
INTRODUCTION

Bladder cancer (BLCA) is one of the most common cancers 
worldwide and is also the main cause of cancer morbidity and 
mortality involving the urinary system (Yu et al., 2018). Based 
on the depth of infiltration of the tumor, BLCA is clinically di-
vided into muscle-invasive BLCA (MIBC) and non-muscle-in-
vasive BLCA (NMIBC) (Sanchez-Carbayo et al., 2006). About 
75% of patients with BLCA have an initial diagnosis of NMIBC 
(Nieder et al., 2008); thus, cystectomy remains the main treat-
ment for NMIBC and localized MIBC. However, about 50% of 
patients develop metastases within 2 years after cystectomy 
(Buttiglier et al., 2017). For this reason, intravesical immuno-
therapy or chemotherapy drugs have also been employed for 

the treatment of this disease (Shelley et al., 2012). The che-
motherapy drug GEM is often clinically used for the treatment 
of BLCA by intravesical chemotherapy (Shelley et al., 2012; 
Takeuchi et al., 2015). For example, in a phase I/II study in 
patients with NMIBC, GEM effectively inhibited cancer pro-
gression and delayed the postoperative recurrence of tumors 
(Gontero et al., 2004). In particular, the combination of intra-
vesical GEM and mitomycin C in patients with BLCA who are 
not candidates for (or refuse) cystectomy reduced BLCA re-
currence and prolonged survival (Cockerill et al., 2016). How-
ever, the exact mechanisms underlying the effects of GEM on 
BLCA remain unclear. Studies in the past decade have shown 
that epigenetics is closely related to tumor pathogenesis, 
placing it at the forefront of cancer research (Jeronimo and 
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Histone acetylation is a well-characterized epigenetic modification controlled by histone acetyltransferases (HATs) and histone 
deacetylases (HDACs). Imbalanced histone acetylation has been observed in many primary cancers. Therefore, efforts have been 
made to find drugs or small molecules such as HDAC inhibitors that can revert acetylation levels to normal in cancer cells. We 
observed dose-dependent reduction in the endogenous and exogenous protein expression levels of KAT8 (also known as human 
MOF), a member of the MYST family of HATs, and its corresponding histone acetylation at H4K5, H4K8, and H4K16 in chemo-
therapy drug gemcitabine (GEM)-exposed T24 bladder cancer (BLCA) cells. Interestingly, the reduction in MOF and histone H4 
acetylation was inversely proportional to GEM-induced H2AX, an indicator of chemotherapy drug effectiveness. Furthermore, 
pGL4-MOF-Luc reporter activities were significantly inhibited by GEM, thereby suggesting that GEM utilizes an MOF-mediated 
anti-BLCA mechanism of action. In the CCK-8, wound healing assays and Transwell® experiments, the additive effects on cell 
proliferation and migration were observed in the presence of exogenous MOF and GEM. In addition, the promoted cell sensitivity 
to GEM by exogenous MOF in BLCA cells was confirmed using an Annexin V-FITC/PI assay. Taken together, our results provide 
the theoretical basis for elucidating the anti-BLCA mechanism of GEM. 
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Henrique, 2014). Epigenetic-based biomarkers have provided 
new insights into the clinical treatment of BLCA.

Epigenetic-based biomarkers have been studied in an 
attempt to better understand the molecular mechanisms in-
volved in BLCA. Histone acetylation, as a fully characterized 
epigenetic modification, is conducted by HATs and HDACs. 
Human KAT8/MOF is a highly conserved member of the 
MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of HATs that was 
originally discovered in a study of X-chromosome dosage 
compensation in Drosophila (Hilfiker et al., 1997; Akhtar and 
Becker, 2000). MOF is a catalytic subunit that can form 2 dis-
tinct protein complexes. One is the male-specific lethal (MSL) 
complex, which plays a key role in dosage compensation in 
the fly and is mainly responsible for histone H4 on lysine 16 
acetylation (H4K16ac) in cells (Mellert and McMahon, 2009). 
The other complex is the non-specific lethal (NSL)-associated 
MOF complex, which is capable of catalyzing substantial acet-
ylation of histone H4K5, H4K8, and H4K16 (Cai et al., 2010).

