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Abstract

Spiculations are important predictors of lung cancer malignancy, which are spikes on the surface 

of the pulmonary nodules. In this study, we proposed an interpretable and parameter-free 

technique to quantify the spiculation using area distortion metric obtained by the conformal 

(angle-preserving) spherical parameterization. We exploit the insight that for an angle-preserved 

spherical mapping of a given nodule, the corresponding negative area distortion precisely 

characterizes the spiculations on that nodule. We introduced novel spiculation scores based on the 

area distortion metric and spiculation measures. We also semi-automatically segment lung nodule 

(for reproducibility) as well as vessel and wall attachment to differentiate the real spiculations 

from lobulation and attachment. A simple pathological malignancy prediction model is also 

introduced. We used the publicly-available LIDC-IDRI dataset pathologists (strong-label) and 

radiologists (weak-label) ratings to train and test radiomics models containing this feature, and 

then externally validate the models. We achieved AUC=0.80 and 0.76, respectively, with the 

models trained on the 811 weakly-labeled LIDC datasets and tested on the 72 strongly-labeled 

LIDC and 73 LUNGx datasets; the previous best model for LUNGx had AUC=0.68. The number-

of-spiculations feature was found to be highly correlated (Spearman’s rank correlation coefficient 

ρ = 0.44) with the radiologists’ spiculation score. We developed a reproducible and interpretable, 

parameter-free technique for quantifying spiculations on nodules. The spiculation quantification 

measures was then applied to the radiomics framework for pathological malignancy prediction 

with reproducible semi-automatic segmentation of nodule. Using our interpretable features (size, 
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attachment, spiculation, lobulation), we were able to achieve higher performance than previous 

models. In the future, we will exhaustively test our model for lung cancer screening in the clinic.
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1. Introduction

Lung cancer is the most common cause of cancerrelated death in the United States [1]. Lung 

cancer screening with a low-dose computed tomography (CT) for current and former 

smokers has been shown a clear survival benefit by the National Lung Cancer Screening 

Trial [2]. Recently radiomics studies have been proposed for various clinical applications [3, 

4, 5], which extract a vast number of quantitative image features and then perform data 

mining to predict tumor responses and patient outcomes for more reliable and accurate 

prediction of local control and overall survival. Refer to [6] for an exhaustive review of 

radiomics and radiogenomics studies to predict clinical outcomes in lung cancer.

The radiomics analysis has also been studied for lung cancer screening. Hawkins et al. [5] 

proposed a random forest classifier using 23 stable radiomic features. Buty et al. [3] 

introduced a random forest classifier using a pre-trained deep neural network feature 

extractor (4096 appearance features), and a spherical harmonics feature extractor (400 shape 

features). The spherical harmonics are a decomposition of the frequency-space basis for 

representing functions defined over the sphere and applicable to describe the overall shape 

of the object. However, it cannot provide local features for a given region on a shape (e.g., 

spiculation). Kumar et al. [7] proposed a deep neural network model, which used 5000 

features. Liu et al. [8] introduced a linear classifier based on 24 image traits visually scored 

by physicians. Choi et al. [4] proposed a model for predicting malignancy in pulmonary 

nodules using a support vector machine classifier coupled with a least absolute shrinkage 

and selection operator (SVM-LASSO), which only use two CT radiomic features (size and 

texture). While these radiomics studies have improved the accuracy of the predictions, the 

lack of clinical/biological interpretation of the features remains limited.

Radiographic edge characteristics of a nodule, specifically spiculation (spikes on the surface 

of nodules), influence the probability of malignancy [10]. Typically, malignant nodules have 

blurred and irregular boundaries, while benign nodules have well-defined and smooth 

boundaries. The American College of Radiology (ACR) developed the Lung Imaging 

Reporting and Data System (Lung-RADS) to standardize the lung cancer screening on CT 

images using size, appearance type (spiculation, lobulation, vessel/wall attachment) and 

calcification [11]. Lung-RADS suggests spiculation as an additional image finding that 

increases the suspicion of malignancy to improve prediction accuracy. The McWilliams [12] 

introduced a model to compute the probability of lung cancer, which uses nine variables, 
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such as age, sex, emphysema, family history of lung cancer, the number of nodules, nodule 

size, nodule type, nodule location, and spiculation. Nodule size and spiculation were the 

significant malignancy predictors in both models.

Spiculation quantification of pulmonary nodule has been previously studied but not in the 

prediction of malignancy. Niehaus et al. [13] introduced a computer-aided diagnosis (CAD) 

system, which used the size dependence of shape features to quantify spiculations. Ciompi et 

al. [14] proposed a frequency-based shape descriptor specifically tailored to assess presence 

of spiculation in detected solid nodules for lung cancer screening. Dhara et al. [15] 

quantified spiculation peaks on a surface mesh, extracted from the binary mask of the 

segmented nodule. They used mean curvature and geodesic distance transformation for 

detecting apex of spiculation, and the baseline was then detected by tracing the sudden 

change of surface. The method was highly sensitive to the local variation of the surface, and 

hence, was challenging to detect baseline for noisy spiculation peak accurately.

