplex
virus and varicella-zoster virus infections. Letermovir is a cytochrome P450 3A (CYP3A)
inducer and a CYP2C8 and organic anion-transporting polypeptide 1B inhibitor (139).
Drug interactions with other commonly used transplant medications are anticipated
and may have clinical consequences (145), and letermovir requires a substantial dose
reduction when coadministered with cyclosporine as well as monitoring and adjust-
ment of the tacrolimus dose when used concurrently (146, 147).

Maribavir, an oral benzimidazole L-riboside, competitively inhibits ATP binding to
CMV UL97 kinase and interferes with viral packaging and egress (148). This drug was
initially developed for prophylaxis, and maribavir prophylaxis in HCT recipients de-
creased CMV infection compared with the placebo in a phase 2 dose-escalation study
(149). However, phase 3 studies evaluating twice-daily (BID) dosing at 100 mg for
prophylaxis in liver transplant recipients and HCT recipients failed to prevent CMV
disease (131, 150). It has been postulated that the studied dose was too low; current
studies for treatment are using significantly higher doses (151). Currently, further
studies for maribavir prophylaxis are not planned, and the focus of development has
shifted to studies of treatment of established infection: PET and treatment of resistant
or refractory infection. A recent phase 2, open-label, maribavir dose-blinded trial
evaluated three doses of maribavir for PET in HCT recipients with CMV viremia (152).
Subjects were randomly assigned to receive various doses of maribavir (n � 117) or a
standard treatment dose of valganciclovir (n � 39) for up to 12 weeks. Maribavir at
400 mg BID or higher had rates of CMV clearance equivalent to those of valganciclovir.
High rates of GI side effects but low rates of neutropenia were reported in the maribavir
arm compared to the valganciclovir arm (152). A recent phase 2 trial compared
maribavir treatment at different doses (400 mg BID, 800 mg BID, or 1,200 mg BID) for
refractory or resistant CMV in recipients of HCT or SOT. In that trial, CMV viremia
resolved by 6 weeks in 67% (n � 120) of patients (153). In regard to drug interactions,
maribavir has been found to be a weak inhibitor of P�glycoprotein activity but did
not affect CYP2D6 (154). The role(s) of maribavir for the treatment of refractory/
resistant infection or as PET will be better defined by the two ongoing phase 3 trials
(ClinicalTrials.gov identifiers NCT02927067 and NCT02931539).

Brincidofovir (CMX001) is an oral lipid-conjugated nucleotide analog and oral pro-
drug of cidofovir that has been evaluated for the prevention of CMV. In phase 2
dose-ranging studies in HCT patients, brincidofovir was found to decrease CMV infec-
tion compared to the placebo (133). However, in a subsequent phase 3 trial, brincido-
fovir failed to prevent clinically significant CMV infection by week 24 after HCT and was
associated with significant GI toxicity (136). Further development of oral brincidofovir
for CMV prevention in transplant recipients has therefore been halted. An intravenous
(i.v.) formulation with a more favorable toxicity profile is currently being developed and
is expected to undergo clinical trials in HCT recipients in the near future (155).
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Novel Approaches: Serosorting

Serosorting is a CMV prevention strategy in which grafts are preferentially directed
to recipients with a matching CMV serostatus. Current guidelines for HCT recommend
that, when possible, serosorting should be used for both CMV-seronegative and
-seropositive recipients (36, 156). A positive donor or recipient CMV serostatus is
independently associated with increased mortality (109, 157). More recently, there has
been renewed interest in utilizing the serosorting approach in SOT, although this was
previously deemed infeasible due to concerns about delays of life-saving transplanta-
tion (158). Despite multiple potential limitations of this approach (the applicability to
seronegative patients only, the potential delay in transplantation with associated risks,
the decreased pool of available donors, and the lack of incorporation of CMV serostatus
into current organ allocation policies), recent studies have suggested that serosorting
might be feasible and improve outcomes by reducing direct and indirect impacts of
CMV, specifically in kidney transplant recipients (159, 160). The broader applicability of
this approach to other transplant populations and across a range of allocation settings
remains to be defined but represents an important area of future investigation.