Numerous studies have shown that MOF plays pivotal roles 
in various cellular functions, including genome stability, gene 
transcription, DNA damage repair, cell cycle regulation, and 
early embryonic development (Rea et al., 2007; Gupta et al., 
2008; Kind et al., 2008; Sharma et al., 2010). The expression 
patterns of human MOF vary among different primary can-
cers. For example, it is frequently downregulated in breast 
cancer (Kapoor-Vazirani, et al., 2011), ovarian cancer (Liu et 
al., 2013), medulloblastoma (Pfister et al., 2008), renal cancer 
(Wang et al., 2013), colorectal carcinoma (Cao et al., 2014), 
and gastric cancer (Zhu et al., 2015), but is upregulated in 
non-small cell lung cancer (Zhao et al., 2013). The expression 
levels of MOF proteins are tightly associated with H4K16ac, 
strongly suggesting the involvement of MOF and its corre-
sponding H4K16ac in certain tumorigenic pathways. How-
ever, the role of MOF in BLCA remains largely unknown. It is 
thought that MOF and its corresponding acetylation activities 
may be related to the sensitivity of cells to external stimuli, as 
overexpression of MOF has been shown to inhibit the sensitiv-
ity of 293T cells to arsenic trioxide (As2O3), but MOF-knock-
down promotes the sensitivity of HeLa cells to As2O3 (Liu et al., 
2015). However, the impact of MOF on the therapeutic effects 
of chemotherapy agents remains unclear.

In this study, T24 human urinary BLCA cells were employed 
as an experimental model to investigate the effects of GEM on 
BLCA. Our results showed a decrease in the MOF protein ex-
pression and its corresponding histone H4K16ac in T24 cells 
exposed to GEM, suggesting the potential interaction between 
MOF and GEM. To explore the potential MOF-mediated mo-
lecular mechanisms of GEM in T24 BLCA cells, we conducted 
a series of biochemical and molecular biological experiments 
such as the cell viability assay, flow cytometry, colony forma-
tion assay, and wound healing assay.

MATERIALS AND METHODS

Materials
Anti-mouse IgG-HRP (IH-0031) and anti-rabbit IgG-HRP 

(IH-0011) were obtained from Beijing Dingguo Changsheng 
Biotechnology Co. Ltd (Beijing, China). Anti-Flag (M2) (F3165) 
monoclonal antibody and anti-H4K16ac (H9164) polyclonal 
antibody were from Sigma-Aldrich (St. Louis, MO, USA). 
Anti-MOF (A02757) monoclonal antibody got from BosterBio 

(Wuhan, China). Antibodies for H4K5ac (07-327), H4K8ac 
(07-328), H3K4me1 (07-436), and H3K4me2 (07-030) were 
purchased from Merck Millipore (Darmstadt, Germany). Anti-
bodies for H4 (16047-1-AP) and HDAC2 (12922-3-AP) were 
purchased from Proteintech Group (Wuhan, China). Anti-
bodies for H2AX (CBS-PA15429A0R6) was from Cusabio 
Technology (Wuhan, China). Anti-H2AX (07-164) monoclo-
nal antibody was purchased from Merck Millipore. Antibod-
ies for H3K4me3 (RLM3104), H3K9me2 (RLM3108), Parp1 
(RLM3145), HDAC1 (RLT2145) and E-cadherin (RLT1453) 
were obtained from Ruiying (Suzhou, China). Antibodies for 
N-cadherin (ab18203) and Vimentin (ab45939) were from Ab-
cam (Cambridge, UK). While anti-GAPDH (NM_002046, full 
length) rabbit polyclonal antibody was raised against bacteri-
ally expressed proteins (Jilin University, Changchun, China). 
The chemotherapy drug GEM was kindly gifted by Dr. Yong 
Wang (Urology Department, Jilin province People’s Hospital, 
Changchun, China).