In this work, we present a comprehensive pipeline to quantify spiculations, lobulations, and 

vessel/wall attachments, and evaluate their importance in malignancy prediction. This work 

extends our ShapeMI workshop paper [16]. The contributions of this paper are as follows:

1. A novel interpretable spiculation feature is presented, computed using the area 

distortion metric from conformal (angle-preserving) spherical parameterization. 

To the best of our knowledge, we are the first ones to exploit the insight that for 

an angle-preserved (conformal) spherical mapping of a given nodule (e.g., using 

a Ricci flow algorithm [9]), the corresponding negative area distortion accurately 

characterizes the spiculations/spikes on that nodule. Moreover, a simple one-step 

feature and prediction model is introduced, which only uses our interpretable 

features (size, spiculation, lobulation, vessel/wall attachment) and has the added 

advantage of using weak-labeled training data.

2. A semi-automatic segmentation algorithm is also introduced for more accurate 

and reproducible lung nodule segmentation as well as vessel/wall attachment 

segmentation. The segmentation method leads to more accurate spiculation 

quantification because the attachments can be excluded from spikes on the lung 

nodule surface (triangular mesh) data. Using just our interpretable features (size, 

attachment, spiculation, lobulation), we were able to achieve AUC=0.82 on 

LIDC and AUC=0.76 on LUNGx (the previous LUNGx best being AUC=0.68).

3. State-of-the-art correlation is achieved between ourspiculation score (the number 

of spiculations Ns) and radiologist’s spiculation score (ρ = 0.44).

The paper is organized as follows: first, we introduce the spherical parameterization 

technique for spiculation quantification and scoring based on semi-automatic segmentation 

of lung nodule surface (triangular mesh) data (Sections 2.1–2.4). The new spiculation 

measures are then performed for pathological malignancy prediction (Section 2.5) followed 

by comprehensive validation of our spiculation quantification on phantom FDA datasets 

from which we identify the new solid angle threshold (TΩ) to differentiate lobulation and 

spiculation in real datasets (Section 3.1). The correlations between our spiculation measures 

and radiologist’s spiculation scores (RS) are then provided along with the performance of 
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malignancy prediction using the spiculation measures (Sections 3.2 and 3.3). Finally, we 

discuss the limitations of our work (Section 4) followed by conclusion (Section 4.1).

2. Method

When mapping any given compact surface (e.g., nodule) to a sphere, there is a trade-off 

between angle distortion and area distortion (e.g., lowering the angle distortion during the 

mapping increases the corresponding area distortion). Given this trade-off, the following 
insight can be exploited for accurately quantifying spiculations on a given nodule. For an 
angle-preserved (conformal) spherical mapping of a nodule (e.g., [17, 9]), the negative area 
distortion precisely characterizes the spiculations/spikes on that nodule (Fig. 1).

2.1 Conformal mappings and area distortion

First, we provide a theoretical overview of the area distortion in conformally mapping a 

genus zero Riemannian surface S to the unit sphere S2 to motivate the spiculation 

quantification pipeline (see [18] and [19] for the relevant mathematical background). By the 

Theorema Egregium of Gauss, one cannot find a diffeomorphism from S with non-constant 

Gaussian curvature to S2 which preserves both area and angles. Furthermore, by a general 

result in complex analysis (uniformization), S and S2 are conformally equivalent. That is, 

there exists a diffeomorphism ϕ:S S2 that preserves angles. Then ϕ is unique up to 

Möbius transformation on S2. This is the spherical parameterization of a compact genus 0 

surface for which we want to measure area distortion.

One may directly use the mapping ϕ to compute the area distortion as in [17]. For working 

on a triangular mesh we have chosen the approach based on [9]. Let g0 be the Riemannian 

metric on S with corresponding Gaussian curvature K0. Let Ku be the curvature on the 

conformally equivalent surface with metric gu = e2ug0. Then it is well-known ([20]) that

Δu + Kue2u = K0 . (1)

This equation provides a specific measure of the are distortion in any spherical 

parameterization procedure. [9] proposed a dynamic version of Eq. 1 which is essentially the 

2D Ricci Flow. Indeed, for the unit sphere Ku = 1, and thus u satisfies the Poisson equation

Δu = K0 − e2u . (2)

u is called the conformal distortion factor, and e2u measures the area distortion between the 

surface S and the sphere S2. If one examines the latter Poisson equation, one qualitatively 

sees that the more K0(x) varies, the greater the variation in u, and from the maximum 

principle, spikes/spiculations may be identified by the greatest negative variation in area 
distortion.

Choi et al. Page 4

Comput Methods Programs Biomed. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Angle-preserving spherical parameterization

We will outline in this section the methodology proposed in [9] for conformally mapping a 

compact genus 0 surface to a sphere, which we will use for spiculation detection/

quantification.

