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a b s t r a c t

Since the start of the pandemic caused by the novel coronavirus, COVID-19, more than 106 million
people have been infected and global deaths have surpassed 2.4 million. In Chile, the government
restricted the activities and movement of people, organizations, and companies, under the concept
of dynamic quarantine across municipalities for a predefined period of time. Chile is an interesting
context to study because reports to have a higher quantity of infections per million people as well as
a higher number of polymerize chain reaction (PCR) tests per million people. The higher testing rate
means that Chile has good measurement of the contagious compared to other countries. Further, the
heterogeneity of the social, economic, and demographic variables collected of each Chilean municipality
provides a robust set of control data to better explain the contagious rate for each city. In this
paper, we propose a framework to determine the effectiveness of the dynamic quarantine policy by
analyzing different causal models (meta-learners and causal forest) including a time series pattern
related to effective reproductive number. Additionally, we test the ability of the proposed framework
to understand and explain the spread over benchmark traditional models and to interpret the Shapley
Additive Explanations (SHAP) plots. The conclusions derived from the proposed framework provide
important scientific information for government policymakers in disease control strategies, not only
to analyze COVID-19 but to have a better model to determine social interventions for future outbreaks.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

There are some claims in the press that the coronavirus is here
o stay, that the world needs to prepare for seasonal outbreaks
f a coronavirus as we do for the flu. Assuming that this belief
s true, then we need better models to understand the spread of
he outbreak so that we may be better prepared to mitigate the
ffects. The novel coronavirus, COVID-19, is among the largest
andemics in the last century. The Swine Flu (2009–2010) is
eported to have killed 200k people; Ebola (2014–2016) killed
1.3k; and, SARS (2002–2003) killed 770k (Discover, 2020). At
he time of this writing, COVID-19 is reported to have been
he cause of over 2.4-million deaths worldwide. However, the
umber of deaths is not uniform across the world nor is the
esponse. To try to control and stop the spread of the outbreak
orld leaders – presidents, congressmen and women, health
uthorities, health organizations and policy-makers – have taken
ctions to restrict movement thereby limiting contact of people.
or decision-makers, knowing what actions to take is difficult
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ttps://doi.org/10.1016/j.asoc.2021.107241
568-4946/© 2021 Elsevier B.V. All rights reserved.
since the choices are not recurrent and there is little previous
evidence in the recent past to draw upon about what actions to
take during a pandemic to support to their decisions. Hence, there
is a need to develop models that are better able to understand
the spread and growth of the outbreak to model the impacts that
interventions may have.

While some countries have been able to ‘‘flatten the curve’’
with respect to newly reported cases of COVID-19 others have
not. Many of the actions that countries have taken to slow the
spread have been met with protest and considered draconian. In
the U.S., for instance, the number of new unemployment claims
have reached all-time highs and the amount of money that the
federal government has spent on aid is staggering. The cause of
the unemployment and the spend in the U.S. are the result of
quarantines that have closed businesses and limited economic
activity [1]. In other areas of the world where governments were
initially able to curtail the spread, they have witnessed a regrowth
or second wave of COVID-19. Many of these countries are regions
that were in quarantine or lock-down, and when they reopened
the country to commerce and increased individual discretion to
move inside the cities the number of new cases quickly grew [2].
Nonetheless, there is hope for optimism as vaccines to prevent
COVID-19 are rolling out.

https://doi.org/10.1016/j.asoc.2021.107241
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107241&domain=pdf
mailto:werner.kristjanpoller@usm.cl
mailto:minutolo@rmu.edu
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Even though COVID-19 may be controlled by vaccines, the im-
act will be felt for a long time. This pandemic has demonstrated
o the world the fragility of humankind and the impact that new
pidemics may have on us as people and on world economies.
he propagation and transmission of a virus like COVID-19 in a
ighly connected world, given the efficiency of transportation and
he exchange/mobility of people between countries and regions,
s rapid. Therefore, we cannot reject the hypothesis that a new
irus may result in a pandemic that propagates even more rapidly
cross the world in the future. For this reason, we have to be
etter prepared with models built on prior experience and the
fficiency of the models to analyze the social, health, and sanitary
ecisions made to control future pandemics.
As stated previously, the vast majority of countries have im-

lemented social, health, and sanitary policies to mitigate the
pread of the virus. These decisions have had negative economic
mpacts, resulting in a significant decrease in the GDP of each
ountry. Given the economic and social impacts, it is important
o understand how effective the policies have been in actually
itigating the spread of the virus. It is in this context that this
aper analyzes different ways of measuring the efficacy of the
olicies implemented to mitigate the spread. Models used to
easure the efficacy of health policies have included the classical
onditional mean as well as econometric models such as the
ifference in difference. Two models that worked well when first
eveloped, the Verhulst and Richards models, have been found
o not perform well now despite the fact that they are still com-
only used [3]. Earlier logistics models may have performed well

n the past for the types of conditions that existed then but are
o longer valid under new global conditions. Hence, new models
ased on machine learning may be better given the increased
omputational ability and the capacity to take into consideration
ore features than traditional models. Muñoz Lezcano et al. [4]
rovide a great review of different machine learning, artificial
ntelligence and image processing models that are helping to
nderstand the pandemic and to improve the healthcare sys-
em tools for pandemic control. These tools can be applied to
orecast the pandemic spread, decision making, sanitary policies
nd disease understanding, among other important topics of any
andemic.
Meta-learning algorithms and causal forest are approaches for

ausal analysis that may prove to be more accurate to capture the
pread of a pandemic, under these new global conditions. Meta-
earning algorithms are gaining attention in causal analysis, as
hey use machine learning algorithms as the basis of the causal
nalysis. For this, they pose as the link between causality and
achine learning, where the framework focuses on a post process
f the output of the machine learning model to make the causal
nalysis. Meta-learners have been used in different domains such
s healthcare, datacenters, and marketing to name a few (e.g.
5–7]). Causal Forest is an algorithm that is modified to make
ausal inference. While based in Regression Forest (RF), but the
plitting criterion and the fitting process are modified to generate
n unbiased causal estimator. CF too has been applied to many
esearch fields such as economics, finance, and clinical diagnosis
e.g. [8–10]).