Cell culture and maintenance
T24 and 5637 human urinary BLCA cells were obtained 

from the Type Culture Collection of the Chinese Academy of 
Sciences (Shanghai, China). Cells were cultured in RPMI-
1640 medium (Gibco Life TechnologiesTM, Waltham, MA, 
USA) containing 10% fetal bovine serum (KY-01003, Kang 
Yuan Biology, Beijing, China) and 1% penicillin-streptomycin 
(Thermo Fisher Scientific, Waltham, MA, USA) at 37°C in the 
presence of 5% CO2. The cells were treated with GEM accord-
ing to the experimental design.

shRNA knockdown
The pLVX-shRNA system was used to knockdown endog-

enous MOF. Two shRNA sequences (shMOF-1, GTGATC-
CAGTCTCGAGTGA; shMOF-2, CGAAATTGATGCCTGG-
TAT), which targeted the coding DNA sequence of MOF, were 
introduced into the pLVX vector. The pLVX-shRNA plasmids 
were transiently transfected using polyethylenimine (PEI, 
23966) (Polysciences, Shenzhen, China) according to the 
manufacturer’s recommendation.

Cell viability and growth assay
Cells were cultured at a density of 3×103/well in 96-well 

plates and treated with GEM. Then, cells were incubated with 
CCK-8 reagent (017319, Promega Corporation, Madison, WI, 
USA) for 1 h. The absorbance at a wavelength of 450 nm 
was measured using a microplate reader (Infinite F200 Pro, 
TECAN, Shanghai, China).

Wound healing assay
T24 cells were cultured in 6-well plates as ~90% conflu-

ent monolayers, and wounds were introduced by scraping 
the cells with the tip of a 10-L pipette. Floating cells were 
removed and medium without serum was added. To analyze 
scratch wound closure, optical images were captured at 0 
and 24 h time points using a microscope (Olympus IX73 mi-
croscope; Olympus Corporation, Tokyo, Japan). The wound 
area was analyzed with ImageJ (bundled with 64-bit Java 
1.8.0_112; National Institutes of Health, MD, USA).

Colony formation assay
Cells (2×103) were seeded into a 12-well plate. After seven 

days of culture, formed colonies were stained with 0.1% crys-
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tal violet. Colonies were photographed by Gel Imaging Sys-
tem (Liuyi Instrument Plant, Beijing, China).

Transwell® migration assay
Twenty-four-well Transwell® chambers (Corning Inc., Corn-

ing, NY, USA) were used in the migration assay. Filters (8-m 
pore size) were used for estimating cell migration. Cells in 0.2 
mL of serum-free medium were placed into the upper chamber 
(2×104 cells). Medium containing 10% FBS was then added 
into the lower chamber. After incubation for 24 h, cells were 
fixed in methanol for 20 min, stained with 0.1% crystal violet 
for 10 min, and counted under a microscopy (Olympus Corpo-
ration, Miyazaki, Japan).

Luciferase reporter assay
The MOF promoter region (1470 bp, –1464 to +6 bp) was 

introduced into the pGL4-Luc vector. The luciferase reporter 
assay was conducted as described (Su et al., 2016a). Briefly, 
T24 cells were co-transfected with 0.4 g pGL4, which en-
codes firefly luciferase; 1 ng control plasmid renilla luciferase 
vector, which encodes renilla luciferase; and effector plasmid 
expressing pGL4-MOF using PEI (PolyScience, Warrington, 
PA, USA). Total effector plasmid in each transfection was 
adjusted to 0.4 g with empty vector. After 48 h, pGL4-MOF 
transactivation activity was determined by measuring firefly 
and renilla luciferase activities using a Dual-Luciferase Re-
porter Assay Kit (Promega Corporation) and by normalizing 
firefly to Renilla luciferase.