Let S = (V, E, F), denote a triangular mesh where V denotes the vertices, E the edges, and F 
the faces. We assume that S represents the triangulation of a genus 0 compact surface, i.e., a 

topological sphere. As shown in Fig. 2, the idea is to divide S into two topological discs S1 

and S2 with boundary curve given by γ. S1, S2,, and γ may be found via the zeroth level set 

of the eigenfunction corresponding to the smallest positive eigenvalue of the (discrete) 

Laplacian (the so-called Fiedler vector). A discretization of the 2D Ricci (Yamabe flow) is 

then used to conformally flatten S1 and S2 to discs, which are then conformally welded 

together and stereographically projected to get a conformal mapping to the Riemann sphere. 

Specific details can be found in [9].

2.3. Spiculation detection and quantification pipeline

We now formulate the pipeline derived from overall program discussed in Sections 2.1–2.2 

in a discrete setting with respect to a triangulated surface S = (V, E, F). Here, one may 

measure the area distortion on each triangle. The spiculation quantification pipeline using 

this discrete version of spherical parameterization is as follows (with height and width 

detection; see Fig. 1 and Alg. 1):

1. Compute conformal (angle-preserving) spherical parameterization [9]: The first 

non-trivial eigenfunction of the Laplace-Beltrami operator is computed for a 

given mesh (Fig. 1a). The mesh was divided into two topological disks by the 

zeroth-level set (red curve in Fig. 1a) of this eigenfunction. The disks are 

conformally welded and stereographically projected to a sphere (Fig. 1b).

2. Compute the normalized area distortion. For each vertex vi, the area distortion is 

defined as

ϵi: = log
∑j, kA ϕ vi , ϕ vj , ϕ vk

∑j, kA vi, vj, vk

where [vi, vj, vk] is the triangle formed by vi, vj, vk and A(.) represents the area 

of a triangle.
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3. Find all the baselines B where area distortion is zero (Line 12 in Algorithm 1).

4. Recursively search closed curves from the baseline (zero area distortion) to the 

apex (the smallest area distortion) using the level-set method. During the search, 

the closed curves can break into multiple closed curves and move towards 

different apexes. Each pair of the apex (a terminal node) and its corresponding 

closed curves define a peak and are assigned unique IDs to track their 

progression and for height and width computations in the next step. (Line 1–10 

in Algorithm 1)

5. Compute the sum of the distances between the successive centroids of the closed 

curves to obtain the peak height. The peak width is also computed on the area 

distortion map of the peak using a full width half maximum concept.

Malignant nodules are more likely to have irregular, lobulated or spiculated margins due to 

the spread of malignant cells within the pulmonary interstitium. The peak detection is able to 

capture both lobules and spicules. Among them the spiculated nodule is more likely 

malignant than others. The classification of the detected peaks into the spiculation (sharp 

peak) and lobulation (curved peak) will provide more descriptive feature information for the 

malignancy prediction. To exclude lobulation from spiculation, we applied thresholding for 

the height (Th ≥ 3mm) and solid angle (TΩ ≤ 0.65sr). The solid angle threshold was 

suggested in [15], and we confirmed it with the phantom FDA dataset (see Results section). 

We also applied a full width half maximum concept for more robust width measures of a 

peak, using the peak surface and its area distortion. The peak width was measured on an iso-

contour at half minimum area distortions (all negative values).

Spiculation measures: Here, the number of all peaks Np, the number of spiculation Ns, 

the number of lobulation Nl, the number of attachment Na, and the surface area ratio of 

attached regions ra = A(Sa)/A(Snodule) were available as spiculation measures as well as 

lobulation and attachment measures. We also described novel spiculation scores s1 and s2, s1 
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summarized sharpness of each spiculation by applying the mean (mean(ϵp(i))) of the area 

distortion of all the vertices in a detected spike,

s1 =
∑imean ϵp(i) * ℎp(i)

∑iℎp(i)

where p(i) is spike i, hp(i) is height of spike p(i), and s2 summarized irregularity of 

spiculation by applying the variation (var(ϵp(i))) of the area distortion,

s2 =
∑ivar ϵp(i) * ℎp(i)

∑iℎp(i)
.

Fig. 3 illustrates a few nodule examples and the corresponding spiculation quantification 

measures and radiologist’s spiculation scores.

We compared our spiculation measures with [15] proposed spiculation scores sa and sb,

sa = ∑
i

e−ωp(i)ℎp(i)

and

sb =
∑iℎp(i)cosωp(i)

∑iℎp(i)
,

where ωp(i) is the solid angle subtended at apex of spike p(i). These scores summarized the 

sharpness (solid angle ωp(i)) and height (hp(i)) of spiculations as shown in Figure 3.

2.4. Semi-automatic segmentation

Spiculations are thin sharp spikes around the core of a nodule. We used semi-automatic 

segmentation to precisely segment/quantify spiculations as well as extract radiomic features. 

A consensus contour was generated for each nodule with two or more manual contours by 

using the simultaneous truth and performance level estimation (STAPLE) [21, 22] as ground 

truth. Many automatic segmentation methods have been proposed for nodule segmentation, 

but are mainly focused on segmenting core nodule regions. Furthermore, the implementation 

of these segmentation methods is not straightforward.