Novel Approaches: Vaccines

Impairment in CMV-specific immunity is the primary mechanism that underlies
CMV-associated complications in HCT and SOT recipients and other immunosuppressed
populations. While specific immunological correlates of risk or protection have not
been fully characterized, major targets of the immune response are well studied
(161–163). In theory, a vaccine could directly target the host deficits that underlie CMV
reactivation and disease and drive a protective immune response that could control
viral reactivation and prevent disease.

The development of a CMV vaccine has been studied for decades (164), focused
primarily on preventing or mitigating congenital CMV; there is now also a focus on
transplant populations (165–167). In this context, several vaccine candidates have
emerged and entered clinical trials, with mixed results (Table 8) (165–167). A vaccine
based on recombinant CMV glycoprotein B (gB) formulated with the MF59 adjuvant
was administered (3 doses pretransplantation) to kidney and liver transplant recipients
in a double-blind phase 2 trial and significantly increased antibodies to gB regardless
of recipient serostatus (168). Vaccinated recipients also had a shorter duration of
viremia (which was inversely correlated with the magnitude of the gB antibody
response) and a decrease in CMV treatment days compared with those who received
a placebo (168). ASP0013, a DNA-based vaccine encoding gB and the tegument
phosphoprotein 65 (pp65), recently yielded disappointing results in both a phase 2
study in SOT and a phase 3 study in HCT recipients. In the phase 2 trial, kidney
transplant (D� R�) recipients who received the vaccine showed no reduction in CMV
viremia compared to unvaccinated subjects (169). In the phase 3 trial (ClinicalTrials.gov
identifier NCT01877655), vaccinated CMV R� HCT recipients showed no reduction in
the primary endpoint, which was a composite of overall mortality and CMV end-organ
disease through 1 year after transplantation. Secondary endpoints, including viremia,
duration of antiviral therapy, and overall mortality, also showed no benefit associated

TABLE 8 Selected CMV vaccine candidates for prevention of CMV infection in transplant
recipients

Candidate Type of vaccine Target(s) Reference(s)

gB Recombinant protein gB 168
MVA Triplex Vector (MVA) pp65, IE1-exon 4,

and IE2-exon 5
174, 279

HB-101 Vector (LCMV) gB and pp65 175
ASP0113 DNA gB and pp65 132, 169
PepVax Chimeric peptide pp65 171, 172
ALVAC-pp65 Vector (canarypox virus) pp65 280, 281
Towne Attenuated strain Whole virus 282

Limaye et al. Clinical Microbiology Reviews

January 2021 Volume 34 Issue 1 e00043-19 cmr.asm.org 18

https://cmr.asm.org


with vaccination (170). A chimeric peptide vaccine targeting the well-conserved pp65
epitope HLA A*0201 pp65495–503, PepVax, was assessed in HCT recipients in a random-
ized phase 1b trial; a phase 2 trial in this population is ongoing (ClinicalTrials.gov
identifier NCT02396134). Vaccination led to significantly increased pp65-specific CD8�

T cells expressing effector phenotypes, reduced CMV reactivation and antiviral usage,
and increased relapse-free survival (171–173).

The Triplex vaccine, which is based on a modified vaccinia virus Ankara (MVA) strain
encoding three CMV antigens (pp65, immediate early protein 1 [IE1]-exon 4, and
IE2-exon 5), was well tolerated in a randomized, multisite phase 2 trial in HCT recipients
(ClinicalTrials.gov identifier NCT02506933) (174). A lower-than-anticipated incidence of
CMV events prevented conclusive statistical analysis of the primary endpoint, CMV
reactivation events through day 100 after HCT (defined as �1,250 CMV DNA IU/ml,
low-level reactivation prompting antiviral therapy, or CMV disease). CMV events oc-
curred in 5 patients (9.8%) in the vaccinated group and 10 recipients (19.6%) in the
placebo group. Trials are ongoing to evaluate Triplex for additional applications in
transplant recipients. HB-101 is also a vector-based vaccine; it is based on attenuated
recombinant lymphocytic choriomeningitis virus (LCMV) and expresses the antigens
pp65 and truncated gB. HB-101 was well tolerated in a phase 1 dose-escalation trial
(175) and is currently being evaluated for living donor kidney transplant recipients (D�

R�) in a phase 2 trial (ClinicalTrials.gov identifier NCT03629080). An mRNA-based
vaccine (mRNA-1647) encoding gB and the CMV pentameric complex was well toler-
ated and immunogenic (dose-related increase in neutralizing antibodies), based on
interim results from a phase 1 trial (ClinicalTrials.gov identifier NCT03382405) (176).