Plasmid construction and transient transfection
Full-length cDNA encoding the hMOF (BC037773) protein 

was subcloned with Flag-tag into pcDNA3.1(-). Then, the T24 
cells were transiently transfected with FLAG-MOF (Fl:MOF) 
plasmid using PEI according to the manufacturer’s instruc-
tions (PolyScience).

Flow cytometry analysis
Cultured T24 cells were harvested by trypsinization. ~1×106 

cells were suspended as single cell dispersions in 70% etha-
nol at –20°C for at least 4 h. After centrifugation at 300×g for 
5 min, cells were washed twice with PBS and then re-sus-
pended in 300 l PBS containing 0.1% (v/v) Triton X-100, 0.3 
mg/mL DNase-free, RNase A, 50 g/mL propidium iodide, 
and then were incubated at 37°C for 1 h. Data collection was 
performed using the EPICS XLTM flow cytometer (Beckman 
Coulter,  Brea, CA, USA). Acquired data were analyzed us-
ing ModFit LT software (Verity Software House, Topsham, ME, 
USA). The experiment was repeated three times under the 
same conditions.

Analysis of apoptosis
T24 cells were cultured in RPMI-1640 medium with or with-

out GEM (0.15 M or 0.75 M). After transfection for 48 h, 
cells were harvested and stained with an Annexin V-FITC/PI 
kit (KeyGEN Biotech, Nanjing, China). Propidium iodide (PI) 
was used to discriminate between apoptotic cells with mem-
brane integrity (Annexin V+/PI–) and necrotic cells that lost 
membrane integrity (Annexin V+/PI+).

Statistical analysis
Statistical analysis was conducted using data from at least 

three independent experiments. All results are presented as 

mean ± standard deviation (SD). SPSS 20.0 (SPSS, Inc., 
Chicago, IL, USA) was used for statistical analysis. Indepen-
dent samples t-test was used to compare means between two 
groups. One-way ANOVA with Bonferroni’s post-test was used 
to measure the overall effect of drug treatment. For the drug 
treatment and multiple time-points groups, two-way ANOVA 
analysis of variance and the Tukey honest significant differ-
ence post hoc test were used. Significance was defined at 
p<0.05.

RESULTS

Anti-cancer eff ects of GEM were verifi ed in T24 BLCA cells
Our initial research results suggest that the protein level of 

MOF in bladder cancer T24 and 5637 cells was suppressed in 
a dose-dependent manner after treatment with chemothera-
peutic drugs, including GEM, mitomycin C, and camptothecin 
(data not shown). Thus, GEM was selected for the subse-
quent study on MOF-related mechanisms. To determine the 
appropriate concentrations of GEM for our experiments, the 
CCK-8 cell viability assay was first performed to verify their 
cytotoxicity in T24 cells. Fig. 1A shows that dose-dependent 
cytotoxicity of GEM in T24 cells was observed after treatment 
with gradient concentrations of GEM for 24 h, 36 h, and 48 
h. Cytotoxicity increased with prolonged drug exposure time 
(48 h>36 h>24 h). Next, long-term clonogenic cell survival and 
cell migration ability were evaluated by colony formation and 
wound healing assays. Based on the CCK-8 cell viability as-
say, we selected 0.15 M GEM for subsequent experiments 
because this drug concentration did not induce any cell death. 
Compared to the control group (No-drug group), the ability of 
cells to form colonies was significantly suppressed by GEM 
(Fig. 1B), and the progression of wound closure was much 
slower in GEM-exposed cells than in control cells (Fig. 1C). 
The normalized percentage of the scratch wound is shown in 
Fig. 1D. Next, FACS analysis was performed to verify the ef-
fects of GEM on T24 cell cycle progression. Fig. 1E shows that 
compared to the control group, GEM-exposed cells appeared 
to be arrested in G1/S phase (lower panel). The percentage 
of cells in the G1, S, and G2/M phases is shown in Fig. 1F. To 
further confirm this observation, T24 cells were treated with 
1 mM hydroxyurea (HU) to block cells in the G1/S phase so 
that no new G2/M phase cells could be generated, and then 
released the cells at different time points (0, 2, 4, 8, 12, 16, 
and 20 h). As expected, 0.15 M GEM-treated cells were com-
pletely arrested at the G1/S phase throughout the experiment 
(Fig. 1G).