For the reproducible semi-automatic segmentation, we combined two well-known and easy-

to-implement methods, GrowCut [25] and chest imaging platform (CIP) segmentation 

algorithms [26]. The GrowCut Segmentation is a cellular automata-based region growing 

algorithm that needs two sets of seed points for foreground and background, and they 

compete to grow the regions until convergence. GrowCut segmentation can leak into 

surrounding structures, such as the chest wall, airway walls, and vessel-like structures. The 

CIP segmentation is a level set-based algorithm that uses a front propagation approach from 

a seed point placed within the nodule. The propagation (or segmentation) is constrained by 
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feature maps of the structures to prevent leakage into surrounding structures. However, CIP 

might ignore some tumor regions because of the inaccurate vessel and wall feature maps. 

Therefore, we combined these two methods to compensate for their limitations and to take 

advantage of both for attachment detection. Both methods are publicly available in 3D 

Slicer. Fig. 3(a) show segmentations of different nodules. The corresponding attachments, 

shown in Fig. 3(a) and (b), are computed using the morphological intersection of the 

GrowCut and CIP segmentations.

2.5. Malignancy Prediction

We evaluated our spiculation quantification measures and radiomic features for classifying 

pathological malignant nodules and benign nodules by adding spiculation features to our 

model [4]. The conventional spiculation scores (sa and sb) were also evaluated. A total of 

103 radiomic features was extracted from each nodule to quantify its intensity, shape, and 

texture [4]. Intensity features are firstorder statistical measures that quantify the level and 

distribution of CT attenuations in a nodule (e.g., Minimum, Mean, Median, Maximum, 

Standard deviation (SD), Skewness, and Kurtosis). Shape features describe geometric 

characteristics (e.g., volume, diameter, elongation, roundness, and flatness) for voxels. 

Texture features quantify tissue density patterns. We used Graylevel cooccurrence matrix 

(GLCM): Energy, Entropy, Correlation, Inertia, Cluster prominence (CP), Cluster shade 

(CS), Haralicks correlation (HC), Inverse difference moment (IDM); and Graylevel 

runlength matrix (GLRM): Run-length non-uniformity (RNU), Gray-level non-uniformity 

(GNU), Long-run emphasis (LRE), Short-run emphasis (SRE), High gray-level run 

emphasis (HGRE), Low gray-level run emphasis (LGRE), Long-run high gray-level 

emphasis (LRHGE), Long-run low gray-level emphasis (LRLGE), Short-run high gray-level 

emphasis (SRHGE), Short-run low gray-level emphasis (SRLGE). The mean (average) and 

SD values of each texture feature were computed over 13 directions to obtain rotationally 

invariant features.

Moreover, we extracted features from the triangular mesh model, such as shape features 

(size - volume, average of longest and its perpendicular diameters, equivalent volume 

sphere’s diameter, and roundness) and statistical features (median, mean, minimum, 

maximum, variance, skewness, and kurtosis) of the area distortion metric ϵ. We performed 

univariate analysis to evaluate the significance of each feature to classify spiculation using 

the area under the receiver operating characteristic curve (AUC), Wilcoxon rank-sum test, 

and Spearman’s correlation coefficient ρ. Bonferroni correction was applied to the original 

p-values to counteract the problem of multiple comparisons since the multiple features were 

tested for a single outcome.

We applied the SVM-LASSO model [4] to predict the malignancy of nodules. The model 

uses size (BB_AP) and texture (SD_IDM) features. We inter-compared the original SVM-

LASSO model and other feature combinations of the two features and new spiculation 

features or radiologist’s spiculation score (RS), respectively. We use the same data set and 

evaluation method in [4] to evaluate the new radiomics model with spiculation. Moreover, 

we also evaluated another model building process using weak-labeled data (radiological 
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malignancy score, RM) to predict pathological malignancy (PM), which allowed more data 

to be used despite missing pathological malignancy.

3. Results

We have evaluated the proposed spiculation quantification method by comparing with 

radiologists score and applied the interpretable spiculation features in the nodule malignancy 

prediction, which is the main task in the lung cancer screening.

3.1. Data Preparation

The Lung Image Database Consortium image collection (LIDC-IDRI) [27, 28] and LUNGx 

datasets [29, 30] were applied to evaluate the proposed method, and the data flow is shown 

in Fig. 5. LIDC contains 1018 cases with low-dose screening thoracic CT scans and marked-

up annotated lesions. Four experienced thoracic radiologists annotated nodules, including 

delineation, malignancy (RM), spiculation (RS), margin, texture, and lobulation. Eight 

hundred eighty-three cases in the dataset have nodules with contours. For the biggest 

nodules in each case, we applied semi-auto segmentation for more reproducible spiculation 

quantification and also calculated consensus segmentation using STAPLE to combine 

multiple contours by the radiologists. The accuracy of our semi auto-segmentation compared 

to the consensus contour was 0.71±0.13 in terms of the dice coefficient. LUNGx consists of 

10 cases for calibration set (10 nodules) and 60 cases for the test set (73 nodules). We 

applied the same semi-auto segmentation to nodules in the LUNGx dataset.