The approach of directly addressing the underlying host deficit(s) that predisposes
to CMV infection and disease through vaccination is conceptually attractive. However,
significant challenges to the eventual development of a CMV vaccine remain, including
selecting the appropriate target(s), defining the optimal vaccination schedule (pre-
versus posttransplantation, or donor or recipient, etc.), and selecting appropriate
endpoints and populations for clinical trials. Moreover, the optimal approach to vac-
cination may differ for SOT versus HCT. Ultimately, there could still be a significant
beneficial impact of even a partially effective vaccine, which could be combined with
other interventions (prophylaxis and PET, etc.) (Fig. 3 and 4) for optimizing the control
of CMV infection and disease in transplantation.

Novel Approaches: Monoclonal Antibodies

Prior to the development of antivirals, CMV hyperimmune globulin (CMV Ig) was
licensed for the prevention of CMV disease after kidney transplantation, based on
randomized trials showing benefit (177, 178). However, the benefit of CMV Ig in HCT
recipients was less certain (179). In modern clinical practice, antivirals have largely
replaced CMV Ig in preventive strategies. Progress in understanding how CMV enters
cells has led to the identification of specific targets for CMV entry into primary target
cell types (180–183), including epithelial and endothelial cells (pentameric complex)
(106, 184). Through the use of recombinant technology, these advances have led to the
development of more potent CMV Ig preparations (23, 185). In a recent study that
retrospectively evaluated samples from a prior RCT (179) in D� R� HCT recipients,
patients who received i.v. CMV Ig (IVIG) prophylaxis (n � 28) showed a trend toward
high weekly pentameric complex entry neutralizing antibody titers and low rates of
primary CMV infection compared to the control group (n � 33) (184). Complementary
preclinical data have demonstrated that strain-specific antibodies that recognize CMV
are sufficient to prevent CMV reactivation in a murine model (186). As a result, there is
renewed interest in the potential of CMV antibodies in transplant populations.

An initial trial of a monoclonal antibody against CMV glycoprotein H (gH) showed no
significant benefit for preventing CMV infection in HCT recipients (187). This product
was not developed further after a trial in HIV-infected patients with CMV retinitis was
halted prematurely due to increased mortality in subjects who received the monoclonal
antibody (188). More recently, a phase 2 trial in kidney transplant recipients (D� R�) has
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demonstrated favorable results for RG7667, a combination of two high-affinity anti-
bodies, each targeting a neutralizing epitope required for viral entry (on gH and the
gH/gL/UL128/UL130/UL131 complex, respectively) (23). RG7667 prolonged the median
time to viremia, decreased the incidence of CMV infection at 24 weeks posttransplan-
tation, and reduced the incidence of CMV disease compared to a placebo (23). A second
CMV-targeting monoclonal antibody product, CSJ148, similarly consists of two anti-
bodies that target CMV gB and the pentameric complex (185). CSJ148 was well
tolerated in a recently completed phase 2 trial in HCT recipients; however, the study did
not meet its primary endpoint of reducing clinically significant CMV reactivation
(ClinicalTrials.gov identifier NCT02268526) (189). Based on the phase 2 data for RG7667,
potent neutralizing monoclonal CMV antibody preparations targeting the pentameric
complex appear to show clinically relevant anti-CMV activity in certain transplant
settings (D� R� with primary infection). However, the need for i.v. infusions, the modest
observed clinical benefit, and the availability of alternatives make it unlikely that CMV
antibody preparations will be used as a stand-alone primary CMV prevention modality
in transplant recipients. Future studies should assess their potential additive/synergistic
effect with other CMV prevention measures (antivirals and vaccination) (Fig. 3 and 4) in
the highest-risk populations and as potential adjuncts to antiviral therapy in patients
with severe CMV disease in the context of primary infection. Recent preclinical data also
indicate that the strain specificity of the antibody preparation may be an important
consideration for effective antibody-mediated CMV control (186).

