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Abstract

COVID-19 (Coronavirus disease 2019) caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) has reached a pandemic level, spreading across the globe by affecting over 33 

million people and causing over 1,009,270 deaths. SARS-CoV-2 is highly infectious with a high 

basic reproduction number (R0) of 2.2–5.7 that has led to its exponential spread and very little is 

known about it in terms of immunogenicity and its molecular targets. SARS-CoV-2 causes acute 

respiratory distress syndrome, followed by multiple organ failure and death in a small percentage 

of individuals. Cardiac injury has emerged as another dreaded outcome of COVID-19 

complications. However, a thorough understanding of the pathogenesis of SARS-CoV-2 is lacking. 

In this review, we discuss the virus, possible mechanisms of COVID-19-induced cardiac injury, 

potential therapeutic strategies, and explore if exosomes could be targeted to treat symptoms of 

COVID-19. Furthermore, we discuss the virus-induced sepsis, which may be the cause of multiple 

organ failure, including myocardial injury.

Keywords

COVID-19; SARS-CoV-2; Sepsis; Exosomes; Cardiovascular disease

Introduction

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, was first reported 

in December 2019, with the first likely case recorded in Wuhan, China (Lescure et al., 

2020). Since this time, the virus has spread to more than 200 countries, with over 33 million 

confirmed cases and 1,009,270 deaths as of October 1, 2020 (https://covid19.who.int/). 

COVID-19 is thought to spread mainly through respiratory droplets and close contact, and 

displays a relatively high R0 value estimated between 2.2–5.7, and this high infection 

potential combined with a delay in visible symptoms for up to 2 weeks has enabled this 

virus to spread rapidly into pandemic proportions (Cui et al., 2019; Sanche et al., 2020).
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Due to these extreme circumstances, great effort has been made into developing diagnostic 

tools and treatment options for the virus. At the time of this writing, RT-qPCR-based assays 

are the diagnostic standard for coronavirus testing; however, immunoassays and other 

technologies are rapidly being developed and deployed (Cheng et al., 2020). Data from 

testing suggest that age and the presence of comorbidities, which include cardiovascular 

disease, obesity, cancer, and diabetes are major risk factors in COVID-19 fatality (Onder et 

al., 2020). These risk factors pose major challenges to COVID-19 treatment, as increased 

isolation and more stringent testing and therapeutics are necessary in the case of comorbidity 

(Wu et al., 2020).

The virus itself poses major clinical challenges. It has created a large patient load that 

threatens to overwhelm healthcare systems and treatment demands, the use of critical 

supplies, such as ventilators, large scale PPE usage, and basic medical supplies (Ranney et 

al., 2020). The concurrent disruption of global supply chains furthers this critical need. 

Along with the equipment challenges, the immediate patient burden stretches all normal 

supplies thin and limits healthcare availability for the general population and prevents non-

critical surgeries from being performed due to the risk of contamination (Cohen et al., 2020). 

These challenges make it critical for effective clinical treatments to be developed, to lessen 

the burden on stressed healthcare systems (Hatswell, 2020). In this review, we describe in 

brief about the virus properties, COVID-19 pathogenesis specifically focusing on sepsis and 

heart, and available treatment options.

SARS-CoV-2 infectivity characteristics

SARS-CoV-2 is an enveloped, single-stranded, positive-sense RNA virus (Figure 1) that 

belongs to the beta-coronavirus family of viruses and is capable of infecting humans and 

animals (Shereen et al., 2020). Several members of this virus family have been known to 

infect humans with mild symptoms and are self-limiting (Andersen et al., 2020). 

Interestingly, SARS-CoV-2 is closely related to SARS-CoV (severe acute respiratory 

syndrome virus-82% homology) and MERS-CoV (Middle Eastern respiratory syndrome 

virus-50% homology) that cause respiratory disease and were responsible for outbreaks in 

2003 (China) and 2012 (Middle East), respectively. While the evolution of these viruses has 

become a very hot topic, these viruses undergo gene recombination, insertions, and 

deletions, making them easy to mutate, manipulate, and transmit from one species to another 

(Luo et al., 2018). Consistent with the above report, several studies using in vitro cell culture 

and mouse models have shown the potential for the emergence of COVID-like viruses 

(Menachery et al., 2015).

Virus gains entry inside the cell through Angiotensin-converting enzyme 2 (ACE2) receptors 

(Lan et al., 2020; Wan et al., 2020). Once inside the cells, its RNA is released, transcribed to 

virus proteins (mainly nonstructural proteins). In the late phase, virus structural proteins are 

transcribed that are used for virus repackaging and release (Figure 2) (Shereen et al., 2020). 

There are several important characteristics of this virus that make it unique. (1) It is an 

enveloped virus with a lipid bilayer, therefore, making it very stable in the environment (72 

hours on plastic and 3 hours in aerosols) (van Doremalen et al., 2020) and also easy to 

inactivate using routine sanitizers; (2) The virus is highly infectious. This increase in 
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infectivity is due to unique sequences in the spike protein that enhances its affinity to its 

receptor by several-fold (discussed below); (3) Virus is present in the saliva of infected 

individuals and therefore present in the droplets while talking and singing aloud, coughing, 

and sneezing; (4) It is less pathogenic, thus 25–50% of people are asymptomatic; (5) This 

virus can infect animals (mainly cats) as well. Therefore, it poses a major challenge for 

preventing virus spread.