For more rigorous data analysis, we divided the LIDC dataset into two subsets depending on 

whether pathological malignancy (LIDC_PM, N=72) or radiological malignancy 

(LIDC_RM, N=811) was available. The radiological malignancy scores are 1 - highly 

unlikely, 2 - moderately unlikely, 3 - indeterminate likelihood, 4 - moderately suspicious, 

and 5 - highly suspicious for cancer. RM>3 (moderately suspicious to highly suspicious) 

was considered radiological malignancy. RS in the dataset ranged between 1 (non-

spiculated) and 5 (highly spiculated). There are up to four annotations for each nodule, we 

aggregated the scores by applying voting. When there are two most frequent scores, we 

chose higher score. We binarized the RS using three different cutoffs (1,2, and 3) because 
the current clinical standard uses binary classification, non-spiculated (NS) and spiculated 
(S), as shown in Table 2 (the cutoff at four is shown for reference).

To optimize spiculation height and solid angle thresholds, Th and TΩ, for filtering out false 

positives such as small peaks and lobulations, we used Phantom FDA layout #4 as shown in 

Fig. 6 [31, 32, 33]. We tuned the thresholds to clearly differentiate the spiculations from 

lobulations (annotations available in Phantom FDA) and to detect as many spiculations as 

possible without false positives. The final selected thresholds were Th ≥ 3mm and TΩ ≤ 

0.65sr. Fig. 7 shows the results of spiculation quantification for each nodule in the phantom 

data. The optimal thresholds excluded lobulations and elliptical shape corners from final 

spiculations.
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3.2. Spiculation Quantification

The proposed method was implemented in Matlab 2017b, and experiments were performed 

on a workstation with Intel(R) Xeon(R) CPU E5–1620 v2 @ 3.70GHz and 32 GB RAM 

running macOS 10.15.5. Table. 3 shows average run-time of the spiculation quantification 

and its major components.

Since we evaluated the malignancy prediction model on LIDC_PM, we performed univariate 

analysis on LIDC_RM to avoid the selection bias in malignancy prediction model building. 

In the univariate analysis, 84 features were identified as significant features (adjusted p-

value<0.05) for spiculation quantification. Among these, 56 features were highly correlated 

with size features (ρ > 0.75); size is one of the main criteria for diagnosing malignancy. 

Thus, we removed all the size-related features, including sa and Np, to provide 

complementary information. After applying the size-related feature removal, 28 significant 

features remained, and we picked 20 highly correlated features with RS. Half of these were 

texture or intensity statistics features, which are not interpretable. Almost all of our 

spiculation measures were significant and ranked in the top 20. Table 4 show the univariate 

analysis results of the top 20 features using semi-auto segmentation. None of Dhara’s 

spiculation scores (sa and sb) were selected in the top 20 features even though they were 

significant features. sa was excluded by its high correlation with size (ρ = 0.87), and sb was 

not ranked among the top 20.

We also performed multivariate analysis to classify PNs into spiculated or non-spiculated on 

different thresholds (Ts). The multivariate classification models were evaluated by 10 times 

10-fold cross validation (CV) The classification performance is shown in Table 5. Highly 

spiculated PNs (Ts > 2 and Ts > 3) were accurately classified in both subsets (LIDC_PM: 

accuracy=83.9%, 79.7% and LIDC_RM: accuracy=78.8%, 79.1%), but all the spiculated 

PNs (Ts > 1) were not stable in the classification accuracy (LIDC_PM: accuracy=79.7% and 

LIDC_PM: accuracy=69.7%).

3.3. Malignancy Prediction

We built models using feature combinations of the previously selected features (Size: 

BB_AP and Texture: SD_IDM) from [4], and the interpretable spiculation features (Ns, Na, 

Nl, Np,ra, s1, s2). As shown in Fig. 5, the model trained by LIDC was then externally 

validated by LUNGx dataset, which was collected for a lung cancer screening competition 

(LUNGx Challenge) and provides a calibration set (size-matched ten nodules, five benign 

and five malignant) and a test set (73 nodules, 37 benign and 36 malignant) [29, 30, 33]. For 

the external validation, we followed the model evaluation process of the LUNGx Challenge 

[30]. The model was calibrated by the calibration set of LUNGx (Model’) and finally 

evaluated by the test set (73 cases) of LUNGx. We used zero value instead of missing 

variable RS in the external validation because LUNGx does not provide it. Since 

pathological malignancy (PM) was only available for the 72 cases, we used weak-labeled 

data (LIDC_RM, N=811) based on the radiological malignancy score (RM). We divided the 

weak-labeled data into two groups (training 80% and validation 20%) for training and 

optimizing the model. Then, the best model was evaluated on strong-labeled data 

(LIDC_PM, N=72). We repeated the analysis 100 times to measure the statistical variance of 
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the models. Table 6 shows the classification results of each model, and their external 

validation. The 10×10-fold CV of the model using Size and our spiculation features (Size

+Spiculations) on LIDC_PM (accuracy=82.6% and AUC=0.85), which did not use weak-

labeled data, outperformed the previous model (Size+Texture, accuracy=74.9% and 

AUC=0.83). However, their external validation on LUNGx was not good as the CV results 

(Size+Texture: accuracy=66.4% and AUC=0.63, Size+Spiculation: accuracy=67.5% and 

AUC=0.65). The Size+Spiculations model trained by weak-labeled data showed comparable 

performance (accuracy=75.2% and AUC=0.80) to the Size+Texture model (accuracy=73.7% 

and AUC=0.82) in the validation on LIDC_PM, but the performance of Size+Spiculations 

was much higher (accuracy=71.8% and AUC=0.76) than Size+Texture (accuracy=57.8% 

and AUC=0.61) in the external validation.