DRUG-RESISTANT/REFRACTORY CMV: IDENTIFICATION OF RESISTANCE AND
ALGORITHMS FOR TREATMENT

Antiviral-resistant CMV is an uncommon but important clinical problem in trans-
plantation and has recently been reviewed (22, 190–192). The underlying pathogenesis
and risk factors appear to include severely impaired CMV-specific immunity, high viral
loads, and prolonged viral replication in the presence of incompletely suppressive
antiviral drug exposure, with the eventual selection and expansion of resistant mutants
(193–199). The incidence of resistance is much higher among recipients of SOT than
among those of HCT. In a retrospective case-control study of SOT patients, 1% of all
SOT patients had genotypically confirmed ganciclovir resistance (193). The inci-
dence of resistance ranged widely, from 0.4% in liver transplant recipients to 12%
in lung transplant recipients (193). Among SOT populations, virtually all resistance
occurs in the high-risk D� R� subset, while among HCT recipients, resistance occurs
in R� populations with severe immunodeficiency (193, 198–200). Recent studies
indicate that antiviral resistance is associated with significant additional attribut-
able morbidity and mortality in SOT recipients compared with drug-susceptible
CMV disease (193).

Mutations that confer resistance to antiviral drugs are typically not present at
baseline but emerge and become amplified over time and eventually become the
predominant viral population in the presence of an incompletely suppressive drug (11,
201). These mutations (typically substitutions or deletions) confer various degrees of
fitness advantage in the presence of the drug. For long-established antiviral drugs
(ganciclovir, foscarnet, and cidofovir), mutations associated with phenotypic resistance
have been well characterized and include canonical mutations at specific codons
(accounting for the majority of resistant strains from clinical specimens) and some
newly described mutations outside these regions (190, 202). The characterization of
these mutations and their impact on phenotypic drug resistance has paved the way
for the development of diagnostic genotypic assays to detect mutations directly in
clinical specimens (e.g., blood, cerebrospinal fluid, and ocular fluid). Direct detec-
tion of mutations from clinical specimens is advantageous because a genotypic or
phenotypic assessment of viral isolates requires weeks or months and is therefore
of limited clinical value. However, assays for genotypic resistance have several
limitations: they have not been well standardized, might not target all resistance-
encoding loci, and may variably report mutations that have not been definitively
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shown to confer phenotypic resistance by marker transfer experiments (polymor-
phisms). In addition, detection of resistance is feasible only if the viral load is above
a particular threshold and the mutant virus represents at least a certain minimum
proportion of the total viral population (203).

Traditionally, diagnostic assays for CMV resistance have been based on Sanger
sequencing. However, deep-sequencing technologies offer improved sensitivity versus
the Sanger method at low viral loads (�1,000 copies/ml) or when mutant virus
represents a minority (�20%) of the total viral population (203–211). Next-generation
sequencing-based detection of resistance mutations has been performed on tissue
samples and for the identification of compartmentalized resistance (212). Thus, next-
generation sequencing has the potential to allow earlier identification of CMV resis-
tance and guide targeted therapy but requires further study.

The availability of new antivirals for CMV necessitates an expansion of the targets of
diagnostic assays for CMV resistance. Originally, for the detection of resistance to
ganciclovir, cidofovir, or foscarnet, these assays targeted narrow regions of the UL97
kinase and UL54 viral DNA polymerase genes since all known phenotypic resistance-
conferring mutations from clinical isolates occurred in these regions. Mutations in UL97
confer various degrees of phenotypic resistance to ganciclovir. In contrast, mutations in
UL54 can confer higher-level resistance to ganciclovir, tend to occur as a second step
after mutations in UL97 have developed, and can confer cross-resistance to cidofovir
and/or foscarnet, depending on the specific mutation(s). Detailed maps of resistance-
conferring mutations in UL97 and UL54 (Fig. 5) have been reported previously (22, 200)
and were recently updated in a review (190). As letermovir has been evaluated in vitro
and used clinically, mutations that confer phenotypic resistance to this new antiviral
have been identified (Fig. 5) (134, 135, 190, 213, 214). Specific mutations that occur in
multiple loci, including UL56, UL89, and UL51, and their relative impact on phenotypic
resistance have been recently reviewed (143, 190, 192). Commercially available tests for
detecting mutations in UL56 that are associated with phenotypic letermovir resistance
are now available (215). An investigational antiviral agent (maribavir) is being studied
as a therapy for established CMV infection in transplant recipients. Mutations that
confer phenotypic resistance to maribavir have been identified in UL97 (216); the
mutations most commonly selected in vivo do not confer significant resistance to
ganciclovir.