These machine learning methods, however, are not designed
o be able to analyze the effect of time. Nonetheless, time is es-
ential in the context of a pandemic since the number of infected
s a time series given contact, incubation, and infectious period
hich implies that there is a chronological order of the data.
ence, there is a need to both update the types of models that
e use and apply time series analyses to the applications. Herein

s the motivation for the current work: to develop a model that
etter assesses the spread of a virus given different health policies
hrough the application of machine learning techniques that takes
nto consideration the time series.
 t

2

Time series analysis is, however, widely used in different
esearch areas and techniques learned from these areas may be
pplied in this context. In particular, an analysis of any outbreak
eeds to take into account the time effect since the chronological
rder is fundamental to describing the pandemic behavior. Time
an be a proxy to a better understanding of the gravity of a
andemic for the population so that they understand and adopt
ersonal healthcare actions such as the use of a mask, hand
ashing, non-grouping as well as adjust and get used to new
ork conditions and lifestyle. Thus, we propose to add a time
elated feature to be used in a machine learning causality model.
his feature allows us to expand the dataset, as each municipality
as its own time series together with unique features of the
egion (e.g. population, density, etc.).

In Chile, the government restricted the activities and move-
ent of people, organizations, and companies, under the concept
f dynamic quarantine. The government implemented the dy-
amic quarantine policy over municipalities for a defined period.
hile, it turns out, is an interesting context because reports have
t having a higher quantity of infected people per million as
ell as a higher number of polymerize chain reaction (PCR)
ests per million. The higher testing rate means that Chile has
ood measurement of the infected compared to other countries.
dditionally, the heterogeneity of the social, economic, and de-
ographic variables of each Chilean municipality, allows us to
ave a robust set of control variables in the model to better
xplain the infection rate for each city. A good summary and com-
arative analysis of the Chilean dynamic quarantine measures can
e found in [11].
In this paper, we propose a framework to analyze time influ-

nce in a causal analysis of the COVID-19 pandemic in Chile with
he hypothesis that there is a time series pattern related to the
OVID contagious. Additionally, the behavior of the population
nder lockdown leads us to hypothesize that the effectiveness
f the quarantine depends on the weeks since first contagion
ase. Specifically, we contribute to the literature in two aspects:
irst, we include a time-related variable, Week Since First Case
WSFC), allowing the analysis of time in the outcome variable,
iving richer information as input variable to improve the perfor-
ance of the models; and, second, with WSFC we can evaluate

he influence, relationship, and causal influence of a particular
ndividual through time. This last contribution means that for a
articular individual, we have different information for different
oints of time, but also similar characteristics such as population
nd sewer, which do not change in the scope of this study. We
nalyze several different approaches for causal inference based on
achine learning, including meta-learners and causal forest. The

inal causal analysis is made with the best base learner model;
he one with the best modeling performance. This is motivated by
he econometric view of explanation, where the model that best
xplains the outcome variable could indicate the correct causal
nterpretation. Applying the proposed framework, we first find
he best model analyzing all the variables possible and then inter-
ret the causality and determine the effectiveness of the dynamic
ockdown policy. If the best model is not chosen, all the existing
odels are not analyzed, or available variables considered, then

he conclusions are not valid. Thus, we seek to evaluate the dy-
amic quarantine approach adopted by the Chilean government
or controlling the spread of the pandemic, considering the influ-
nce of time and socioeconomic factors. The conclusions provide
mportant scientific information for government policymakers on
isease control strategies, not only to analyze COVID-19 but to
ave better techniques to model social interventions in future
utbreaks.
In the next section, we present a brief literature review about
he COVID-19 analysis and modeling. In the following section,
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e describe the classical model to determine efficiency of the
anitary-health policies. Then we present and describe the pro-
osed model as well as the loss function to analyze model im-
rovement. In the fourth section, results are presented and an-
lyzed. Finally, in the fifth section, the main conclusions about
he efficacy of the dynamic quarantine policies are presented. We
hen present the conclusions about the modified model as well as
he limitations and future research.

. Literature review

Over the past several months, there have been many papers
hat study the pandemic; many of which are not about the med-
cal applications. In fact, a recent (February 02, 2021) search for
‘COVID-19’’ resulted in over 97,000.1 Given the breadth of topics
nd volume of publications, we will not summarize the entire
xtant of work done but rather highlight a sample of relevant
esearch as it relates to the current work. It is important to note
hat several studies are interdisciplinary, and from various parts
f the world, demonstrating the importance of the topic and the
emanding scientific collaboration to improve understanding of
he pandemic [12–14]. Many of the studies that have been con-
ucted are based on China, not surprisingly since the pandemic
riginated there and therefore has more information availability.
he studies of interest here can be classified into three broad
ategories: modeling of the evolution of the pandemic curve; ef-
ects of the health decisions and sanitary policies; and, efficiency
nalysis of the health and sanitary policies. We will briefly cover
ach of these areas below.

.1. Curve prediction

Two commonly used models for describing the dynamics of
he COVID-19 pandemic are the Verhulst and Richards models;
wo types of logistics models. However, Abusam et al. [3] found
hat these two types of models do not fit the actual results
f the curve well. In particular, they suggest that the misfit is
ikely due to structural problems. To deal with the structural
roblems, they suggest, may require re-parameterization. Part
f the challenge with using the Verhulst and Richards types of
odels may be based on the fact that the models were developed
ver 100 years ago. While the approach has worked well in
he past, the conditions under which they were developed no
onger apply. The speed at which people come into contact with
ach other across the world driven by airplanes and other rapid
odes of transportation has increased significantly. Additionally,

he volume of people traveling across boarders has also increased
ignificantly. These structural changes in the way that people
xist needs to be accounted for as models are updated.
While logistics models are certainly a traditional approach

or modeling the spread of the pandemic, they are not the only
ay to do it. For instance, Chintalapudi et al. [15], developed
seasonal autoregressive integrated moving average (SARIMA)
odel to forecast the spread of the virus in Italy. Their findings
ere able to predict up to 93% accuracy using the SARIMAmodels.
he benefit of the SARIMA is that it captures the time component
hich was not captured previously.
To take into consideration the spatial effect of a population,

uliyev [16] developed a series of spatial panel models. He looked
t the number of confirmed cases in Wuhan which had the largest
vailable dataset at the time. Modeling the spread in Wuhan was
n important extension of the literature not only from a method-
logical perspective but also from a need to understand the

1 https://scholar.google.com/scholar?as_sdt=0,5&q=covid+19&hl=en&as_ylo=
020.
3

propagation given the greater than 11-million people population
size. Guliyev first used a standard linear model (SLM) as the basis
of comparison and then modeled a spatial autoregression model
(SAR), a spatial error model (SEM), and a spatial Durbin model.
The intent was to be able to capture endogenous, exogenous, and
spillover effects that would otherwise be missed with standard
models thereby increasing accuracy. Guliyev found that the best
model was a spatially-lagged X model (SLX). However, he noted
that while the SLX model outperformed the other models in the
study, his results were only modeled on Wuhan and the sample
set was not particularly large. One of the recommendations was
further work in other contexts with potentially larger datasets.