As mentioned above, virus spike protein is very key to its infectivity. Virus genomic 

sequence analysis has identified several insertions and mutations in the spike gene, 

therefore, it may have diverged from other related viruses, such as SARS-CoV, MERS-CoV, 

RaTG13, and Pangolin coronavirus (Andersen et al., 2020). Interestingly, structure-function 

analysis by crystallography and binding studies has identified that SARS-CoV-2 spike 

protein has a very high affinity for ACE2 receptor (10–20 fold higher than SARS-CoV) 

(Wrapp et al., 2020). Also, insertion of 4 amino acids (RRAR) in the spike gene at S1-S2 

junction is targeted by host furins and transmembrane protease serine 2 (Figure 1), and other 

proteases that promote virus fusion, and therefore increase the infectivity of the virus 

(Coutard et al., 2020; Hoffmann et al., 2020). Interestingly, the presence of these motifs has 

been associated with increased pathogenicity in several viruses, including H5N1, MERS, 

and others (Coutard et al., 2020). It is also intriguing that even with high sequence 

homology, similar structure, and affinity for the ACE2 receptor between SARS-CoV and 

SARS-CoV-2 spike protein, none of the antibodies available for the SARS spike protein can 

neutralize SARS-CoV-2 virus (NIH). This could be largely due to the insertion and several 

other mutations in the SARS-CoV-2.

Pathogenesis of COVID-19: The sepsis link

COVID-19 is a highly contagious respiratory syndrome and can cause multi-organ failure 

that can lead to death in a small percentage of infections. It is transmitted from person to 

person by direct contact, through droplet infection, fecal-oral transmission, and aerosol. The 

virus can replicate in a wide range of cells that express ACE2, including nasal epithelium, 

nasopharynx, upper respiratory tract, type II pneumocytes in the lung, gastrointestinal (GI) 

tract, immune cells, and endothelium (Kumar et al., 2020; Sungnak et al., 2020). Because of 

the wide range of target cells, pathological symptoms and lesions are spread across different 

organs (Table 1). The severity of the disease also depends on risk factors and pre-existing 

health conditions. Advanced age is a major risk factor followed by hypertension, diabetes, 

obesity, chronic respiratory conditions, including chronic obstructive pulmonary disease 

(COPD) and asthma, heart diseases, and immune status (Fang et al., 2020; CDC). In the 

United States, African Americans are affected disproportionately compared to other races. 

However, underlying mechanisms are unknown. A recent study identified extensive 

pulmonary thrombosis, microcoagulopathy in small vessels, hemorrhage, diffuse alveolar 

damage accompanied by intracardial necrosis and right ventricle dilation among African 

Americans during autopsies (Fox et al., 2020). These findings were consistent with other 

studies, therefore pre-existing cardiac risk factors have been suggested to be the possible 

causes (McGonagle et al., 2020). However, African Americans have higher incidence of 

several health conditions such as hypertension, obesity and diabetes, which are known risk 

factors for heart diseases and therefore might be prone to severity of the disease. 
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Interestingly, A proarrhythmic variant p.Ser1103Tyr-SCN5A is highly prevalent among 

African Americans, which is associated with ventricular arrhythmia sudden cardiac death 

under hypoxic conditions may also be responsible for increased fatalities (Giudicessi et al., 

2020). Also, human leukocyte antigen (HLA) gene and ACE2 gene polymorphisms (Hussain 

et al., 2020) have been suggested to affect the severity of the disease.

ACE2 signaling has also attracted a lot of attention given the fact that the ACE2/Ang1–7/Mas 

axis is crucial in regulating blood pressure, inflammation, fibrosis, and thrombosis, etc. 

(Santos et al., 2003; Simões e Silva et al., 2013). As a key mode of internalization, 

downregulation or shedding of ACE2 after the virus entry has been reported in SARS-CoV 

(Glowacka et al., 2010; Kuba et al., 2005), NL63 (Dijkman et al., 2012), and H5N1 (Zou et 

al., 2014), and a similar outcome is speculated in the SARS-CoV-2 infection. 

Downregulation of ACE2 in the infected organs could interfere with the ACE2/Ang1–7/Mas 

axis, resulting in activated AngII and Renin-angiotensin-aldosterone system (RAAS), which 

is supposedly one of the plausible causes of COVID-19-associated alveolar inflammation 

and lung injury (Kai & Kai, 2020; Verdecchia et al., 2020).

After entry through ACE2 receptors, the virus sheds its genome into the cytoplasm, which is 

transcribed to early viral proteins that play a critical role in the suppression of host immune 

response, tissue damage, and enhance viral genome replication. Structural proteins are 

transcribed in the late phase of viral replication to repackage and release virus particles 

(Figure 2). Interactome analysis of all the viral proteins has revealed that viral proteins target 

host cell nuclear export, integrated stress response system, RNA processing, mitochondrial 

functions, and cell death signaling (Gordon et al., 2020). During the virus replication, host 

cells activate anti-viral immune response through MHC class I antigen presentation. This is 

followed by either an effective immune response to clear the virus infection or immune 

dysregulation that leads to a severe form of the disease. An effective anti-viral response 

involves activation of both (i) cell-mediated antiviral immunity through activation of CD8+ 

T cells, natural killer (NK) cells, and monocytes that target virus-infected cells and (ii) 

humoral immunity mediated by production of virus-neutralizing antibodies, such as IgG and 

IgM by CD27hiCD38hi cells, activated ICOS + PD-1+ follicular helper T cells- TFH cells 

(CD4+ and CXCR5+ cells) (Figure 3) (Thevarajan et al., 2020).