Clinical guidelines and algorithms for the identification of potential CMV drug
resistance to ganciclovir and management strategies have been reported (22, 36, 199).
In patients with sight- or life-threatening CMV infection and suspected antiviral resis-
tance, an empirical switch to an alternative antiviral is recommended while awaiting
genotypic testing results, which typically take several days to weeks. Genotypic resis-
tance should be suspected when, after �2 weeks of full-dose valganciclovir or ganci-
clovir treatment, there is no reduction in the viral load or if there is no significant
improvement in clinical symptoms (193). Specific algorithms for suspecting resistance
to either maribavir or letermovir in patients receiving these drugs for either prophylaxis
or treatment have not yet been reported. Because of potentially lower barriers to
resistance and different kinetics of the virologic response, the thresholds for resistance
testing might need to be modified from those for ganciclovir. Until more formalized
recommendations are available, resistance should be considered in cases of break-
through infection with sustained or rising viral loads during prophylaxis (letermovir) or
a failure to have a clinical or virologic response (maribavir). Based on genotype/
phenotype studies, the specific genotypic results are useful for the rational selection of
alternate antivirals with predicted antiviral activity, although options are limited in
situations with multidrug-resistant isolates.

There are no RCTs for second- and third-line agents, which include foscarnet and
cidofovir, respectively, in the setting of CMV resistance. Ganciclovir is more fre-
quently cross-resistant with cidofovir than foscarnet, making foscarnet the drug of
choice for high-level ganciclovir mutations in UL97 and UL54. Foscarnet therapy for
refractory and resistant CMV infection was reviewed for 39 transplant recipients (22
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FIG 5 Drug resistance-associated mutations in CMV genes. CMV gene mutation maps for UL54, UL97, and UL56 show
structural domains and the locations of identified resistance mutations. Color-coding indicates the resistance
phenotype (A and B) and the degree of resistance conferred (C). GCVr, ganciclovir resistant; CDVr, cidofovir resistant;
FOSr, foscarnet resistant; MBV-R, maribavir resistant; ZF, zinc finger; LZ, leucine zipper; NLS, nuclear localization signal;
EC50, 50% effective concentration. (Reproduced from reference 190 with permission of Elsevier.)
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SOT and 17 HCT) with 15 documented ganciclovir resistance mutations (217).
Recipients were treated for a median of 32 days with foscarnet, with 13 (33%)
experiencing virologic failure and 20 (51%) experiencing renal dysfunction. Data for
cidofovir therapy are limited in SOT and HCT. In a retrospective study, 82 HCT
recipients (47 of whom had previously received ganciclovir, foscarnet, or both
drugs) received a median of 22 days of cidofovir. Response rates were reported to
be 66% for primary and 68% for secondary cidofovir PET, with 25.6% nephrotoxicity
(218). Smaller case series have shown some efficacy of cidofovir therapy (22). In nine
SOT recipients with ganciclovir-refractory CMV disease, seven (78%) cleared CMV,
and two (22%) had an incomplete response to cidofovir therapy (219). Kidney
dysfunction was common, affecting seven out of nine (78%) patients, three of
whom developed renal failure. In summary, the suboptimal outcomes and
treatment-limiting nephrotoxicity of foscarnet and cidofovir for refractory and
ganciclovir-resistant CMV treatment highlight the need for new therapies.

NEWER DRUGS AND APPROACHES FOR RESISTANT/REFRACTORY CMV
Novel Agents

As discussed above, several new antivirals for CMV either were recently approved or
are in advanced clinical development: letermovir, maribavir, and brincidofovir. Key
parameters for these drugs, including targets, formulations, and side effects, are
summarized in Table 9.