The use of neural networks to model the spread of COVID-19
have also been developed. For instance, Wieczorek et al. [17] used
neural networks to model the global spread of the pandemic. In
some cases, their models were able to forecast the spread with
99% accuracy. They did try a recurrent neural network as well
but found that the training period took too long and therefore
was not an efficient approach. In another study, the authors com-
pare Gompertz, Logistic, and Artificial Neural Network models to
forecast the growth of cases [18]. This work is significant because
each of the models had similar forecasting capabilities as mea-
sured by the R2. However, the total number of cases forecasted
for each of the models was significantly different. Hence, the
need to continue to develop models which may be better able to
accurately forecast the true results. An interesting work is the one
of Fong et al. [19], where they applied deep learning with fuzzy
rules to enhance a composite Monte-Carlo for a better stochastic
understanding of the pandemic. Specifically, they separate the
models depending on the characteristic of the data. For highly
uncertain data they use a probabilistic approach, and for time
series data they use a deterministic approach. Both fits are feed
to the MC modeling for better predictions.

There has been an increasing amount of interest in trying to
do causal inference with a machine learning approach. Two main
approaches seen in the literature include modifying the internal
algorithm or adapting the problem to use machine learning as
plug-in functions. One of the most known algorithms from the
first approach is Causal Forest [20], which modifies the random
forest to been able to consider heterogeneity. Causal forest has
been used in a variety of studies such as medicine [21], finance
[22], and environmental policies [23] among others. It also has
been used in studies related to the COVID-19 pandemic, to eval-
uate treatment [24] and non-pharmaceutical interventions [25].
The second approach consists of training a machine learning
algorithm to learn the expected value of one of the groups in
a binary treatment setting, and then calculating the treatment
effect by difference. This approach has also been applied to sev-
eral areas including medicine [26], education [27], publication
recommendation [28], and others. To our knowledge, there are
no peer-reviewed published studies that apply meta-learners to
COVID-19 cases.

2.2. Effect of sanitary decisions

One of the most widely used approaches for modeling the
pandemic is the Susceptible–Exposed–Infective–Recovered (SEIR)
model [29]. Dur-e-Ahmad and Imran [30] use SEIR to determine
the basic reproductive number in the most affected countries to
date (14 March, 2020). For their data, they managed to make a
good pattern prediction of the R0, considering the novelty of the
virus. However, Tang et al. [31] claim that while the SEIR ap-
proach is one of the most widely used, it is not the best approach
in the current context since it does not take into consideration
the interventions taking place. In particular, the SEIR fails to fit
the data well because it lacks the ability to model the strength of

https://scholar.google.com/scholar?as_sdt=0,5&q=covid+19&hl=en&as_ylo=2020
https://scholar.google.com/scholar?as_sdt=0,5&q=covid+19&hl=en&as_ylo=2020


W. Kristjanpoller, K. Michell and M.C. Minutolo Applied Soft Computing Journal 104 (2021) 107241

t
E
T
b
a
i
Q

q
o
l
o
t
a
t
i
a
q
t
m
m
t
h

q
m
t
t
a
s
f
i
f
h
t
t
s

I
i
t
f
t
t
w

2

i
a
t
e
T
a
o
e
t

d
m
r
s
l
i
e

he interventions like the wide-scale use of the quarantines [31].
valuating the effectiveness of the quarantine strategy in China,
ang et al. [31] found that the pandemic is still uncertain and
ecause of this it is necessary to further enhance the quarantine
nd isolation strategies. Tang et al. [31] stratified their data to
nclude the typical SEIR but added a Susceptible–Quarantined and
uarantined–Suspected components.
Further extending the research beyond just the impacts of

uarantine, Hiremath et al. [32] analyzed the impact of lock-down
n mental health in India. Their findings suggest that while the
ockdowns may have a positive effect on reducing the spread
f the virus, it has a negative effect on psychological health in
he form of depression, anxiety, and panic disorder. Raveendran
nd Jayadevan [33] studied the role of reverse quarantine in
he control of COVID-19 and concluded that reverse quarantine
s a promising public health measure to reduce the morbidity
nd mortality associated with the disease. In particular, reverse
uarantine involves separating those with compromised systems,
hose most at risk, from the rest of the population in order to
inimize their exposure to the virus. While a promising way to
inimize their exposure, in light of Hiremath et al. [32], we ought

o be aware of the potential psychological effects that this might
ave on this population.
Gondim and Machado [34] expanded our understanding of

uarantines through the development of an age-structured SEIRQ
odel. In particular, they were able to demonstrate that quaran-

ine length may be relaxed by age. However, it should be noted
hat their model only included three age groups (young, adult,
nd elderly). Further refinement might be necessary to get the full
cope of the ages and it may be necessary to include an ‘at-risk’
eature to the age dimension to capture those with compromised
mmune systems. Nabi [35] extended the SEIR modeling even
urther in the development of an SEIDIUQHRD which included the
ospitalized, recovered, and the dead. His findings suggest that
he most important variables are the recovery rate of asymp-
omatic individuals and quarantining and that the relaxing of
ocial distancing measures too soon my result in spikes.
Annas et al. [36], apply the SEIR model in the context of

ndonesia. However, for their model, they add vaccination and
solation factors as model parameters to forecast the impact
hat these measures have on the mitigation of the spread. Their
indings suggest that not only does vaccination and isolation slow
he spread but that it might also facilitate healing. They suggest
hat their finding might be used as an early reference point for
hen the vaccine is developed.

.3. Efficiency of sanitary decisions

Cui et al. [37] studied the effects of the quarantine strategies
n Wuhan and mainland China, analyzing quarantine magnitudes
nd quarantine time points. The results show the importance of
he quarantine strategies in controlling the spread of the disease,
specially at the early period of the disease outbreak. Similar to
ang et al. [31], Cui et al. [37] added the quarantined susceptible
nd the quarantined exposed variables to the SEIR model. Using
rdinary differential equations, they were able to forecast the
fficiency of the quarantine magnitudes as well as the timing of
hem.

Chintalapudi et al. [15] analyzed the importance of the lock-
own and self-isolation in Italy in the control of disease trans-
issibility among the population applying Seasonal ARIMA. The

esults provide quantitative evaluations of how intervention mea-
ures and their timings succeeded, from which lessons can be
earned by other countries dealing with future outbreaks. Again,
n a study of the efficiency of impact measures in China, Xiao
t al. [38] found that when hospitals are established specifically
4

to treat those with COVID-19 the spread declined. In particular,
their findings suggest that early detection, reporting, quarantine,
and treatment are all necessary to reduce the spread.