In individuals who do not recover, come down with acute respiratory syndrome, 

hypotension, and multiple organ failure (Xu et al., 2020). Laboratory findings showed high 

levels of fibrin degradation product D-dimer (indicative of abnormal clotting) (Zhou et al., 

2020), lymphopenia (decrease in the number of lymphocytes) (Chan et al., 2020), increased 

neutrophil count (Liu et al., 2020), and cytokine storm (Mehta et al., 2020) that is suggestive 

of sepsis. Interestingly, the culture of lung fluids did not yield bacterial growth (Fox et al., 

2020; Li et al., 2020). Therefore, sepsis is likely caused by the virus itself (Li et al., 2020) 

that might leads to (i) immune dysregulation leading to cytokine storm, (ii) respiratory 

dysfunction leading to hypoxemia, and (iii) metabolic acidosis due to circulatory 

dysfunction (Figure 3). Cytokine storm is characterized by increased production of 

cytokines, mainly IL-6, C-reactive protein (CRP), TNF-α, IL-1β, IL-33, IFNγ, GMCSF, and 

others (Mehta et al., 2020). In addition, virus-infected cells (type II pneumocytes, 

endothelial cells, etc.) could be the source of cytokines and toxins. Virus particles have also 
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been demonstrated in endothelial cells from blood vessels (Varga et al.,2020) that may be 

responsible for microvascular dysfunction. Therefore, it is hypothesized that virus-induced 

endothelial dysfunction may be promoting disseminated intravascular coagulation that limits 

blood flow and prevent oxygenation in the lungs (Figure 3). Hypoxia, due to an acute 

respiratory syndrome, along with metabolic acidosis due to poor circulation and 

microvascular dysfunction, may partly explain the cause of multiple organ dysfunction (such 

as heart, kidney, and liver) (Figure 3). However, the cause and sources of cytokine storm, 

lymphopenia, and abnormal clotting are not known; although activated immune cells, 

lymphocyte exhaustion has been suggested (Zhou et al., 2020). However, it should be noted 

that cytokine storm is also observed in SARS and MERS infections. While in SARS it is 

attributed to exaggerated cytokine production by virus-infected alveolar endothelial cells, 

dendritic cells, and macrophages; in MERS it is attributed to lung infiltrating neutrophils, 

macrophages, and peripheral blood mononuclear cells (Channappanavar & Perlman, 2017). 

Interestingly, transcriptomic analysis of bronchial alveolar fluid, peripheral blood 

mononuclear cells from COVID-19 human patients and ferret models and invitro cell lines 

revealed poor antiviral responses lacking IFNI and III responses (Blanco-Melo et al., 2020; 

Gardinassi et al., 2020), which may partly explain asymptomatic and prolonged infection. 

These studies also revealed interferon-specific gene signatures, activation of neutrophils, and 

poor response from dendritic cells and macrophages. Furthermore, recent studies by 

different groups showed presence of reactive T cells to SARS-CoV-2 peptide antigens in 

people who have not been infected with virus, and has been attributed to exposure to corona 

viruses that cause common cold (Grifoni et al., 2020; Moreno et al., 2020; Premkumar et al., 

2020). However, their role in pathogenesis and development of immunity remains to be seen 

(Sette & Crotty, 2020). In addition, future research identifying the root cause of the cytokine 

storm will help treat COVID-19 complications. Likewise, the cause of the severity of the 

disease in the presence of other comorbidities is unknown. However, it is well known from 

the literature that inflammation is upregulated in most of these cardiovascular and metabolic 

diseases characterized by an increase in C-reactive protein, TNF-α, and IL-6 levels. 

Therefore, we speculate that the immune system is primed for overactivation under 

COVID-19 infection in these individuals.

Exosome link to COVID-19 Pathogenesis

Exosomes are nanoscale extracellular double-membrane vesicles secreted by cells that have 

emerged as novel intercellular communicators. Exosomes are actively secreted by 

endolysosomal system and carry messages in the form of proteins, enzymes, cytokines, 

lipids, and RNA from donor cells to the target cells. Extensive research has shown that 

exosomes play critical role in organ cross-talk, maintaining tissue homeostasis, host-

pathogen interactions, and pathophysiology of various diseases including sepsis (Dykes, 

2017; Kita et al., 2019; Sahoo & Douglas, 2014; Schorey et al., 2015). Likewise, virus 

infections exploit exosome pathway to gain entry, spread virus infection, virus packaging, 

evade host immune system, and pathogenesis (shown in Figure 4; and virus pathogenesis 

using exosomes is summarized in Table 2) (Alenquer & Amorim, 2015; Anderson et al., 

2016; Urbanelli et al., 2019; Wurdinger et al., 2012). Due to similarities in pathways of 

exosome biogenesis (ESCRT-dependent and independent), their fate (actively taken up by 

target cells by endocytosis, pinocytosis, and receptor-mediated uptake) and virus uptake, 
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packaging, and release; they were likened to be relatives (Nolte-’t Hoen et al., 2016). 

Exosome-mediated host immune modulation by viral infections has been extensively studied 

and has been reviewed elsewhere in detail (Schorey et al., 2015). Virus infections stimulate 

host cells to secrete exosomes that function as pathogen-associated molecular patterns 

(PAMPS), carry inflammatory mediators, cause inflammation (Schorey et al., 2015). For 

example, exosomes from EBV-infected cells that are enriched in dUTPase induce activation 

of NF-κB pathway and stimulate macrophage cytokine release (Ariza et al., 2013). 

Likewise, HCV mRNA in exosomes induce secretion of IFN alpha from macrophages and 

exosomes from C3/36 cells infected with Zika virus induces expression TNF alpha from 

monocytes, cause endothelial damage to induce intravascular coagulation and inflammation 

(Martínez-Rojas et al., 2020). Exosomes from Kaposi sarcoma associated herpes virus also 

cause endothelial damage and induce expression of IL6 (Chugh et al., 2013). Exosomes 

from virus-infected cells also cause apoptosis of immune cells. For example, HIV infection 

induces secretion of exosomes that are enriched in viral Nef protein, which cause apoptosis 

of endothelial cells and CD4 T-helper cells (Lenassi et al., 2010). Likewise, EBV-infected 

cells secrete exosomes enriched with galactin9 that cause apoptosis of cytotoxic T cells 

specific to EBV-infected cells (Dukers et al., 2000). In summary exosomes from virus-

infected cells can cause tissue injury by activating inflammation and cytotoxicity.