Letermovir has been shown to be effective for CMV prophylaxis in R� HCT recipi-
ents. However, there are limited data on its use for the treatment of established CMV
infection in transplantation, although its tolerability and in vitro activity against resis-
tant CMV (mutations in UL97 and/or UL54) make it an attractive treatment option. Early
during development, a small study used significantly lower doses of letermovir than
those approved for prophylaxis (40 mg BID or 80 mg once per day) for the treatment
of asymptomatic viremia in kidney transplant recipients (n � 9 for each group) and
reported rates of virologic response similar to those of the comparator, valganciclovir
(n � 9) (220). In a more recent study of four lung transplant patients and one HCT
recipient with refractory or resistant CMV, letermovir either alone (n � 2) or with
foscarnet or ganciclovir (n � 3) led to a significant decrease in CMV viremia in four out
of the five subjects (221). No UL56 mutations were identified, and treatment failure was
attributed to a lower dose of letermovir, 240 mg daily, as opposed to the 480-mg daily
dosing used for prophylaxis. In another recent case series of four SOT (two lung
transplant and two heart transplant) patients, letermovir was administered either alone
(n � 1) or in combination with intravitreal foscarnet or ganciclovir (n � 3) (222). Induc-
tion treatment was initiated at a dose of 720 mg and was increased to 960 mg in one
patient. All four patients had resolution of retinitis upon fundoscopic examination but
failed to achieve sustained viral suppression. In a third recent case series, four lung
transplant patients with CMV infection/disease were treated with letermovir at 480 mg/
day following treatment failure (223). Clearance of CMV viremia was observed after
17.7 	 12.6 weeks, although 2 patients still had low-level viremia (�1,000 IU/ml) at
3 months. UL56 mutations were not assessed in this study. Quantification of CMV-
specific CMI (by the T-Track assay) revealed that only one patient (of three tested) had
a positive T-Track result. CMV viremia was undetectable in this patient at 3 months and
did not relapse despite the discontinuation of letermovir. Based on this result, the
authors suggested that CMI as well as letermovir use may have contributed to viral
clearance. In all of these studies, letermovir was well tolerated. Further investigation of
the optimal dosing and efficacy of letermovir for the treatment of established CMV
infection is needed, particularly given the apparent lower barrier for the development
of letermovir resistance in vitro.

In a phase 2 study evaluating maribavir as salvage therapy for resistant or refractory
CMV infection, 63% to 70% of HCT and SOT patients receiving �400 mg BID achieved
undetectable viral loads at 6 weeks (153). Maribavir was reasonably well tolerated, with
65% of patients reporting dysgeusia as the most commonly reported adverse event.
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Additionally, a phase 2 study showed similar efficacies of maribavir and valganciclovir
for PET of CMV reactivation in HCT recipients (152). An advantage of maribavir appears
to be the lack of any significant myelotoxicity. However, there were higher rates of
attributable adverse events (mostly GI) and higher rates of emergence of resistance
during maribavir therapy than with comparator agents. Phase 3 clinical trials are
ongoing to evaluate the efficacy and safety of maribavir for PET of CMV in HCT
(ClinicalTrials.gov identifier NCT02927067) and for the treatment of resistant or refrac-
tory CMV in SOT and HCT (ClinicalTrials.gov identifier NCT02931539).

Although brincidofovir was initially developed for the prevention of CMV, there is
some experience with its use as a therapy for established CMV infection. Based on the
failure of brincidofovir in a phase 3 trial of CMV prevention in HCT recipients, no further
clinical development of brincidofovir for the prevention or treatment of CMV in
transplant populations is planned. During development, a few case reports showed
promising results for brincidofovir as a salvage therapy for resistant and refractory CMV
infection/disease associated with UL97 mutations (224–226), although UL54 gene
mutations were a limiting factor. A major theoretical advantage of brincidofovir over
the parent compound, cidofovir, is reduced nephrotoxicity. However, Faure et al.
reported potential brincidofovir-induced tubular necrosis in two SOT recipients (one
kidney transplant and one heart transplant) receiving therapy for resistant CMV (227).
Both patients had complicated clinical courses with prior renal failure and previous
exposure to known nephrotoxic medications, but kidney function improved following
brincidofovir withdrawal in both cases. This is suggestive of a possible association of
brincidofovir with tubular necrosis and warrants further investigation. Brincidofovir is
not currently available for compassionate use for the treatment of CMV.