Džiugys et al. [39], developed a simplified model using just
the Susceptible, Infectious, and Removed (SIR) to quantify the
overall effectiveness of the quarantine strategies. They found that
their model is effective at evaluating the overall effectiveness of
quarantine measures. However, they also identified some signif-
icant limitations in their approach. First, they acknowledge that
their approach might not work in instances where the country
is very large. Second, their approach cannot be applied when the
number of daily infected is too small. Therefore, they conclude,
more complex models of forecasting need to be developed.

As stated earlier, with over 97,000 articles in peer-reviewed
journals, it is not possible to summarize all of the extant literature
in the domain. Our goal here was to present some of the work in
the stream that typify the types of work ongoing and highlights
the development of the field. In the next sections, we present our
models, the data, and then the results.

3. Methodology

In this study, we propose a framework that consist of two
steps. First, we determine the best base model, which from the
outset we assume will explain better the causal interaction pre-
sented in the dataset. We test this for different base models
of meta-learners and also for causal forest. To determine the
best base model, we calculate Mean Square Error (MSE); Mean
Absolute Percentage Error (MAPE); and, log-Likelihood (lL). Then,
with the best base model, we use it for causal analysis. As one
of the contributions of this study, we add a time-related variable
(Week Since First Case — WSFC), which allows us to study the
time effect of the features through Shapely Additive Explanations
(SHAP) dependence plots, together with the classical Conditional
Average Treatment Effect (CATE) analysis.

3.1. Causal inference

To conduct the causal inference, we follow the methodology
based on the potential outcome theory proposed by Cochran and
Chambers [40], Rubin [41], and Splawa-Neyman et al. [42] in
which the causal effect is defined as:

Causal Effect = Yi (1) − Yi(0) (1)

In reality, however, this cannot be calculated since just one of
the two variables is realized (observed) and the other one is
not (counterfactual). This is widely known as the fundamental
problem of causal inference [43]. Hence, the level causal effect
is unknowable.

In general, the level causal effect is not the quantity of interest,
as an overall causal effect over all observations is more appealing
for analysis. With observational data as a sample of the overall
population, we can establish a conditional average treatment
effect (CATE) as:

CATE =
1
n

n∑
i=1

E [Yi(1) − Yi(0)|Xi] (2)

where Yi (·) represents the output variable value with respect to
the treatment status (1 for having received treatment and 0 if not)
and Xi is a set of covariates. This is a very standard approach for
causal inference but has to assume other restrictions in order to
make it possible to calculate.
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.2. Propensity Score Matching approach (PSM)

For the CATE to work with real observational data, we must
irst define the propensity score (PS) as the probability of receiv-
ng treatment in a binary treatment assignment. More formally:

(Xi) = E[Wi = 1|Xi] (3)

where Wi is the treatment status. This proves to be useful to
reduce dimensionality, which is a key problem of observational
studies [44]. Dimensionality relates closely to the unconfounded-
ness condition in causal inference, which can be written as:

(Yi(1), Yi(0) ⊥ Wi|Xi) (4)

Additionally, Rosenbaum and Rubin [45] proves that Eq. (4) can
be rewritten as:

(Yi(1), Yi(0) ⊥ Wi|e(Xi)) (5)

if the unconfoundedness condition holds. The implication is that,
conditional on propensity score, treatment assignment is as good
as random, which is fundamental for obtaining unbiased causal
effects in observational studies.

3.3. Meta-learners

Meta-learners (or meta-algorithms) is a framework that focus
on estimating the CATE using any regressor estimator (machine
learning or classical OLS), which are called base-learners. There
are several different approaches, however in this study we focus
on the ones discussed in Künzel et al. [46] and Nie and Wager
[47], which are S-T-X-learners and r-learners, respectively. To
make a proper definition of each approach, let Y be the outcome
variable, X the covariates matrix, W a binary treatment assign-
ent, τ̂ the estimated of the CATE, ê the estimated propensity
core and Ŷ the estimated outcome variable. Thus, following
ünzel et al. (2019), we define the S-T-X-learners as follows.

.3.1. S-learner
The S-learner approach consist on one step in which the

utcome variable is estimated in a naïve way, considering the
reatment as another variable for the regressor estimator. Math-
matically, we have:

(x, w) := E [Y |X = x,W = w] (6)

To estimate the CATE via s-learner approach, we have:

τ̂s (x) = µ̂ (x, 1) − µ̂ (x, 0) (7)

3.3.2. T-learner
The T-learner approach consists of two steps. First, a regressor

estimates a model for only the treated individuals, and then an-
other regressor estimates a model for the untreated individuals.
Finally, the estimated CATE would be the difference between the
two. Mathematically, expressed as:

µ0 (x) = E [Y (0) |X = x]
µ1 (x) = E [Y (1) |X = x]

(8)

for the untreated and treated, respectively. The t-learner estima-
tion of the CATE then is expressed as:

τ̂t (x) = µ̂1 (x) − µ̂0 (x) (9)
 s

5

3.3.3. X-learner
The X-learner is an extension of the T-learner and consists of

three steps. First, two regressor estimators are fitted separately
into the treated and untreated subsamples. Second, we calculate
the imputed treatment effects, which is the difference between
the outcome of one group with the estimation of the other group
model for the same covariates. Finally, we weight both imputed
treatments effect by propensity scores. Mathematically, we first
have Eq. (4) for the first step, then we calculate the imputed
treatment effects as:

Di
1 = Y i

1 − µ̂0
(
X i
1

)
Di
0 = µ̂1

(
X i
0

)
− Y i

0

(10)

With Eq. (6), we define the local treatment effects as:

τ0 (x) = E
[
D0

|X = x
]

τ1 (x) = E
[
D1

|X = x
] (11)

Finally, we can calculate the CATE as the weighting average
of Eq. (7) using propensity score as the weighting function:

τ (x) = e (x) τ0 + (1 − e (x)) τ1 (12)

3.3.4. R-learner
The R-learner is based on fitting the regressor estimator by

minimizing a special loss function that can capture heterogeneous
treatment effects. Following Nie and Wager (2017), first both out-
come variable and propensity score are estimated by a regressor,
and then the proposed loss function is calculated for perfor-
mance adjustment (i.e., backpropagation in neural networks).
Mathematically, this is expressed as:

Ŷ (x) = E [Y |X = x]
ê (x) = E [W = 1|X = x]

(13)

The regressor learns (or penalized) following the loss function:

ln (τ (x)) =
1
n

n∑
i=1

((
Yi − Ŷi (Xi)

)
−
(
Wi − êi (Xi) τ (x)

))2
(14)

Finally, the CATE is calculated as:

τ (x) = argmin
τ

[
l̂n (τ (x)) + Λn (τ (x))

]
(15)

where Λn (τ (x)) is a regularization of the complexity of the CATE
function.