Several important features of SARS-CoV-2 infection, mainly hyper-activated immune 

system to induce sepsis-like disease characterized by cytokine storm and lymphopenia raises 

the question if exosomes are involved (Figure 4). This idea is further strengthened by TGN 

pathway (Trans-Golgi network, which is part of sorting system in endolysosomal pathway) 

involvement in replication of SARS-CoV-2. In addition, recent data showing involvement of 

lipid metabolism including cholesterol metabolism (Zhang et al., 2020) in the pathogenesis 

COVID complications poses the question if exosomes are involved in pathogenesis of 

SARS-CoV-2 infection. Consistent with this idea, SARS-CoV-2 protein interactome analysis 

revealed interaction with Rab proteins that are part of ESCRT pathway involved in exosome 

biogenesis. Interestingly, several viruses that exploit exosomes for pathogenesis interact with 

Rab proteins (Bello-Morales et al., 2012; Fraile-Ramos et al., 2010, p.; Gerber et al., 2015). 

Moreover, high throughput lipidomics of sera from human patients revealed exosome-

specific lipid profiles that were enriched with sphingomyelins, gangliosides, and deficient in 

Di-acyl glycerols (DAG). Interestingly, exosome enrichment with gangliosides (GM3) was 

strongly associated with severity of the disease and likely cause of lymphopenia, since 

immune cells have preference for GM3-enriched exosomes which is cytotoxic (Song et al., 

2020). It should also be noted that SARS-CoV-2 barely eight-month-old and its 

understanding is evolving; and given the lack of strong anti-viral immune response as 

discussed before, role of epigenetics mechanisms including miRs and other non-coding 

RNAs needs full investigation. Moreover, extensive literature suggests that exosomes play an 

important role in shuttling of these non-coding RNAs between different cell types and have 

been implicated in development of cardiovascular diseases. Interestingly, in a recent in-vitro 
study, transduction of lung epithelial A549 cells with SARS-CoV-2 structural and non-

structural genes (excluding viral Spike protein) resulted in secretion of exosomes enriched 

with viral RNAs. These exosomes were successfully taken up by the human induced 

pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in elevated 
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inflammatory markers in hiPSC-CMs along with presence of viral genes (Kwon et al., 

2020), allowing us to speculate the possible role of exosomes in the SARS-CoV-2 

pathogenesis. This may also explain the possible mechanism of myocardial inflammation in 

COVID-19 patients without direct viral infection that has puzzled the researchers. Consistent 

with this, given the extensive activation and inhibition of protein kinases by SARS-CoV-2 

infection in cells (Bouhaddou et al., 2020), it is also possible that exosomes from virus-

infected cells may also carry proteins that can activate inflammatory response and cause 

tissue injury in distant organs. Therefore, it will be interesting to see if exosomes can be 

targeted for therapy, and future research using the exosome research tools will be helpful in 

addressing these possibilities.

COVID-19 and Heart

Cardiac complications associated with COVID-19 infection

Although the lungs and the respiratory tract are the most vulnerable tissues for SARS-CoV-2 

infection (Zou et al., 2020), the virus also severely affects the pathophysiology of the heart. 

Several cardiac complications are associated with SARS-CoV-2 infection, which is 

summarized in Table 3 and Figure 5. Here we discuss acute and chronic cardiac 

manifestations of COVID-19.

Direct myocardial injury: Myocardial localization of SARS-CoV-2

Due to the high abundance of ACE2, the heart is among high-risk organs (Chen et al., 2020; 

Zou et al., 2020) affected by COVID-19 and speculated to harbor SARS-CoV-2 RNA 

possibly due to extra-pulmonary dissemination of the virus. Reduced ACE2 expression has 

been negatively correlated with various cardiac pathologies, such as hypertension, 

maladaptive cardiac remodeling, heart failure, and cardiomyopathies (Zamaneh et al., 2009; 

Oudit et al., 2009; Patel et al., 2014; Patel et al., 2016), and as it is postulated that SARS-

CoV-2 infection could result in ACE2 downregulation, this might affect the cardiac 

pathophysiology via differential regulation of ACE2/Ang1–7/Mas axis. The relationship 

between SARS-CoV-2, ACE2, and cardiovascular outcomes has been reviewed recently and 

could help to expend the knowledge horizon (Junyi et al., 2020; South et al., 2020)

Direct cardiac injury by SARS-CoV-2 is debatable; however, the presence of ACE2 in the 

heart poses a strong possibility of internalization of COVID-19 by ACE2-expressing cells in 

the heart. Out of 44 patients that died from SARS, a study examined the presence of the 

SARS-CoV genome in the 20 autopsied heart tissues, and 7 of the samples (35%) were 

found positive for the viral RNA. Moreover, myocardial localization of the viral particles 

was attributed to the expression of ACE2 in the heart (Oudit et al., 2009). Concerning the 

current coronavirus pandemic, very few reports have been published to confirm the 

myocardial infiltration of the SARS-CoV-2. Tavazzi et al. (Tavazzi et al., 2020) reported the 

first case of myocardial localization of SARS-CoV-2 in a 69-year-old patient who was 

diagnosed with acute myocardial injury, hypotension, and cardiogenic shock. 

Endomyocardial biopsy of the patient showed a low-grade interstitial and endocardial 

inflammation along with virus particles present in the interstitial cells; however, the biopsy 

did not confirm the presence of coronavirus particles in cardiomyocytes or endothelial cells. 
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Myocardial localization of COVID-19 could imply the viremic phase or migration of 

infected macrophages to the heart and possibly other tissues. Exosome-mediated 

dissemination of SARS-CoV-2 and viral genome/protein could also be of scientific interest 

and requires further exploration. As discussed in the previous section, recent evidence also 

pointed towards the exosomal transfer of SARS-CoV-2 genes to cardiomyocytes, which 

resulted in increased inflammation in these cells (Kwon et al., 2020). Many viruses share 

common endocytic signaling mechanisms and have been shown to exploit the exosomal 

machinery for their transmission and infection (Alenquer & Amorim, 2015; Izquierdo-

Useros et al., 2010; Ramakrishnaiah et al., 2013a). The field of SARS viruses is evolving 

and exploring the involvement of exosomes could help better understand the pathological 

mechanisms and develop therapeutics.