Table 7 shows the comparisons with the top 3 participants and 6 radiologists in LUNGx 

Challenge [30]. The model trained using the weak-labeled data showed an AUC of 0.76, 

which was better than the best model and two radiologists in the LUNGx challenge. The 

model trained by the strong-labeled data (AUC=0.69). Our previous radiomics model (Size

+Texture) showed comparable performance (strong-labeled: AUC=0.67 and weak-labeled: 

AUC=0.68) with the best model in the LUNGx Challenge (AUC=0.68). Weak-labeled data 

training generated more robust and flexible models due to the larger volume of data 

available (about ten times larger than the strong-labeled data); even though the outcomes 

were not pathologically proven, they were correlated with the real outcome.

4. Discussion

Our reproducible and interpretable number-of-spiculations feature (Ns) achieved higher 

correlation with RS than other features, as shown in Table 4. Many texture features were 

selected in the top 20, but since it is hard to interpret the correlation between these texture 

features and spiculations, these can be excluded to avoid the uninterpretability of the final 

models. Moreover, just using our interpretable features, we can also avoid the mandatory 

image/feature harmonization in the pre-processing step for any new given dataset 

(repository). Roundness features showed good correlations with spiculation as well as good 

accuracy in the malignancy prediction because they quantify the irregularity of the target 

shape. However, these cannot filter out lobulation or attachments from spiculations.

The radiomics models using semi-auto segmentation showed relatively lower performance 

than manual segmentation. The models using size (BB_AP) and texture (SD_IDM) showed 

a big difference between manual segmentation (79.2% accuracy) and semi-auto 

segmentation (73.7% accuracy). However, it is difficult to normalize the texture feature. 

Thus the models using SD_IDM were less stable, and the performance was significantly 

degraded in the weak-labeled data training and external validation.

Adding radiologist’s spiculation score into our previous radiomics model using size and 

texture (Size+Texture, 74.9% accuracy) [4] could improve the performance (Size+Texture

+RS, 77.4% accuracy). Similarly, combining Size and RS without Texture (Size+RS, 76.5% 

accuracy) showed better performance, and A model combining our spiculation features and 

Size without texture (Size+Spiculations, 75.2% accuracy) was slightly better than Size
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+Texture. In essence, the texture feature SD_IDM could be replaced by our interpretable 

spiculation features.

We employed weak-labeled data (LIDC_RM) to train the malignancy prediction model 

because of the lack of pathological malignancy data. These models showed comparable 

performance to the model trained by strong-labeled data (LIDC_PM). In the case of strong-

labeled data training, it was difficult to avoid bias and over-fitting due to the lack of training 

data, while building accurate prediction models for malignant nodules. Hence, these models 

were more susceptible to failure because of the lack of adaptability to out-of-training 

unlabeled data. In contrast, weak-labeled data training can help build models that mimic 

conventional lung cancer screening by radiologists in the clinic using correlation with 

pathological malignancy. Moreover, a large amount of weak-labeled training data is usually 

accessible, thus allowing the creation of a more robust model and better performance than 

the strong-labeled data in external validation.

Therefore, we provide guidelines for a radiomics workflow to overcome the limitations of 

conventional radiomics studies using weak-labeled data and interpretable and reproducible 

features. Specifically, if the number of strong-labeled datasets is insufficient to build a good 

model, the abandoned weak-labeled data can be utilized in further analysis, as in the current 

study. Leveraging weak-labeled data in the clinic enables continuous tuning of radiomics 

models - training using diagnosis (weak-labeled) followed by evaluation using the clinical 

outcomes (strong-labeled). A possible pipeline for the new radiomics is as follows:

1. Univariate analysis or unsupervised learning of strong-labeled data

2. Build multivariate models based on results from step 1 and cross-validation using 

the data

3. Univariate analysis or unsupervised learning of weak-labeled data

4. Enhance the model from step 2 based on the results from step 3

5. External validation

6. Repeat steps 3–5 to tune the model

4.1. Conclusion and Future Work

We developed a reproducible and interpretable, parameter-free technique for quantifying 

spiculations on nodules using the area distortion metric from the conformal (angle-

preserving) spherical parameterization. In this paper, to the best of our knowledge for the 

first time, we exploit the insight that for an angle-preserved (conformal) spherical mapping 

of a given nodule, the negative area distortion precisely characterizes the spiculations/spikes 

on that nodule. The spiculation quantification measures and radiomics features based on 

reproducible semi-automatic segmentation of nodule was then applied to the radiomics 

framework for pathological malignancy prediction. The number-of-spiculations feature was 

found to be highly correlated (Spearman’s rank correlation coefficient ρ = 0.44) with the 

radiologists’ spiculation score. Using just our interpretable features (size, attachment, 

spiculation, lobulation) in the radiomics framework, we were able to achieve AUC=0.80 on 

LIDC and AUC=0.76 on LUNGx (the previous LUNGx best being AUC=0.68).