3.4. Causal Forest (CF)

For the CF analysis, we use the work of Wager and Athey [20],
using the ‘GRF’ package created by the same authors in R. This
methodology is also based on the potential outcome theory, but
it makes use of decision tree theory to ensure heterogeneity in
the model. Specifically, following [20], an important aspect for
the trees to work is that the data satisfied the unconfoundedness
assumption explained above.

This implies, together with the definition in Eq. (2) of propen-
sity scores, that Eq. (1) can be rewritten as an unbiased estimator
of the causal effect as:

CATE =
1
n

n∑
i=1

E
[
Yi

(
Wi

e(Xi)
−

1 − Wi

1 − e(Xi)

)
|Xi

]
(16)

n order to calculate the CATE in Eq. (8) with decision trees
here on, causal trees, (CT)), they must be honest and achieve
eterogeneity in their leaves. The first condition is achieved by
special growing scheme known as double-sample trees. This

tates that we take a subsample of the data and split it into
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Fig. 3.1. Proposed framework to determine causal model for inference.
two groups: one to find the splits of the tree, and the other
one the estimation. It is important to note that the split is done
without looking at the response variable. The second condition
is achieved by changing the loss function. Specifically, the CT are
closely related to regression trees in construction, so instead of
having a loss function for prediction such as mean square error
(MSE), CT must adapt by a loss function that penalizes homo-
geneity in each split and final leaves. This ensure that not only
are the predictions good (which is an important part of causal
analysis) but also that each leaf satisfied a matching criterion
wherein for each leaf there are similar individuals with different
treatment assignment thereby acting as if it were a randomize
experiment.
6

3.5. Proposed methodology

In this study we propose a framework to determine which
model to use in a causal inference task. Fig. 3.1 show the steps
of the framework.

The first part of the framework consists on aggregating the
different datasets that are needed to fit the models. There are
three sources of information: first is the data from the Ministry of
Health2 (MINSAL) regarding weekly infections, quarantine dates,
and daily incidents for Rt . This data is made publicly available
to researchers in an effort to promote the development of new
knowledge about issues surrounding the pandemic. Information

2 https://github.com/MinCiencia/Datos-COVID19.

https://github.com/MinCiencia/Datos-COVID19
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ontained on the site include minutes of board meetings and re-
orts published to date. Full descriptions of the data are available
n the MINSAL repository. To calculate Rt we use daily data since

we use the package ‘‘EpiEstim’’ in R [48]. We use the parametric
approach for every municipality separately. Then we average the
corresponding weeks to obtain a weekly estimation of Rt for each
epidemiological week. Second, the public policy dataset corre-
sponds to the quarantine status of every municipality, updated
weekly by the authorities. This information is also available in
the MINSAL repository.1 These two datasets are time-dependent
and are easy to combine. Finally, the dataset of socio-economic
features was obtained from different official sites, all publicly
available. Appendix A.1 has all the links and variables available.
This dataset is not time-dependent for this study, as the socio-
economic characteristic of every municipality remains constant
for the analyzed period. To merge this information with the pre-
vious datasets, we assume these features to be constant for each
municipality across time. Once the three datasets are merged,
we check for high correlation and then for multicollinearity that
could induce bias/error in the further steps. Table 3.1 shows the
final dataset description, in which Rt is the outcome variable,
uarantine state (qstatus) is the treatment variable (if the munic-
pality is under quarantine or not for some week), and the rest are
he covariates matrix.

Variables Rt , qstatus, incident and WSFC relate with time in
the following manner. We consider the information of time t as
a particular characteristic of the individual in that time, being
different than other characteristics at other times. The idea is to
add the time series information in the causal analysis, not just of
the same time but also of the past as detailed later. This means
that a single individual has different characteristics depending on
the time that is analyze. The approach is very similar to the time-
trend approach adopted in econometrics (e.g. [48–51]), where
time (such as year 2020) is a variable itself in the analysis (i.e., 20
if the analysis started in 2000 and is yearly based). This also
implies that we have two kind of variables that characterize each
individual: these are variables that differ in time (as mentioned
above) and variables that do not change in time, just for each
municipality (like population, density and so on). Therefore, the
final subjects differ from each other even if the municipality is the
same, as their time variables makes them unique and requires a
detailed definition of each of these time variables.

WFSC is a direct adaptation of the econometric time-trend
approach, with the particularity that each municipality has an
individual first time, so that the WFSC is specific for each mu-
nicipality. Quarantine status can be considered an independent
variable across time since we use a weekly analysis of the pan-
demic, and quarantines are evaluated on a weekly basis as well.
Week dates, then, are the same for both quarantine and incidents.
By definition, quarantines are analyzed considering several fac-
tors, but the fact that the municipality was on quarantine or not
does not play a key role in determining the current quarantine
status. Here we want to note that in Chile, some quarantines
were applied to part of some municipalities but not to the whole.
In those cases, we drop those municipalities for those weeks
from the analysis, since they do not relate with the research
question: does the quarantine help to diminish Rt in the whole
municipality?

Incidents and Rt are the same in terms of time consideration.
For incidents, we use the weekly data directly from the Science
Ministry of Chile. Since both variables are reported weekly but
calculated daily, the assumption of independence does not hold.
Daily new cases are a random variable by definition. Daily new
cases is a separately generated event that does not depend on
the number of new cases from the prior day. Since Rt is calculated
under the same principle, it is reasonable to think that, weekly,
both variables are randomly distributed.
7

Table 3.1 constituted the final dataset represented as a green
box in Fig. 3.1. We train the models described in Sections 3.3 and
3.4 with the finalized dataset in the following manner. For the
meta-learners, we use the ‘causalml’ library in python [52], using
GGXBoost for all four, plus an additional linear regression for
the S-learner and multilayer perceptron for the T-learner. For the
causal forest, we use the ‘grf’ package in R [53], using generalized
regression trees as base models for the outcome and treatment
variable. This approach provides a total of 7 possible models to
consider for causal analysis.

We propose a selection approach as follows. The first step
is to fit the base learner model to analyze and then obtain its
performance metrics; this is the regressor used to calculate the
outcome variable (according to each individual approach). We
consider Mean Square Error, Mean Absolute Error and loglikeli-
hood as sufficient metrics for modeling performance. Then, we
get the importance of each features from a causal perspective
and drop the least important. With the new covariate matrix,
the base learner model is refitted, and performance metrics are
recalculated. Finally, if the new metrics are better than the old
ones, we repeat the process, else no other feature is dropped, and
we end the iterative process. Once every model is optimized by
this approach, we compare the final performance of each base
learner model (the 7 best base models) and select the model
with the best performance. Then, with the best model, we make
the final causal analysis, which consists not only in the CATE
estimation, but also the importance, SHAP dependence, and SHAP
dependence with interaction through time.