In another study, the postmortem pathological examination of the heart biopsies of 

COVID-19 patients (Tian et al., 2020) revealed focal edema, myocardial hypertrophy, and 

interstitial fibrosis; however, these features were linked to pre-existing cardiac conditions 

rather than acute injury due to COVID-19 infection. Even though no apparent infiltration of 

inflammatory cells was observed in the heart, the real-time PCR analysis showed the SARS-

CoV-2 genome in one of the two heart biopsies. Overall, these findings indicate the 

existence of the SARS-CoV-2 (or its genome) in the heart, either through direct infection or 

disseminated by migrating cells or through exosomes, which might ultimately exert 

pathological changes in the myocardium. However, the lack of conclusive evidence 

necessitates further investigations to understand the direct effects of SARS-CoV-2 in the 

heart.

Role of inflammation in COVID-19 associated myocardial injury

Although direct myocardial injury via SARS-CoV-2 and ACE2 interaction is a strong 

possibility, COVID-19-associated cardiac damage is widely attributed to cytokine-inflicted 

systemic and tissue inflammation. Dissemination of the virus into circulation through 

infected macrophages and other immune cells could lead to an exaggerated immune 

response and multi-organ dysfunction. One of the early reports describing myocardial 

inflammation in SARS-CoV-2 infection reported fulminant myocarditis with elevated IL-6 

levels along with other cardiac injury markers (troponin I, myoglobin, and n-terminal brain 

natriuretic peptide) (Zeng et al., 2020). Various cohort-based studies also showed increased 

cytokine production during COVID-19 infection, and cytokine storm in those patients was 

found to be associated with the disease severity and patient survival (Huang et al., 2020; 

Zhou et al., 2020a). Previously, it was found that immunological response in SARS-patients 

is mainly mediated through Th1-cell activity (Wong et al., 2004) as opposed to SARS-

CoV-2 infection, where an imbalance between both Th1 and Th2 activity was found to 

aggravate the inflammatory surge (Huang et al., 2020). Overall, evidence from the published 

studies so far implies that the SARS-CoV-2-induced inflammatory surge is the plausible 

cause of organ damage in patients and could be targeted for therapeutic interventions.
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Acute myocardial injury

In SARS-CoV-2 patients, myocardial injury is evident by several factors, such as an increase 

in myocardial injury markers, echo- and electrocardiographic abnormalities, cytokine storm, 

and myocarditis.

Acute myocardial injury has been a critical and persistent feature in COVID-19 patients. An 

earlier report showed that among 138 patients (Wuhan, China) admitted for SARS-CoV-2 

infection, 7.2% of patients had acute cardiac injury (Wang et al., 2020), and cardiac injury 

was more prominent in the patients who needed ICU care than non-ICU patients. In another 

case, 82 out of 416 hospitalized COVID-19 patients (19.7%) had cardiac injury (Shi et al., 

2020) with elevated high-sensitivity troponin I levels (median interquartile range 0.19 vs 

<0.006 μg/L in patients without cardiac injury). Cardiac injury patients also had a higher 

mortality rate than those without cardiac injury (51.2% vs 4.5%). A retrospective cohort 

study of 191 patients from Wuhan, China showed that 46% of non-survivors had high-

sensitivity cardiac troponin I level above the 99th percentile upper reference limit as 

compared to 1% of survivors (Zhou et al., 2020). Increased levels of high-sensitivity 

troponin are reported in most of the COVID-19 patients with cardiac injury (Guo et al., 

2020; Inciardi et al., 2020; Sala et al., 2020), making it a crucial diagnostic marker of 

myocardial injury in COVID-19 patients.

In addition to high-sensitivity cardiac troponin, N-terminal pro-brain natriuretic peptide (NT-

proBNP) is another important biomarker for myocardial stress in patients infected with 

SARS-CoV-2. Brain natriuretic peptide (BNP) and NT-proBNP concentration increase in the 

circulation in response to cardiac impairment and changes in ventricle wall tension, and 

these molecules are widely used as biomarkers of heart failure (Bay et al., 2003; Hunt et al., 

1997; Yasue et al., 1994). In the patients infected with coronavirus, increased concentration 

of NT-proBNP in circulation manifests myocardial injury and cardiac complications. A rise 

in NT-proBNP has been reported in severe COVID-19 cases associated with adverse clinical 

outcomes and poor prognosis (Gao et al., 2020; Guo et al., 2020; Inciardi et al., 2020; Zeng 

et al., 2020).

Laboratory findings also showed an elevation in other cardiac injury markers, such as 

creatine kinase, lactate dehydrogenase, and C-reactive protein in COVID-19 patients (Du et 

al., 2020; Inciardi et al., 2020; Sala et al., 2020).

Chronic cardiac damage in COVID-19 patients

There is a scarcity of data on the long-term implications of respiratory viruses associated 

with epidemics. Metabolic profiling of 25 SARS-CoV survivors in a 12-years follow-up 

study showed dyslipidemia, altered glucose metabolism, and cardiovascular abnormalities 

(Wu et al., 2017). Another cohort-based 10-years follow-up study showed an increased risk 

of cardiovascular complications in patients hospitalized for pneumonia (Corrales-Medina et 

al., 2015). Structural similarity between SARS-CoV and SARS-CoV-2 could predict long-

term cardiovascular damage. The long-term effect of SARS-CoV-2 on the heart is addressed 

in two recently published German cohorts-based studies (Lindner et al., 2020; Puntmann et 

al., 2020). One study showed a high viral load of SARS-CoV-2 in the myocardium (above 
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1000 copies per μg RNA) of 41.0% of the patients (16 of 39 autopsied samples). However, 

this high viral load was not attributed to an inflammatory reaction as no inflammatory cell 

infiltration was observed (Lindner et al., 2020). Similarly, an unselected cohort of 100 

recovered patients revealed that 78% of the recovered patients had myocardial abnormalities, 

including myocardial inflammation, regional scars, and elevated injury markers (Puntmann 

et al., 2020). These findings necessitate the urgency of large cohort-based follow-up studies 

on recovered patients to evaluate the long-term effect of SARS-CoV-2 on the cardiovascular 

system.