Choi et al. Page 12

Comput Methods Programs Biomed. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the future, we will exhaustively test our reproducible and interpretable model for lung 

cancer screening in the clinic. We plan to apply the recently developed deep learning models 

to segment nodules and expect further improvement in the spiculation quantification as well 

as prediction accuracy. The proposed interpretable features will be further investigated in 

other cancers, e.g., breast cancer BI-RADS [34].

Acknowledgements

This project was supported in part by NIH/NCI Grant R01CA172638, AFOSR Grants FA9550-17-1-0435, and 
FA9550-20-1-0029, National Institute of Aging Grant R01-AG048769, MSK Cancer Center Support Grant/Core 
Grant (P30 CA008748), and a grant from Breast Cancer Research Foundation BCRF-17-193. None of the authors 
have any competing financial interests. All the datasets used in this study are publicly available.

Appendix A.: Results using manual segmentation

We also evaluated our method using manual segmentation. The consensus manual contour 

generated by using STAPLE to combine multiple contours (up to 4). Table A.8 shows the 

univariate analysis results of the top 20 features using manual segmentation. None of 

Dhara’s spiculation scores (sa and sb) were selected in the top 20 features even though they 

were significant features. Table A.9 shows the malignancy classification results of each 

model, and their external validation. The 10×10-fold CV of the model using Size and our 

spiculation features (Size+Spiculations) on LIDC_PM (accuracy=85.1% and AUC=0.85), 

which did not use weak-labeled data, showed comparable performance to the previous 

model (Size+Texture, accuracy=84.9% and AUC=0.89). The Size+Spiculations model 

trained by weak-labeled data showed comparable performance (accuracy=79.3% and 

AUC=0.86) to the Size+Texture model (accuracy=79.2% and AUC=0.83) in the validation 

on LIDC_PM, but the performance of Size+Spiculations was much higher (accuracy=71.5% 

and AUC=0.74) than Size+Texture (accuracy=60.7% and AUC=0.68) in the external 

validation.

Table A.8:

Twenty highly correlated features with RS in univariate analysis using manual segmentation. 

Ts: the threshold to binaries the RS

Rank Feature name AUC Corr

Ts > 1 Ts > 2 Ts > 3 Average ρ

1 Roundness(mesh) 0.73 0.84 0.82 0.80 −0.44

2 SD LRE 0.74 0.80 0.78 0.77 0.44

3 Ns 0.72 0.82 0.83 0.79 0.44

4 Mean ϵ 0.71 0.80 0.79 0.77 −0.40

5 Minimum ϵ 0.71 0.80 0.77 0.76 −0.40

6 WPM1 0.72 0.75 0.77 0.74 0.40

7 Median ϵ 0.71 0.78 0.79 0.76 −0.39

8 2D Roundness(voxel) 0.69 0.82 0.79 0.77 −0.38

9 2D WPM1 0.70 0.74 0.75 0.73 0.37

10 SD LRLGE 0.69 0.74 0.74 0.72 −0.35
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Rank Feature name AUC Corr

Ts > 1 Ts > 2 Ts > 3 Average ρ

11 Mean LRLGE 0.69 0.74 0.72 0.72 −0.35

12 2D Sum 0.69 0.73 0.72 0.71 −0.34

13 SD CS 0.69 0.70 0.68 0.69 −0.34

14 s1 0.67 0.77 0.75 0.73 −0.33

15 SD LGRE 0.67 0.71 0.71 0.70 −0.31

16 SD SRLGE 0.66 0.70 0.70 0.69 −0.30

17 Nl 0.65 0.69 0.71 0.68 0.29

18 Mean Energy 0.67 0.64 0.63 0.65 −0.29

19 s2 0.65 0.74 0.72 0.70 0.28

20 SD SRE 0.64 0.71 0.70 0.69 −0.27

Table A.9:

Malignancy classification results. Size: BB_AP, Texture: SD_IDM, and Spiculations: Ns, Na, 

Nl, Np, ra, s1, and s2.

 Features Sensitivity Specificity Accuracy AUC

10x10-fold CV on LIDC_PM

 Size+Texture 86.9± 1.0% 81.2±3.6% 84.4±1.7% 0.89±0.01

 Size+Spiculation 87.9±1.0% 81.5± 1.6% 85.1±1.0% 0.88±0.01

Validation on LIDC_PM

 Size+Texture 78.1±0.3% 80.7±0.3% 79.2±0.2% 0.86±0.01

 Size+Spiculations 78.3±0.7% 80.6±0.0% 79.3±0.4% 0.83±0.01

External validation on LUNGx

 Size+Texture 67.5±5.7% 54.0±5.5% 60.7±3.5% 0.68±0.04

 Size+Spiculations 81.9±1.9% 61.3±3.7% 71.5±2.1% 0.74±0.02
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Highlights:

1. A novel interpretable spiculation feature is presented, computed using the 

area distortion metric from spherical conformal (angle-preserving) 

parameterization.