MOF-mediated global histone H4K5ac/K8ac/K16ac in T24 
BLCA cells are targeted and regulated by GEM

Both BLCA T24 and 5637 cells treated with GEM showed 
downregulated endogenous levels of the HAT MOF protein, 
and this reduction was dose-dependent (Fig. 2A). Thus, we 
selected T24 cells for a series of subsequent experiments. 
At first, to explore whether GEM affects the transactivation of 
MOF, the MOF promoter region (–1,464 to +6 bp) was sub-
cloned into the pGL4 luciferase vector (Fig. 2B, right upper). 
Then, the impact of GEM on MOF transactivation was esti-
mated by measuring luciferase activity of pGL4-MOF in GEM- 
(0-375 nM) exposed cells. In contrast to basal level luciferase 
activity, a dose-dependent decrease in luciferase activity was 
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observed in all concentrations of GEM treated cells (Fig. 2B), 
indicating the regulatory role of GEM on MOF transactivation. 
Considering that MOF acts as a catalytic subunit in cells, it can 
form 2 different protein complexes (NSL and MSL complexes) 
that are responsible for catalyzing the acetylation of histones 

H4K5, H4K8, and H4K16 (Cai et al., 2010). Therefore, to fur-
ther confirm that GEM targets MOF, Fl:MOF and pLVX-shMOF 
plasmids were constructed. We then compared the changes 
in MOF protein expression and global histone H4 acetylation, 
H3 methylation, and HDAC1/2 levels in MOF-overexpres-
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sion, MOF-knockdown, or GEM-exposed T24 cells. Fig. 2C 
shows that similar to the results of MOF-knockdown (lanes 
4-6), GEM dose-dependently reduced the expression of the 
MOF protein and its corresponding histone H4K5ac/H4K8ac/
H4K16ac (lanes 7-9), suggesting that GEM can target endog-
enous MOF. Conversely, in cells overexpressing Fl:MOF, in 
addition to the highly expressed MOF, its corresponding global 
histone acetylation level also increased (lane 1-3). However, 
the histone H3K4me1/me2/me3 and H3K9me2 and the levels 
of HDAC1/2 did not significantly change in cells that exhibited 

MOF overexpression, knockdown, or were treated with GEM, 
suggesting that GEM specifically targets MOF, thereby affect-
ing its corresponding histone acetylation level at lysine K5, 
K8, and K16. The following experiment confirmed the synergy 
between MOF and GEM. Fig. 2D shows that the cells were 
transiently transfected with increasing amounts of Fl:MOF 
plasmids in the presence or absence of GEM. Compared to 
the Fl:MOF plasmid-transfected group (lanes 1-3), GEM re-
markably decreased the level of exogenous MOF and the 
acetylation of histone H4 (lanes 4-6).
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signals were compared to the untreated group. The data below the protein signals represents the quantifi ed results. (D) Reduction of exog-
enous MOF in GEM-treated cells. 0.6 g and 1.2 g Fl:MOF plasmids were transiently transfected into T24 cells. After 24 h, the cells were 
treated with 0.15 M GEM for 24 h. MOF protein and histone H4 acetylation levels were detected by western blot with specifi c antibodies. 
MOF protein was normalized by GAPDH, and histone H4 modifi cations were quantifi ed by H4. Signals in GEM-treated groups were com-
pared to the corresponding untreated groups.
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GEM and MOF coordinatively induces DNA damage in T24 
BLCA cells