3.6. Loss functions

To evaluate which base learner model is able to fit better to
the observed data, we calculate three performance metrics: log-
likelihood (lL) estimator, Mean Square Error (MSE) and Mean Ab-
solute Error (MAPE). The first one, assuming a normal distribution
of the error term in the model, can be calculated as:

lL (n, θ) =
1
2

(
−n ln (2π) − n ln

(
σ 2)

−
1
σ 2

n∑
i=1

((
Yi − Ŷi (θ)

)
−

(
Yi − Ŷi (θ)

))2
)

(17)

where Ŷi (θ) is the estimated outcome variable according to some
model with parameters θ , σ 2 is the variance of the residuals,

Yi − Ŷi (θ) and
(
Yi − Ŷi (θ)

)
is the mean of the residual of the

model.
MSE is calculated as

MSE =
1
n

n∑
i=1

(
Yi − Ŷi (θ)

)2
(18)

And MAPE is calculated as

MAPE =
1
n

n∑
i=1

⎛⎝abs
(
Yi − Ŷi (θ)

)
Yi

⎞⎠ (19)

These loss functions are the standard used in most econometric
studies. Log-Likelihood measures how well the model can fit the
data, where higher values mean a better model. MSE measures
how well the model can forecast values after fitting the data.
The magnitude of these loss functions depends on the magnitude
of the output variable (the independent variable in econometric
setting). Contrary to this, MAPE measure, in percentage, the error
that the model makes when forecasting a particular data point.
The different loss functions allow for a more robust selection
of the best model when we compare them. Specifically, we are
interested in models with lower MAPE, lower MSE and high lL.
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Table 3.1
Variables to use in the causal analysis.
Variable Meaning Unit

Rt Effective reproductive number for municipality i on week j Real
qstatus If municipality i is on quarantine or not on week j Binary
new_cases New cases in municipality i on week j Integer
pop Population of municipality i Integer
IDSE Social and Economic Development Index for area i Percent
i_percapita Wage per capita for municipality i Real
poverty Poverty rate for municipality i Integer
scholarity Scholarship level for municipality i Integer
sewerage Sewerage level for municipality i Percent
rural_pop Total rural population for municipality i Integer
tot_woman Total woman population for municipality i Integer
rural_housing Total rural households for municipality i Integer
surface Total surface area for municipality i Real
density Density level for municipality i Integer
youth_dep How many people young ones depend on for municipality i Integer
old_dep How many people elder ones depend on for municipality i Integer
crit_crowding Critical overcrowding level for municipality i Integer
WSFC Weeks since first case for municipality i Integer
s
t
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3.7. Shapley values and SHAP plots

For a more comprehensive understanding of the relationship
hat the covariates have with the outcome variable, we use SHAP
lots. These are based on the Shapley values, which are related
o the cooperative game theory [54]. They are calculated as the
verage marginal contribution that a particular covariate has over
he average prediction of the outcome variable. In other words,
ow much a covariate changes the expected value of the outcome
ariable. With this intuition, Lundberg and Lee [55] create a
ramework called SHAP (Shapley Additive Explanations) to ex-
lain individual prediction instance contribution. Mathematically,
HAP values are obtained as

(D) = φ0 +

C∑
i=1

φiDi (20)

here D is the simplified features, C is the maximum coalition
ize, and φi is the Shapley value. These values represent how
uch the outcome variable changes for a particular feature (or
set of them). We concentrate the analysis on two SHAP plots:
ummary and dependence with interaction. The first one is a
ombination of importance and Shapley values, and each point
epresents the Shapley value for a particular instance for each
eature. The second plot allows for a more comprehensive analy-
is since it shows the additional combined covariate effect after it
solates the particular covariate effect. Generally, we compare the
ffects of two covariate. In particular, we compare the combined
ffect of the covariates with the WSFC variables over the Rt
utcome.

. Results

The data used in this study, as explained in the previous sec-
ion, comes from three sources. For the socio-economic dataset,
e take the information as constant for every municipality across
ime, selecting the variables that were presented in Table 3.1 in
ection 3.6. For the quarantine (public policy dataset) and new
ases (COVID dataset), the data was taken from January 15 to Au-
ust 15 of 2020. We calculate Rr daily for each municipality, and
hen we average it accordingly to match it to the epidemiological
eeks defined by the MINSAL. To have a good representation of
he problem, we just take the datapoints in each municipality
hat have at least 100 accumulated cases. Finally, when the so-
ioeconomic dataset is merged with the other two datasets of
he pandemic, we have a matrix of 3149 samples, and variables
xpressed in Table 3.1 of Section 3.6. It is important to note that
8

ome quarantines were applied partially in a municipality; in
hese cases, we drop the sample since it does not relate with the
roposed problem and could induce bias.
We are interested in assessing the impact that the WSFC

ariable has on model performance and variable interaction, and
ltimately if it can produce better causal inference. To see this,
e apply the described framework with and without WSFC, and
ompare the results. Tables 4.1 and 4.2 shows the base model
esults with and without WSFC, respectively.

The first interesting result that we see is that in all base
earner models, individually, WSFC improves the performance
ith respect to all three loss functions. Including a time variable

n the analysis allows for better understanding of the problem in
eneral and could also imply a better causal model. The second
nteresting result to note is that the X-learner model has the best
erformance with and without WSFC, so we select this model
o do causal inference over the dataset. It is important to notice
hat in the case of no WSFC, both T-learner and X-learner achieve
he same results. This indicates that, for that particular matrix
f covariates, the second step of the X-learner does not change
he findings of the first step (which is identical to the T-learner)
hus both have the same result. However, when WSFC is added
s a covariate, this changes the relationship in the second step,
educing error (and bias) by controlling for imbalance in the
ample. With X-learner as the final model, we start by analyzing
he importance of each covariate, shown in Fig. 4.1

We can see that the importance distribution is sparse, with
variables over 10% of importance as illustrated in Fig. 4.1.

hese variables are critical crowding, WSFC, new incidents and
unicipality population. All four of them are very relevant for

he control of the pandemic, as they represent key aspect to
onsider in an air-transmitted disease. Critical crowding is crucial
s proximity is an important aspect of COVID-19 transmission.
SFC is the time variable counting weeks passed since the first

ase appeared in the municipality, which is also important as it
s relatively accepted that the pandemic has an asymptotical bell-
haped form, so in the first weeks the virus is strongly present.
ew cases are related with the previous variable, in the sense
hat more infected people per week is a clear indicator of the
evelopment of a pandemic. Municipality population is also an
nteresting covariate as the pandemic is related to the amount
f people; more people could indicate more cases and a higher
ontagion rate. There are four more covariates that have just
ver 5% importance: Total women population, surface of the
unicipality, income per capita, and youth dependence.
To see the impact of each covariate in the response variable,

e make use of a SHAP summary and dependence plot [55].
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Table 4.1
Best Base model results with WSFC.