Both artesunate, an antimalarial drug, and leflunomide, an immunosuppressant,
demonstrate in vitro activity against CMV (228–230). Leflunomide has been used for
resistant CMV in case series and case reports, but definitive evidence of a clinical benefit
is lacking (231–236). Leflunomide is limited by hepatoxicity and marrow suppression
(237, 238). Artesunate has had mixed outcomes for the treatment of resistant CMV in
case reports (239, 240). An artesunate derivative with more potent in vitro activity
against CMV is being studied (241).

Novel Approaches: Cellular Therapies

Infusion of virus-specific T cells (VSTs) has been explored as a strategy to treat or
prevent CMV disease by directly reconstituting CMV-specific cellular immunity. In 1991,
Riddell et al. first generated CMV-specific CD8� T cells by ex vivo clonal expansion of
cells from bone marrow donors and demonstrated that infusion of these cells could
prevent CMV infections in allogeneic HCT recipients (242). Since then, small case series
have demonstrated the feasibility and efficacy of this approach for the treatment of
resistant or refractory CMV in HCT recipients and identified improvements in methods
for generating VSTs (243–245). However, widespread utilization in HCT continues to be
limited by various technical issues. Studies of VSTs for the treatment of CMV in SOT
recipients are more limited.

Recently, several important advances have increased the feasibility of VSTs, leading
to the development of multiple new products. Specifically, the development of off-
the-shelf VSTs (246–249), an approach in which VSTs are isolated and expanded from
third-party donors and banked, has the potential to allow timely treatment for a
broader population of transplant recipients. Protocols for the in vitro selection and
expansion of VSTs in a shorter time frame have also been developed (250–252), and
progress has been made on regulatory advances such as good manufacturing practice
(GMP)-compatible manufacture and scalability.

For HCT, results from small cohort trials and case-control trials have indicated that
VST therapy is generally tolerated and feasible and associated with high response rates.
In a prospective case-control study of haploidentical stem cell transplant patients, 27
out of 32 patients with drug-refractory CMV infection had viral clearance within 4 weeks
of VST infusion (253). Similar results were reported in a single-arm prospective study of
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third-party VSTs designed to target multiple viruses; of 16 patients treated for CMV, 6
patients had a complete response, and 10 had a partial response, with a cumulative
response rate of 94.1% (249). A recent study in which VSTs were used to treat
drug-resistant CMV encephalitis in two HCT recipients suggests that VSTs may be an
effective treatment option for CMV infections involving the central nervous system
(254). Recent data also suggest a sustained response after VST infusion. In a prospec-
tive, multicenter trial of third-party VSTs in 30 patients (28 of whom were treated for
CMV), the cumulative incidence of overall responses was 93% 12 months after VST
infusion, with complete responses in 76% of subjects (255).

In the SOT setting, several case reports of VSTs as salvage therapy for ganciclovir-
resistant CMV have yielded variable results. In lung transplant recipients, autologous
VST infusion resulted in the clearance of ganciclovir-resistant CMV following four
infusions in one case (256). A second lung transplant recipient, who had CMV pneu-
monia, had complete clinical recovery after VST infusion (257) but developed recurrent
low-level viremia and died a few weeks later due to allograft rejection (257). In a kidney
transplant recipient, a third�party partially HLA�matched VST infusion preceded a
significant decrease in CMV viral load and disease upon renal biopsy (258), with
sustained low-level viremia (73 copies/ml) at 1 year (258). In another report, a multi-
visceral transplant recipient with ganciclovir-resistant CMV received HLA-matched VSTs
(259). The infused VSTs showed proliferation in vivo; however, the patient died on
postoperative day 214 from multiorgan failure (259). Recently, a prospective study of
VSTs in SOT recipients with recurrent or resistant CMV showed improvements in
symptoms in 11 of 13 patients treated, including complete resolution, a reduction of
CMV DNA in blood, and/or reduction or cessation of antiviral drugs (260).