Double-strand DNA breaks (DSBs) often initiate phosphor-
ylation of histone H2AX at serine 139, which is referred to as 
H2AX, and the detection of H2AX is a rapid method for as-
sessing the effectiveness of chemotherapy drugs that induce 
DSBs (Wang et al., 2010). Fig. 3A shows that using H2AX 
as an indicator, we observed the correlation between MOF 
and H2AX in GEM-exposed cells. As a result, the levels of 
H2AX in GEM-treated cells gradually increased during the 
observation period, indicating the therapeutic effects of GEM 
on BLCA cells (IB: H2AX). Contrary to the observed changes 
in H2AX, MOF and histone H4K16ac levels gradually de-
creased (IB:MOF and H4K16ac), suggesting the potential 
relevance of MOF in the anti-cancer mechanism of GEM. To 
further confirm this hypothesis, H2AX was measured in cells 
with or without Fl:MOF plasmid transfection after GEM treat-
ment (Fig. 3B). As expected, a highly significantly increase in 
H2AX levels was observed in cells co-treated with GEM and 
MOF (**p<0.01, compared to cells treated with GEM alone) 
(Fig. 3C). The H2AX levels in Fl:MOF-transfected cells with 
or without GEM were also tested. Similarly, a remarkable en-
hancement of H2AX was revealed in the presence of both 

GEM and MOF (*p<0.05 and **p<0.01, compared to cells 
treated with MOF alone) (Fig. 3D, 3E). However, the addition 
of GEM to MOF-knockdown cells reduced H2AX levels com-
pared to the shNT group, which may have been due to the de-
crease in endogenous MOF and its corresponding acetylation 
of histone H4K5/ H4K8/ H4K16, leading to a decrease in cell 
sensitivity to GEM (Fig. 3F).

MOF enhances the inhibitory eff ect of GEM on T24 BLCA 
cell proliferation

Our previous results confirmed that GEM targets and regu-
lates intracellular MOF and its corresponding histone H4K5/
K8/K16 acetylation levels, prompting us to further explore 
whether the regulatory effect of GEM on MOF is involved in its 
anti-cancer effect. To address this question, the viability of T24 
cells treated with 0, 0.03, 0.15, 0.8 or 4.0 M GEM for 24 h 
and 48 h in the presence or absence of exogenous MOF was 
assessed using the CCK-8 assay kit (017319, Promega Cor-
poration). Compared with the pcDNA3.1-transfected control 
group, GEM dose-dependently inhibited cell viability at both 
24 h and 48 h time points (Fig. 4A), suggesting that MOF facili-
tated the sensitivity of T24 cells to GEM. The expression level 
of Fl:MOF at 48 h after transfection is shown in Fig. 4B (lane 
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2). On the contrary, by knocking down the MOF with specific 
shRNA, cell viability increased regardless of whether the cells 
were treated with GEM for 24 h or 48 h (Fig. 4C). The protein 
level of endogenous MOF at 48 h after shMOF transfection 
was shown in Fig. 4D (lane 2). The results of the colony forma-
tion assay further support the previous results of cell viability. 
Fig. 4E shows that knocking down MOF with shRNA in T24 
cells promotes colony formation. The number of colonies in 
the control and MOF-knockdown groups is shown in Fig. 4F. 
The above experimental results show the synergistic effects of 
GEM and MOF on BLCA tumorigenesis.

MOF and GEM engage in cooperative inhibition of cell 
motility

Cancer cells move within tissues during invasion and me-
tastasis by their own motility (Yamazaki et al., 2005). To ob-
serve the synergistic effect of MOF and GEM on cell motility, 
the wound healing assay and Transwell® experiments were 
performed. Fig. 5A shows the images 24 h after making an 
initial scratch wound. The progression of wound closure was 
slower in the GEM, MOF, and MOF+GEM cells than in the no-
drug cells. Importantly, when cells were co-treated with MOF 
and GEM, the progression of wound closure was much slower 
than in cells treated with MOF or GEM alone. The percent-
ages of the scratch wound at 24 h were 55.7%, 67.2%, 74.7%, 
and 85.9% in the control, GEM, MOF, and MOF+GEM groups, 
respectively (Fig. 5B). Next, the Transwell® migration assay 