LR MLP CF S-learner T-learner X-learner R-learner

MSE 1.371 1.956 0.756 0.037 0.026 0.026 0.0329
MAPE 58.90% 65.48% 32.05% 10.02% 7.74% 7.68% 9.64%
LL −4965.45 −5524.47 −4028.54 731.65 1255.89 1293.56 909.57
Table 4.2
Best Base model results without WSFC.

LR MLP CF S-learner T-learner X-learner R-learner

MSE 1.632 1.975 1.011 0.138 0.121 0.121 0.139
MAPE 61.80% 67.26% 44.01% 13.58% 10.66% 10.66% 13.79%
LL −5239.43 −5539.97 −4484.69 −1345.42 −1149.31 −1149.31 −1361.55
Fig. 4.1. X-learner importance.
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lthough these are not causally informative, they do illustrate
ome interesting findings. Fig. 4.2 shows the SHAP summary plot
f the X-learner model
Here we can see that the four most important variables de-

cribed above, have a relatively positive relationship with Rt. This
ould imply, for example, that a more crowded municipality has
higher risk of contagion. Second, for the WSFC case, it would

mply that when more weeks pass, the pandemic increases. It
s also interesting to see that there is an important part of the
nfluence on the negative side, seen in reality when the pandemic
asses it peak, where the contagion starts to diminish (in the first
ave). New incidents have an interesting interpretation, as it had
slight but almost constant influence over the contagion, which
eans that the more cases per day there are implies a greater
hance of high contagion. Finally, population also has a slight
ut more clearly positive impact on Rt , meaning that for more
opulated municipalities, there are more chances of a higher Rt .
To see more clearly the impact of the WSFC covariate in the

nalysis, we plot the SHAP dependence interaction of all the other
ovariates with WSFC. This allows for a time-dependent relation-
hip of these covariates and how they influence the pandemic
hrough time. Fig. 4.3 shows the plots of 8 of the most important
ovariates. Other covariates are provided in Appendix A.2.
With this we can draw a more comprehensive analysis of

he covariates and how they relate to Rt . With the introduction
f WSFC, we can observe the influence of each variable over
he contagion rate through the time scale and how the value
f the variable influences the outcome. In each plot, the blue
9

red) points are the low (high) values of the studied variable. In
eneral, we can observe that the effectiveness of the lockdown
as greater in the first weeks from the first case and in weeks 6 to
6. After week 16, the lockdown policy clearly lost effectiveness.
We can see in the results that critical crowding has a mixed

ffect through the weeks. We that less dense municipalities were
n lockdown in the first three weeks thereafter followed by the
ore densely populated areas. The higher crowed municipalities
ere on lockdown after five weeks since the first case. For the

ow crowed municipalities, the effectiveness of the lockdown is
nly in the first three weeks after the first COVID case; while
or higher crowed municipalities, the effectiveness was from the
ifth to sixteenth weeks from the first case. After the sixteenth
eek, clearly the lockdown policy does not have an effect on
he reduction in the contagious. The results suggest that many
eople did not respect the lockdown and the number of new cases
ncreased.

In the SHAP plot of new cases, it can observed that the number
f new cases increased through the weeks since the first cases.
he lockdown was effective in the first weeks with the highest
umber of new cases (red points, weeks 12–16), suggesting that
eople may have been afraid, but after this period the highest
umber of new cases does not have a diminishing effect on the
ontagion. Population and total women have very similar interac-
ion with Rt compared to critical crowding. First the influence is
ixed but leaning to negative effects as illustrated in Fig. 4.3, then
hen around four months have passed the influence on infectious
ate is almost strictly positive. This relationship could be related,
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Fig. 4.2. SHAP values for treatment units.
s the previous covariates, to when the pandemic had some time
o spread, the population impacts greatly in the contagion rate.

With respect to surface, the SHAP plot shows that majority
f the municipalities that were on lockdown are small (majority
f points are blue). In this case, the size of the municipality
easured by surface does not have a special behavior through

he time scale from the first case.
Income per capita and the youth dependency does not show

clear effect on the contagion rate through the weeks since the
irst case. In all the weeks, we see that the blue and red points
re spread throughout the range of the effect. In the case of
he education, we observe that the municipalities that were on
ockdown in the first weeks were characterized by lower levels
f education.
Up to this point, we have addressed the relationship of the

ovariates with the Rt and how they vary through time, but no
ausal effects nor analysis can be drawn. For this, we calculate the
onditional Average Treatment Effect (CATE) for all the models
considering the best base model in every case), which are shown
n Table 4.3

The first thing of note is that when WSFC is added as a co-
ariate, all the CATE values are lowered. This adds to the previous
nalysis of the relationship of the covariate with Rt . The reduction
f the causal effect when the time variable is added could indicate
hat it was an important cofounder for causal analysis. This is in-
eresting as the WSFC relates strongly with the econometric panel
ata approach where it is a common practice to consider time
s an additional variable for modeling. It also implies that when
ime is considered, the overall effect of the non-pharmaceutical
nterventions is less than when it is not considered, which could
mpact greatly in the evaluation of the public policies.

With this last part, we argue that the dynamic quarantine
pproach adopted by the MINSAL helped to control the pandemic
n Chile, because all the models, with and without the time factor,
rrive at a negative CATE. What we find is that the quarantines
elp to diminish the contagion rate by a considerable amount
−0.331 in the case of the X-learner with WSFC), having several
ey features controlled (e.g. critical crowding, new weekly cases,
tc.). In other words, the results show that non-pharmaceutical
ntervention, i.e. lockdown, can effectively reduce the spread of
he pandemic.
10
5. Discussion

The results indicate that, at least in Chile, the non-
pharmacological intervention of dynamic quarantine helped to
slow down the spread of the pandemic. This can be obtained
independent of the causal modeling used, and also with and
without the WSFC variable. However, it is interesting to see that
the effect is lower when time is added to modeling. This could
indicate that quarantines are important to control the spread. This
is also seen in the literature, where in countries such as Italy [56],
China [37], and Canada [57], similar conclusions are drawn. Other
studies such as Nussbaumer-Streit et al. [58], Chowdhury et al.
[59] also find evidence of the importance of dynamic quarantine.