2. A simple one-step feature and prediction model is introduced which only uses 

our interpretable features (size, spiculation, lobulation, vessel/wall 

attachment) and has the added advantage of using weak-labeled training data.

3. A semi-automatic segmentation algorithm is also introduced for more 

accurate and reproducible lung nodule as well as vessel/wall attachment 

segmentation. This leads to more accurate spiculation quantification because 

the attachments can be excluded from spikes on the lung nodule surface 

(triangular mesh) data.

4. Using just our interpretable features (size, attachment, spiculation, 

lobulation), we were able to achieve AUC=0.82 on public Lung LIDC dataset 

and AUC=0.76 on public LUNGx dataset (the previous LUNGx best being 

AUC=0.68).

5. State-of-the-art correlation is achieved between our spiculation score (the 

number of spiculations, Ns) and radiologists spiculation score (ρ = 0.44).
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Figure 1: 
Spiculation quantification pipeline. (a) The first non-trivial eigenfunction of the Laplace-

Beltrami operator for a given mesh is computed. The mesh was divide into two topological 

disks by the zeroth-level set (red curve) of this eigenfunction. The disks are conformally 

welded and stereographically projected to a sphere (b), in angle-preserving spherical 

parameterization [9]. (c) The area distortion metric is applied to detect apex (red x’s, which 

have local maximum negative area distortion), and obtain heights (yellow curves) for each 

spike/spiculation.

Choi et al. Page 18

Comput Methods Programs Biomed. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Angle-preserving spherical parameterization schema. A given genus-0 surface is divided 

automatically into two topological disks via zeroth levelset of the Fiedler vector (as depicted 

in Figure 1a). These disks are then conformally (angle-preserving) flattened via Euclidean 

Ricci Flow. Finally, the two flattened disks are conformally welded in an extended complex 

plane along their boundaries and stereographically projected to a sphere.
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Figure 3: 
Spiculation quantification and attachment detection via area distortion metric. (a) the results 

of segmentation and attachment detection on axial slice (blue dashed line: GrowCut 

segmentation, red dashed line: CIP segmentation, white line: final segmentation, and green 

region: attachment), (b) 3D shapes of the final segmentation and attached surface (green 

region: attachment), (c) the results of spiculation detection (red line: baseline of peak, black 

line: medial axis of peak, red X: spiculation, black X: lobulation, yellow X: attached peaks). 

Radiologist’s spiculation score (RS), Dhara’s spiculation scores (sa, sb[15]), and the 

proposed interpretable spiculation features (s1: spiculation score, s2: spiculation score, Ns: 

no. of spiculation, Nl: no. of lobulation and Na: no. of attached peaks) are shown below. 

Some small peaks were excluded from the final detection because of the spiculation height 
threshold.
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Figure 4: 
First row illustrates two LIDC cases with ground truth manual contours where the 

radiologists meticulously marks the spiculations as per the Lung-RADS guidelines. In 

contrast, deep learning algorithms [23, 24] though accurate in localization can completely 

smooth out the critical spiculation features. Our proposed combination gives more 

reproducible segmentation results and is designed to preserve the spiculations as best as 

possible.
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Figure 5: 
The data flow of the malignancy prediction model building and external validation. We 

applied semi-auto segmentation to nodules in both LIDC and LUNGx datasets, and features 

were extracted for these segmentations. The extracted features from LIDC dataset were used 

for model building. The model were evaluated on pathological malignancy subset and the 

LUNGx test set after model calibration using the LUNGx calibration set (Model’).
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Figure 6: 
Nodules on Phantom FDA layout #4 were used for optimizing spiculation height and solid 

angle thresholds (Th and TΩ) to remove false positives in spiculation detection.
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Figure 7: 
Spiculation quantification results of Phantom FDA layout #4, (a) elliptical, (b) lobulated and 

(c) spiculated (red line: baseline of peak, black line: medial axis of peak, red X: spiculation, 

black X: lobulation, first and third columns: 10mm, second and fourth columns: 20mm).
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Table 1:

Symbols and their definitions

Symbol Definition

BB_AP Bounding box length of anterior-posterior direction

SD_IDM Standard deviation of inverse difference moment

ϵ Area distortion metric

Np The number of peaks

Ns The number of spiculations

Nl The number of lobulations

Na The number of attached peaks

s1 & s2 The proposed spiculation scores (sharpness and irregularity)

sa & sb Dhara’s spiculation scores [15]

Ts Threshold to binarize RS

Th Minimum height of spiculaiton

TΩ Maximum solid angle of spiculation

sr Steradian, the SI unit of solid angle
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Table 2:

The numbers of the non-spiculated (NS, ≤ Ts) and spiculated (S, > Ts) nodules for the subsets, LIDC_PM (N = 

72) and LIDC_RM (N = 811).

LIDC_PM LIDC_RM

Ts NS S NS S

1 35 37 474 337

2 55 17 704 107

3 58 14 747 64

4 67 5 790 21
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Table 3:

The run-time of spiculation quantification for each nodule.

Average Run-time (s)

Algorithm 1 0.29

Curvature Computation 0.65

Other Computations 0.42

Total 1.36
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