Table 2.
Code | Name | Values/Categories/Levels |
---|---|---|
PP | Performance parameters | 25 different parameters (see table from Section 4.3) |
ML | Machine learning algorithm | XGBoost, naïve Bayes, support vector machine (SVM), NN (multi-layer feed-forward of resilient backpropagation network or RPropMLP) and probabilistic neural network (PNN) |
NS | Number of samples, dataset size | 100, 500, 1000, and total (all samples of the balanced dataset) |
SR | Split ratios for the train/test splits | 50, 60, 70, 80 |