Potential therapeutic strategies against SARS-CoV-2 or its complications

For COVID-19 being an infectious disease, vaccination is the best choice to prevent 

infection. However, this virus is just 10-months old, therefore, vaccine production and their 

validation, in terms of safety and protection may take longer than expected time. Fortunately, 

several vaccines are in production, and early testing is in humans and macaques with 

RNA-1273 (Moderna), ChAdOx1 (Oxford), BNT162b2 (Pfizer), Ad26.COV2-S (Johnson 

and Johnson), and many others have shown promising results and are in advanced stages of 

clinical trials. Also, very little is known about the immunogenic antigen from SARS-CoV-2 

that is important for activating protective immunity. Therefore, given the pandemic nature of 

COVID-19, current strategies involve repurposing of existing drugs to control infection in 

the body, and symptomatic treatments to mitigate the complications.

Antiviral therapy

SARS-CoV-2 emerged in December 2019; it is barely 10-months old, and there is a scarcity 

of data about the virus. Therefore, the current strategy has been repurposing of existing 

drugs on compassionate grounds to identify a drug that could help mitigate the virus 

infection. However, due to its close similarity with SARS and MERS viruses, several of the 

drugs that are in the pipeline for these viruses, as well as others like Ebola, have been used 

in clinical trials (summarized in Table 4, please note we have listed the drugs which are used 

alone or in combination). Data so far indicates that Remdesivir, a nucleotide analog 

(adenosine) that is incorporated into viral RNA and inhibit its replication, has promising 

results in patients that are treated with the drug at a very early stage of infection (2–3 days of 

infection). Interestingly, Remdesivir was originally developed to treat Ebola virus infection. 

Therefore, the repurposing of existing drugs is a way forward to find quick and timely 

treatment options. Also, the SARS-CoV-2 protein interactome analysis has identified several 

targets for which there are drugs available in the developmental stage, which could provide 

novel avenues to treat virus infection (Gordon et al., 2020). Likewise, high throughput 

quantitative mass spectrometry-based phospho-proteomics analysis of SARS-CoV-2-

infected Vero E6 cells identified strong activation of p38 MAP kinases, casein kinase II 

(CK2), Ca++ and calmodulin-dependent kinases, PRKG1/2, and inhibition of cell cycle and 

cell growth kinases (Bouhaddou et al., 2020). Interestingly, inhibition of p38 MAP kinases, 

cyclin-dependent kinase (CDK), AXL, and PIKFYVE kinases inhibited virus replication in 

Vero and A549 cell lines (Bouhaddou et al., 2020), providing novel targets for antiviral drug 

development. In addition, monoclonal antibodies neutralizing virus are also being developed 

and being tested. Antiviral immunotherapy using INF-β as an aerosol in combination with 

lopinavir-ritonavir and ribavirin has also shown promising results in small trial. The triple 
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therapy was effective in clearing the virus within 8 days from most of the patients (Hung et 

al., 2020). This may partly be explained by poor antiviral response by host and therefore 

INF-β might be very effective in activating antivirus response.

Palliative/symptomatic treatments

An extensive literature review suggests that the majority of the patients that progress to 

severe form of the disease have sepsis-like symptoms with coagulopathy and multiple organ 

dysfunction (Wang et al., 2020; Zhou et al., 2020). Therefore, it is logical to think if 

palliative therapy used in sepsis could be used in COVID-19 patients. Interestingly, 

plasminogen inhalation therapy (that targets the clotting system) did show dramatic 

improvement of respiratory function in a small set of patients (Wang et al., 2020). 

Interestingly, inhibitors of blood clotting are also used to treat sepsis patients in clinics. 

Recent study using dexamethasone, a good old synthetic long acting corticosteroid 

(“Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report,” 2020) and 

reports of Tocilizumab (IL6 inhibitor) for treating COVID-19 complications, suggest a 

dysfunctional immune system being the cause of many complications. Likewise, given the 

fact that exosomes play a critical role in sepsis pathology (Essandoh et al., 2015; Raeven et 

al., 2018) and SARS-CoV-2 infection (Song et al., 2020), drugs targeting exosome pathways 

should be investigated in preclinical models. Interestingly, several drugs that target 

exosomes have been investigated for cancer and other diseases (reviewed in detail by 

Catalano & O’Driscoll (Catalano & O’Driscoll, 2020), summarized in Table 5), therefore 

should be investigated in pre-clinical studies to evaluate their efficacy as well as safety. In 

addition, mesenchymal stem cell-derived exosomes could also be used for therapeutic 

purposes in COVID-19 infection due to their immunomodulatory, anti-inflammatory, and 

regenerative properties (reviewed elsewhere in detail [(Akbari & Rezaie, 2020; Pinky et al., 

2020)]. We also suggest the investigation of ceramide synthesis inhibitors in pre-clinical 

studies since exosome synthesis inhibitor targets this pathway (Essandoh et al., 2015). Also, 

ceramides have been known to activate inflammatory pathways in several metabolic and 

cardiovascular diseases (Bikman & Summers, 2011; Summers, 2018) that are known to have 

worse outcomes in COVID-19. Therefore, targeting this pathway might have a synergistic 

effect in controlling sepsis, inflammation, and virus dissemination through circulation. 