was performed to examine the function of MOF and GEM in 
metastasis. Similarly, cells co-treated with MOF and GEM had 
lower migrant ability than cells treated with MOF or GEM alone 
(Fig. 5C). The number of migrant cells is shown in Fig. 5D. 
Epithelial-mesenchymal transition (EMT) plays a key role in 
tumor metastasis. Using western blotting, we examined the 
protein levels of several key EMT-related molecules. Fig. 5E 
shows that compared to the GEM alone-treated cells (left pan-
el), when GEM-exposed cells were transfected with Fl:MOF 
plasmids, the epithelial cell marker E-cadherin was strongly 
upregulated, whereas mesenchymal markers N-cadherin 
and vimentin were distinctly downregulated (right panel). The 
above results show the synergistic inhibitory effect of MOF 
and GEM on the metastasis of BLCA T24 cells.

MOF enhances GEM-induced cell death
Cell viability experiments suggest that MOF increases cell 

sensitivity to GEM. To further confirm whether MOF has an 
influence on GEM-induced cell apoptosis and necrosis, flow 
cytometry of Annexin V binding/PI uptake was assessed in 
cells exposed to increasing GEM concentrations with or with-
out Fl:MOF transfection (Fig. 6A). Apoptosis and necrosis 
are depicted in Fig. 6B. Compared to the GEM-only treated 
cells, exogenous MOF significantly increased GEM-induced 
apoptosis (upper panel) and necrosis (lower panel) (**p<0.01 
in 0.15 and 0.75 M GEM group), suggesting that MOF pro-
moted GEM-induced cell death. This result has also been 
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confirmed by detecting the apoptosis-related proteins using 
western blot analysis. Fig. 6C shows that overexpression of 
Fl:MOF increased expression of apoptosis-associated protein 
Cleaved Parp1 and inhibited Bcl2 expression, suggesting that 
exogenous MOF enhances the T24 BLCA cell sensitivity to 
GEM.

DISCUSSION

Different histone post-translational modifications lead to 
distinct effects on chromatin architecture (Biswas and Rao, 
2018). Among these, histone acetylation is controlled by HATs 
and HDACs. In cells, human HAT MOF is a catalytic subunit 
that can form at least 2 distinct multiprotein complexes (MSL 
and NSL). Both complexes can acetylate the histone H4K16 
site; however, the H4K5 and H4K8 sites can also be acety-
lated by the NSL complex, suggesting the complexity of the 
functions of MOF (Cai et al., 2010; Su et al., 2016b). In cells, 
MOF participates in many critical biological processes, includ-
ing gene transcription, cell proliferation, and the DNA repair 
response (Mendjan et al., 2006; Sharma et al., 2010). Our pre-
vious study and other literature reports have suggested that 

MOF plays a key role in tumorigenesis (Pfister et al., 2008; 
Kapoor-Vazirani et al., 2011; Liu et al., 2013; Wang et al., 
2013; Zhao et al., 2013; Cao et al., 2014; Zhu et al., 2015), 
demonstrating that it is likely to be a target for cancer treat-
ment. Interestingly, GEM, a chemotherapy drug commonly 
used in BLCA, inhibited both endogenous and exogenous 
MOF protein and global histone H4 acetylation at Lys5, Lys8, 
and Lys16 sites in T24 cells (Fig. 2, 3), suggesting the in-
volvement of MOF-containing NSL complex in the anti-BLCA 
mechanism of GEM. Further research results suggest that the 
downregulation of MOF protein and its corresponding histone 
H4K5ac, H4K8ac, and H4K16ac in GEM-exposed cells may 
be due to GEM inhibiting the transactivation because pGL4-
MOF-Luc reporter activities were suppressed by treating cells 
with GEM and followed a dose-dependent manner (Fig. 2). In 
line with our results, the well-known p300/CBP HAT has be-
come the target of several chemotherapy drugs. For instance, 
5-fluorouracil (5-FU), a ribonucleic acid and deoxyribonucleic 
acid synthesis-interfering agent, can result in hypoacetylation 
of global histones by promoting the degradation of p300/CBP 
in multiple colorectal cancer cell lines (Du et al., 2017).