We compared the impact of the covariates across time using
the SHAP dependence plot with interaction. The effectiveness
of the lockdown was greater in the first weeks from the first
case and in the weeks six to sixteen. After week sixteen, the
lockdown policy clearly lost effectiveness. Without the WSFC
variable introduction, we would not be able to discriminate the
effectiveness of the lockdown through the time scale. It was very
important to detect the reducing effect of the lockdown policy to
make better decisions in the future in the next wave of COVID-19
or in new pandemic virus.

Although it is accepted that dynamic quarantines are a good
measure for (at least) the partial control of the pandemic, it is
recommended that it be accompanied with other social measures.
In our study, we can see that one of the most important variables
is critical crowding. We see that in the SHAP plot, the influence of
this features is mainly positive, so more crowded municipalities
are more likely to enter in quarantine. However, this could also
result in lower quality of life such as confinement (especially in
crowded spaces) which could bring negative effect such as poor
mental health [60].

The models presented here provide good insights for policy-
makers in actions that may be taken to mitigate the spread
of a virus during a pandemic. Taken together with the various
features of the model, leaders in a municipality such as health-
care providers or human services departments can take sanitary
measures that are relevant for their particular makeup. The ma-
chine learning applications allow us to more accurately and more
quickly take actions that are relevant to the particular locations
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Fig. 4.3. SHAP dependence interaction plots.
Table 4.3
CATE for all models (best bases model considered).

LR MLP CF S-learner T-learner X-learner R-learner

With WSFC −0.289 −0.730 −0.579 −0.220 −0.650 −0.331 −0.322
Without WSFC −0.507 −0.821 −0.597 −0.307 −0.722 −0.355 −0.346
and circumstances. The result of the improved modeling and ac-
tion taken may result in better communication and transparency
that are not perceived as universal and draconian as mentioned
in the introduction to this paper.
11
6. Conclusions

In this study, we wanted to analyze the causal impact that
non-pharmaceutical intervention (lockdown) has on contagion
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Fig. A.2.1. SHAP dependence with interaction plots.
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ate (Rt ) at the municipality level in Chile. For this, we employed
various machine learning models that are capable of doing causal
inference when the appropriate conditions are met (unconfound-
edness, overlap and positivity). For finding the appropriate model
for causal inference, we proposed a framework that determines
the best base model (this is, the machine learning model for non-
causal prediction) following an iterative process where the least
important variables are dropped and the model is retrained/fitted.
From the best performing models, we selected the top one among
them and conducted an influence/relationship analysis through
importance and SHAP plots. Finally, we calculated the CATE for
causal analysis, and determined the implications of the public
policy of dynamic quarantine in Chile.

Before model selection, we found that the time variable
WSFC) improved performance across the board for all seven
odels analyzed: MSE, MAPE were reduced and lL maximized
hen we considered the time variable, leading to a better model
erformance. We find that the best base model was the XGBoost
n the X-learner set up, achieving the best performance in all
hree metrics (MSE, MAPE, lL) and in the two approaches of the
tudy (with and without the time factor). Specifically, we find that
oth T-learner and X-learner have the best performance in the
o-WSFC set up, but since X-learner is an extension of T-learner,
e selected the former for further analysis.
With the X-learner model, we analyzed first the performance

o see which covariates were affected more in the modeling.
e find that there are four covariates that have more than 10%

mportance: critical crowding; new cases; population; and the
ime variable (weeks since first case, WSFC). The first interest-
ng thing about these variables is that they are time dependent
new cases and WSFC) and the other two are not (crowding and
opulation). Considering that the most important one is actually
ne of the two that do not depend on time, we find that time
ariables improve the modeling capability of machine learning
odels in tasks that are not of time series. Second, we analyze
 a

12
the contribution to prediction of each variable through SHAP
summary plots.

Finally, when causality is analyzed, we see that independent
of the models that were use, the dynamic quarantine approach
proposed by the MINSAL helped to reduce the contagion rate
in Chilean municipalities. Also independent of the model, when
WSFC is considered, the causal effect of the lockdown is dimin-
ished, which combined with the non-causal analysis, we think is
related to a better modeling. With the selected model, we find
that the quarantine manages to reduce Rt in about 0.3 points, an
important amount if we consider that the mean value of Rt for
he dataset is 1.76.

. Future work

We consider as a future work a more direct approach for
ausal model discrimination, using indicators or tests that can
ffectively determine which causal approach is best in a causal
etting. Also, the presented framework can easily be extended for
ther countries, as long as the features are captured and available.
enerally, this is the case, but some features like dependence
ndex could be hard to find or simply not measured by the coun-
ry. In those cases, the framework could be modified accordingly
iven the flexibility of the approach with respect to features.
owever, the conclusion cannot be comparable with other coun-
ries unless the features are the same. The primary challenge of
tudies of this type is data availability. On one hand, the COVID-19
ata is easy to obtain, either from official international datasets
r for local public health offices. However, as briefly mentioned
bove, the additional features could be difficult to obtain. This
ould augmented by future work to determine which variables
ould be added to see if their forecasts influence the impacts the
esults.

The principal limitation of the study is the unconfoundedness

ssumption, which implies that we are assuming that, with the
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Fig. A.2.2. SHAP dependence with interaction plots.
dditional features considered, the causal impact of quarantine
n the effective reproductive number is not mediated by others
actor. This is generally assumed but could be interesting to make
causal graph analysis to determine which variables are actually
eeded to determine the direct causal impact.
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ppendix

.1. Socioeconomic dataset

The socioeconomic dataset was obtained from different
ources. As was mentioned in the Methodology section, some
f the variables were dropped due to multi-collinearity or high
orrelation. From the Urban Observatory (Observatorio Urbano,
ttps://www.observatoriourbano.cl/estadisticas-habitacionales/),
e selected the covariates low, normal and critical crowding.
rom the Public Health Chilean Observatory (Observatorio Chileno
e Salud Pública, http://www.ochisap.cl/index.php/nivel-socioe
onomico-y-de-salud-de-las-comunas-de-chile) we selected the
ovariates of IDSE, population, income per capita, poverty, schol-
rity, construction material level, sewer, survivor hope at birth,
uman develop index, child mortality. From the National Statis-
ical Instituted (Instituto Nacional de Estadística, http://geoine-
ne-chile.opendata.arcgis.com/datasets) we selected the covari-
tes total, youth and old dependence, men and woman popula-
ion, density, surface, total, rural and urban housing and water
ccesses.
13
A.2. SHAP dependence with interaction for the other covariates

See Figs. A.2.1 and A.2.2.
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