Interestingly, Opaganib, a sphingosine kinase-2 inhibitor is undergoing clinical trials for 

treating pneumonia caused by SARS-CoV-2 (NCT04467840).
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SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
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ACE2 Angiotensin-converting Enzyme 2

RNA Ribonucleic Acid

CDC Center for Disease Control

NIH National Institute of Health

MHC Major Histocompatibility Complex
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Figure 1. SARS-CoV-2 Virus
Structure and genomic organization of SARS-CoV-2. (A) A SARS-CoV-2 particle 

comprises of spike glycoprotein (S), small envelop protein (E), and membrane glycoprotein 

(M) embedded in a lipid bilayer that encloses a single-stranded RNA genome and 

nucleocapsid protein (N). (B) SARS-CoV-2 genome is a positive-sense single-stranded RNA 

of approximately 30 kb size. The viral genome consists of 5′-untranslated region (5′-UTR) 

at the N-terminal, ORF 1a and ORF 1b encoding for non-structural proteins, structural 

proteins include spike (S), envelop (E), membrane (M), and nucleocapsid (N), as well as 3′-
UTR at the C-terminal. Expanded view of spike protein shows S1 and S2 subunits with a 12-

nucleotides insertion at S1-S2 junction, which is targeted by host furins/ transmembrane 

proteases.
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Figure 2. SARS-CoV-2 Replication
Lifecycle of SARS-CoV-2. SARS-CoV-2 enters cells via the interaction of spike protein 

with ACE2 present on the surface of cells. Once inside the cells, it releases its genomic RNA 

into the cytoplasm. The viral genome uses the host machinery to translate into polyproteins 

that are further proteolyzed into smaller proteins by viral proteinases. Discontinuous 

transcription of the positive-strand RNA results in the synthesis of subgenomic negative-

strand RNA, which is translated into viral structural proteins and serves as a template for the 

replication of genomic RNA. Genomic RNA and nucleocapsid protein together form a 

nucleoprotein complex in the cytoplasm and assembled with other structural proteins, such 

as spike (S), envelop (E), and, membrane (M) proteins into the ER-Golgi intermediated 

compartment (ERGIC). New virus particles are released through exocytosis. Link between 

viral non-structural proteins and the Rab pathway may lead to exosome-mediated 

dissemination of the viral modulators, inflammatory mediators which needs to be explored.
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Figure 3. SARS-CoV-2 Pathogenesis
Mechanism of SARS-CoV-2-induced cardiovascular disease, role of sepsis, and 
exosomes. SARS-CoV-2 is capable of infecting multiple organs due to the widespread 

expression of ACE2 receptors. During viral replication inside cells, the immune system is 

activated through MHC class I antigen presentation, which is followed by effective antiviral 

immunity leading to recovery. However, in certain individuals, immune dysregulation results 

in cytokine storm and dissemination of virus in the body that might lead to sepsis. The virus 

can also infect endothelial cells that line the blood vessels leading to endothelialitis and 

disseminated intravascular coagulation, which limits gas exchange in the lungs and causes 

metabolic acidosis. Sepsis caused by cytokine storm, virus, exosomes, hypoxemia, and 

disseminated intravascular coagulation may lead to multiple-organ failure and death.
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Figure 4. Hypothesized Role of Exosomes in SARS-CoV-2 Pathogenesis
Exosomes derived from virus-infected cells promote sepsis and tissue injury. Exosomes 

from virus-infected cells are packaged with bioactive molecules, including miRs, viral 

proteins, inflammatory cytokines, cytotoxic agents, and lipids that incite inflammation, 

activate endothelium, and affect intravascular coagulation leading to sepsis-like condition.
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Figure 5. COVID-19 and Heart
Association between SARS-CoV-2 and heart pathophysiology. SARS-CoV-2 could affect 

cardiac physiology either directly via its interaction with ACE2 receptors or through other 

indirect mechanisms, including immune response, vascular coagulation, and oxygen 

deprivation. SARS-CoV-2 infection has been associated with cardiogenic shock, 

dysrhythmias, viral myocarditis, and acute myocardial injuries, leading to cardiac damage 

and fatal outcomes.
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Table 1:

Organs affected, and clinical pathology associated with SARS-CoV-2

Organ/System Symptoms Pathological changes/Lesions References

Respiratory tract
Dry cough, sneezing, 
dyspnea,
Shortness of breath

Interstitial pneumonia with infiltration of 
immune cells, hypoxemia, metabolic acidosis (Li et al., 2020; Zhou et al., 2020)

Gastrointestinal tract Diarrhea Dehydration (Song et al., 2020)

Immune system Fewer, viral sepsis Lymph node atrophy, lymphopenia, cytokine 
storm (Tan et al., 2020)

Heart Rapid heart rate, fatigue, 
cardiac arrest

Cardiac dilatation, heart failure, Myocardial 
infarcts (Libby, 2020)

Blood vessels Rashes on foot Microcirculation dysfunction,
Inflamed blood vessels (Varga et al., 2020)

Kidney Blood in urine Acute kidney injury, focal hemorrhages (Batlle et al., 2020)

Liver Increased ALT and AST, liver enlargement, 
infiltration of immune cells

(Zhang et al., 2020; Zhou et al., 
2020)

Nervous system Loss of taste and smell, 
Dizziness, headache Edema and scattered degeneration (Xydakis et al., 2020)

Blood clotting system Increased blood clotting Coagulopathy, deep vein thrombosis, stroke, 
D-Dimer

(Varga et al., 2020; Wang et al., 
2020)
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Table 2:

Exosomes in virus infection pathogenesis

Virus Exosome component Functions References

HIV Nef Susceptibility to infection, Apoptosis of 
CD4 cells (Arenaccio et al., 2015; Lenassi et al., 2010)