The use of VSTs to treat or prevent CMV is an active area of research with multiple
ongoing trials (see Table S1 in the supplemental material), mostly in the HCT setting
(261, 262). Data from controlled studies are necessary to define the optimal role(s) of
VSTs for the treatment and/or prevention of CMV disease in the transplant setting.
Infusions of natural killer (NK) cells are another potential immunotherapeutic approach
for controlling CMV infections (263). NK cells have activity against a diverse range of
pathogens and are currently being investigated in multiple trials for anticancer effects
(264). Recent studies suggest that NK cells have a role in protection against CMV
reactivation following HCT (265, 266); further investigation of this approach is needed.

ONGOING AND RECENTLY COMPLETED TRIALS

This is an exciting time for CMV research, with numerous ongoing or recently completed
trials for improving the diagnosis, prevention, and treatment of CMV (Table S1). In diag-
nostics, two trials (ClinicalTrials.gov identifiers NCT02538172 and NCT03699254) are assess-
ing the utility of measuring CMV immunity to guide antiviral prophylaxis following kidney,
liver, and lung transplantations. Another trial (ClinicalTrials.gov identifier NCT03910478)
aims to address a major logistical hurdle of PET at late time points after HCT by using
mobile-device-supported, self-collected dried blood spots for monitoring CMV viral
loads. Following the approval of letermovir for prophylaxis in HCT recipients through
100 days after transplantation, one ongoing phase 3 trial (ClinicalTrials.gov identifier
NCT03443869) is evaluating the efficacy of extending this to 200 days, while another
(ClinicalTrials.gov identifier NCT03930615) is testing letermovir for prophylaxis in kid-
ney transplant recipients. Two phase 3 trials (ClinicalTrials.gov identifiers NCT02927067
and NCT02931539) are ongoing to determine the role of maribavir for PET and the
treatment of refractory or resistant CMV in the HCT setting. A phase 3 trial of the
ASP0113 vaccine recently failed to meet its primary endpoint of overall mortality
and CMV end-organ disease (267). However, efforts to develop a CMV vaccine
continue, with large phase 2 trials of the PepVax (ClinicalTrials.gov identifier
NCT02396134), Triplex (ClinicalTrials.gov identifier NCT04060277), and HB-101
(ClinicalTrials.gov identifier NCT03629080) vaccines ongoing. Numerous early-stage
trials involve VST infusions as treatment for persistent or refractory CMV, prophylaxis, or
treatment of initial infection or reactivation. Currently, a multinational, placebo-
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controlled, phase 3 clinical trial (TRACE [EudraCT identifier 2018-000853-29]) is planned
to evaluate the role of VSTs for the treatment of refractory CMV in HCT recipients (268).
The results of these trials will be eagerly anticipated and will guide the future of CMV
diagnosis, prevention, and treatment.

CONCLUSIONS AND FUTURE DIRECTIONS

Over the past decade, there have been important advances in the prevention,
diagnosis, and treatment of CMV in the transplant setting. The advent of preventative
strategies has reduced the prevalence of early CMV infection, shifting the epidemiology
of CMV toward late-onset disease. Highly sensitive diagnostic testing has improved
pretransplant risk stratification and posttransplant screening of transplant patients.
New treatments, including letermovir and VST infusions, expand the repertoire for
managing CMV infection and disease.

However, many challenges remain. First, a positive CMV donor and/or recipient
serostatus is persistently associated with worse clinical outcomes, indicating that
new advances will be necessary to eliminate the impact of CMV on patient
outcomes after transplantation. Available antivirals have several limitations, toxicity,
resistance, and/or cost, as do other, nondrug therapies such as VST infusions.
Likewise, diagnostic tools are currently imprecise for optimizing risk stratification,
leading to overtreatment and associated complications. Finally, the last decade has
shown limited progress in vaccine development, including the failure of a promis-
ing DNA vaccine candidate.

Within the next 10 years, several key advancements are likely to further diminish the
impact of CMV on transplantation. Interventional studies of diagnostic tools such as
CMV immune monitoring assays may facilitate increasingly targeted prevention/treat-
ment strategies through more precise risk stratification. Similarly, rigorous assessments
of novel prevention (e.g., vaccines) and treatment (e.g., VSTs) strategies will help to
define their potential role in transplantation and potentially other clinical settings. Drug
discovery efforts remain a high priority due to current treatment toxicities and resis-
tance, while vaccine development continues to be a key goal for CMV prevention
efforts.
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