Subsequent research studies have shown that inhibiting 
the degradation of p300/CBP can enhance the cytotoxicity of 
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5-FU in colorectal cancer cells, whereas reducing the protein 
expression levels of p300/CBP by siRNA improves cellular 
resistance to 5-FU. Moreover, the downregulation of p300/
CBP in colorectal carcinoma tissue is closely associated with 
poor clinical response to 5-FU-based chemotherapy (Du et al., 
2017), demonstrating the involvement of HAT p300/CBP in the 
anti-cancer mechanism of 5-FU. Furthermore, in A549 cells 
(adenocarcinomic human alveolar basal epithelial cells), the 
significant increase in cell sensitivity to cis-diamminedichloro-
platinum (cisplatin), 5-FU, and bleomycin was observed after 
knocking down MOF with siRNA (Chen et al., 2014), strongly 
suggesting that MOF is the target of those anti-cancer drugs. 
GEM only affects global acetylation of histone H4K5, H4K8, 
and H4K16, but it has little or no effect on histone H3K4me1/
me2/me3, H3K9me2, HDAC1, and HDAC2 levels, suggesting 
that at least part of the anti-cancer mechanism of GEM in T24 
BLCA cells may be caused by selective inhibition of MOF. This 
is also consistent with the view that overexpressing MOF de-
creases cell viability, and knocking down MOF increases cell 
viability in GEM-exposed T24 BLCA cells.

In view of the research results described above, the role of 
MOF-mediated anti-cancer effects of GEM can be deduced. 
However, it is worth noting that the modulation of MOF expres-

sion by GEM not only directly affects the global intracellular 
acetylation of histone H4, but also may indirectly participate in 
the pathogenesis of cancer through acetylation of non-histone 
proteins. For instance, MOF is required for directly acetylating 
histone demethylase LSD1 in T47D, MDA-MB-468, BT474, 
and MCF7 cells, and increasing MOF expression can sup-
press the LSD1’s accessibility to chromatin, EMT, and inva-
sion in A549 cells. In contrast, depletion of MOF promoted 
EMT and cell invasion, suggesting the function of acetylation 
of LSD1 by MOF in tumor malignant progression (Luo et al., 
2016). In this study, the overexpression of MOF in GEM-ex-
posed T24 BLCA cells led to an additive inhibition in cell mo-
tility, which was confirmed by wound healing and Transwell® 
assays (Fig. 5), suggesting the cooperative function of MOF 
and GEM in T24 BLCA cell migration. In line with this, up-
regulation of E-cadherin and downregulation of N-cadherin/
vimentin were observed in the MOF/GEM co-treated group. 
Furthermore, this additive effect between MOF and GEM is 
also reflected in flow cytometry of Annexin V binding/PI up-
take assay. The percentage of cell apoptosis and necrosis 
significantly increased in the MOF and GEM co-treated group 
compared those to GEM-only treated group. At the same time, 
lower levels of the apoptosis-related protein Parp1 and Bcl2 
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and higher levels of cleaved Parp1 were detected by western 
blotting (Fig. 6).

In summary, our present findings uncovered novel mecha-
nisms by which the anti-bladder cancer effect of GEM is at 
least partially achieved by inhibiting the expression of MOF 
and its corresponding histone H4 acetylation. Thus, our re-
sults suggest that human MOF or MOF-containing NSL com-
plex may be potentially utilized as a target for the development 
of new drugs for the treatment of BLCA.
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