HIV CD81 Virus budding and spread, cholesterol 
metabolism

(Arenaccio et al., 2015; Grigorov et al., 
2009)

HIV C19MC miRNA Resistance to virus infection (Delorme-Axford et al., 2013)

HIV
HIF1α-lncRNA 
BACE-1AS long non-
coding RNA

Neuropathogenesis (Sil et al., 2020)

Zika virus Viral RNA and protein Virus spread to neighboring cells (Zhou et al., 2019)

Zika virus unknown Endothelialitis and blood clots (Martínez-Rojas et al., 2020)

EV-A71 (hand-
foot-and-mouth 
disease)

Viral protein and nucleic 
acid Virus spread (Huang et al., 2020)

Rabies Virus unknown Virus spread (Wang et al., 2019)

EBV LMP1 Inhibit cytotoxic T cells
Transformation of cells (Dukers et al., 2000)

EBV miRNA Virus latency (Cai et al., 2006)

KSHV miRNA and others IL6 production, cellular metabolism (Chugh et al., 2013; Meckes et al., 2013)

HSV1 HLA-DR Immune Evasion (Temme et al., 2010)

HCV Viral genome Virus spread to neighboring cells (Ramakrishnaiah et al., 2013b)

HTLV-1 Tax protein IL6, TNFα production and immune cell 
recognition (Jaworski et al., 2014)

Avian Influenza 
(H5N1) miR-483–3P Increased production of proinflammatory 

cytokines in vascular endothelial cells (Maemura et al., 2020)
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Table 3:

Cardiovascular complications associated with SARS-CoV-2 infection

Pathological manifestation Features References

Acute myocardial injury Elevated Troponin I and NT-proBNP levels (Wang et al., 2020)

Cardiac Arrhythmia Sinus tachycardia, malignant and atrial 
arrhythmia, Hypokalemia

(Goyal et al., 2020; Guo et al., 2020; D. Wang et al., 
2020)

Viral cardiomyopathy Cytokine storm, fulminant myocarditis (Hu et al., 2020; Hua et al., 2020)

Myocardial infarction
Myocardial ischemia, imbalance between oxygen 
demand and supply, hypotension, ST-segment 
elevation

(Bangalore et al., 2020; Inciardi et al., 2020; Zhou et al., 
2020)

Cardiogenic shock Cardiorespiratory arrest, ST-segment elevation, 
dysrhythmias (Sánchez-Recalde et al., 2020; Tavazzi et al., 2020)

Vascular complications Venous thromboembolic events (VTEs), 
coagulopathy, elevated D-dimer

(Klok et al., 2020; Lodigiani et al., 2020; Tang et al., 
2020; Zhou et al., 2020a)
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Table 4:

Clinical trials underway to treat SARS-CoV-2 infection (source: clinicaltrials.org and Clinical Trials Arena)

Drugs Target/mechanism

Remdesivir Inhibits viral RNA synthesis

Danoprevir + Ritonavir Protease inhibitor, Antiretroviral

Lopinavir + Ritonavir Protease inhibitor

Hydroxychloroquine Inhibits lysosomal activity (Discontinued)

Telmisartan Angiotensin receptor blocker

Rintatolimod Recombinant Interferon Alfa-2B

Meplazumab Mab against CD147 membrane glycoprotein

Favipiravir RNA dependent RNA polymerase

Galidesivir Inhibits viral RNA synthesis

Nitazoxanide Interfere with pyruvate:ferredoxin oxidoreductase

ACE inhibitors/ARB Angiotensin-converting enzyme inhibitor, Angiotensin receptor blockers

Convalescent serum Virus-neutralizing antibodies

Monoclonal antibodies to SARS-CoV-2 Virus-neutralizing antibodies

Baricitinib Janus Kinase inhibitor

Mesenchymal stem cells Cell therapy

Famotidine H2 blocker

Interferon β−1b Antiviral immune response

Peginterferon lambda alfa-1a Antiviral immune response

SARS-CoV-2-specific T-cells Cytotoxic T-cells

NT-17 Recombinant IL-17

Isotretinoin Papain-like protease inhibitor

MK-4482 Antiviral

TXA127 Angiotensin 1–7

Clevudine Pyrimidine analogue for HBV treatment

Opaganib Sphingosine kinase-2 inhibitor
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Table 5:

Exosome inhibitors that are investigated for therapy in different diseases

Pharmacological 
inhibitors Target/mechanism of action Effects

Calpeptin Calpains/ Inhibition of MVs/EVs release Increased anti-cancer drug susceptibility in cancer 
cell lines

Manumycin A RAS GTPase/ Inhibition of EVs release Anti-cancer activity, Increased wound healing

Y27632 ROCK1 and ROCK2/ Inhibition of production and release 
of MVs Endothelial cell dysfunction

Pantethine Cholesterol synthesis/ inhibition of MVs formation and 
shedding

Anti-cancer effects, anti-sclerosis, decreased severity 
of cerebral malaria

Imipramine Acid sphingomyelinase/ Inhibition of MVs and EVs 
generation

Inhibits osteoclast differentiation and bone loss, 
increased efficiency of cancer chemotherapy

GW4869 Membrane neutral sphingomyelinase/ Inhibition of EVs 
production and release

Inhibited hypertrophic effect of cardiac fibroblasts, 
reduced drug-resistance in cancer cells, immune 
regulation

U0126 MEK 1 and MEK 2/ Inhibition of MVs generation
Inhibits coagulant
activity of monocytes
and macrophages

NSC23766 Rac1 GTPase/ Inhibition of MVs generation and release Reduced MVs release from platelets in pre-clinical 
model of sepsis

Dimethyl amiloride 
(DMA) Na+/Ca2+ channels/ Inhibition of EVs release Increased efficiency of anti-tumor drugs

Sulfisoxazole RABs and ESCRT pathway/ Inhibition of MVs release Anti-bacterial and anti-cancer activity
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