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Simple Summary: Glioblastoma (GBM) is the most common form of primary malignant brain tumor
with a devastatingly poor prognosis. Tumor heterogeneity (cellular, molecular and immune) is the
major obstacle to current treatment failure. We revisited the recent literature to understand the
heterogeneous features of GBM and their potential role in treatment resistance. This review provides
a comprehensive overview covering the GBM’s pathogenetic features, currently available treatment
options and the treatments currently under development in the clinic.

Abstract: Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a
devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of
both sexes, and has an average overall survival of 12–15 months, despite advances in diagnosis and
rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most
survivors will eventually experience tumor recurrence that only imparts survival of a few months.
GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment.
Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative
treatment options that allow for more efficient targeting of the tumor including small molecule
drugs and immunotherapies. A number of other strategies in development include therapies based
on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances
in these potential approaches shed a promising outlook on the future of GBM treatment. In this
review, we briefly discuss the current understanding of adult GBM’s pathogenetic features that
promote treatment resistance. We also outline novel and promising targeted agents currently under
development for GBM patients during the last few years with their current clinical status.

Keywords: glioblastoma; GBM pathogenesis; heterogeneity; targeted therapy; immunotherapy

1. Introduction

Glioblastoma (GBM) is one of the most common forms of primary malignant brain
tumor and has a very poor prognosis with an average patient survival lasting only
12–15 months [1,2]. This bleak outlook is due in part to the challenges that are presented
by the anatomical location of the tumor as well as the heterogeneity of GBM cells and their
rapid growth rate [3,4]. Although GBM is known to affect both adults and children, the
incidence of GBM increases with age peaking in the 1970s [5]. Cancer incidence is roughly
2-3 individuals per 100,000 cases each year in the United States, with rates increasing
slightly based on patient age [6–8]. There is also a slightly higher rate of incidence in
men versus women, with men being 1.6 times more likely to develop GBM [9]. GBM
accounts for approximately 46% of all diagnosed brain tumors and causes around 2.7%
of all cancer-related deaths [3]. In fact, it is ranked as the third most common cause of
death from cancer in patients between 15 and 34 years [7]. There are currently four grades
of gliomas classified by the World Health Organization (grades I-IV) [7,10]. Grade IV
gliomas are the most aggressive and invasive forms and are responsible for the poorest
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prognoses [10,11]. GBM typically refers to these grade IV gliomas and can be subdivided
into primary and secondary types [12,13]. Although primary and secondary gliomas share
similar histological characteristics, they have very different genetic profiles [14]. Primary
GBM constitutes approximately 90% of GBM cases and is considered a de novo pathway of
multistep tumorigenesis from glial cells while secondary GBM develops from lower-grade
and pre-existing tumors such as diffuse astrocytomas [15]. Of the two, primary GBM is
generally found to be more malignant than secondary GBM [16], and men are somewhat
more likely to present with primary GBM while women are more likely to be diagnosed
with secondary GBM [17].

The standard treatment options for GBM include surgery, chemotherapy, and radiation.
However, even with these interventions, GBM still carries a dismal prognosis [18,19]. Di-
verse pathogenetic features and immunosuppression are two major contributors of current
treatment failure. Although many studies have attempted to design effective treatments
around these challenges, none have been developed that are capable of achieving long-term
patient survival without causing unwanted damage to the delicate cells and neuronal tis-
sues of the brain [4]. Over the past several years, targeted therapies and immunotherapies
have shown great achievement in GBM management with promising results in clinical
trials [18–21]. Other therapies in development include nanotechnology-based innovations,
photodynamic strategies, gene therapy, and local destruction of the tumor via genetically
modified bacteria or controlled hyperthermia. In this review, we discuss the current under-
standing of GBM’s pathogenetic features (i.e., cellular, molecular, and immunosuppressive
properties) that contribute to treatment resistance. We also outline novel targeted therapies,
different immunotherapeutic approaches, and a number of other promising/emerging
treatment strategies for adult GBM that are currently under development.

2. Pathogenetic Features
2.1. Cellular Heterogeneity, Tumor Vascularity, and Extracellular Matrix

GBM is highly heterogeneous, both intrinsically and intratumorally, with multiple
factors driving its development and growth [22,23]. The tumor grows in an infiltrative
manner, making it difficult to distinguish and surgically remove from the normal brain [24].
Over half of primary GBMs occur in the four lobes of the brain, with smaller parts also
found in the brain stem and spinal cord [7,16,25]. Among those occurring in the brain,
approximately 25% are located in the frontal lobe, 20% in the temporal lobe, 13% in the
parietal lobe, and 3% in the occipital lobe [25]. However, while primary GBM can de-
velop in any number of locations in the brain, secondary GBM is found primarily in the
frontal lobe [12]. GBMs were once thought to be derived from neural stem cells (NSCs),
NSC-derived astrocytes, and oligodendrocyte precursor cells (OPCs) [26]. However, new
evidence suggests that astrocyte-like NSCs in the subventricular zone (SVZ) are the cell of
origin for GBM [27–30]. Lee and colleagues established that astrocyte-like NSCs harboring
low mutational levels can migrate from the SVZ to a distinct site and develop high-grade
gliomas [29]. In addition, NSCs in the SVZ were found to carry limited self-renewal
abilities, thus, being able to escape replicative senescence and acquire driver mutations
over time that play a role in GBM recurrence [29]. The cells that make up GBM are small,
polymorphic, and anaplastic. In appearance, they are usually polygonal or spindle-shaped,
with indistinct borders and acidophilic cytoplasm [28,31]. These cells are known to have
clumped chromatin with distinct nucleoli, oval or elongated nuclei of varying sizes, and
an increased nuclear to cytoplasmic ratio. In addition, some cells may be binuclear or
multinucleated and may have large lipomatous vacuoles [28,31]. The endothelial cells of
GBM are also unique in that they overlap focally and are heterogeneous in appearance.
While normal brain endothelial cells lack Weibel–Palade bodies, which are the storage
granules of endothelial cells, GBM endothelial cells (GECs) in new vasculature contain
many of these granules [31]. Weibel–Palade bodies in GECs secrete von Willebrand Factor
(VWF)—a pro-angiogenic factor that is associated with a three-fold higher risk of death
in GBM patients [32]. GBM also contains a sub-population of cancer cells that display
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stem-cell qualities designated GBM stem-like cells (GSCs) [27,33,34]. Differentiation of
these GSCs leads to an incredibly diverse population of cell types such as microglia-like
cells [35–39] and oligodendrocyte-like cells within the tumor [40,41]. GSCs possess a num-
ber of other characteristics including self-renewal, increased proliferation and migration,
suppression of immune responses, support of angiogenesis, and increased radio- and
chemoresistance [27,33,34]. Because of these abilities and characteristics, GBMs often recur
from GSCs and are often distinctly unique from the original glioma with a developed
resistance to previously applied treatments [33].

GBM is a highly vascularized tumor [42] that occurs via multiple mechanisms such
as vessel co-option, angiogenesis, vasculogenesis, endothelial cell trans-differentiation,
and vascular mimicry [43]. Vessel co-option is a non-oncogenic process where tumor
cells use nutrients from the pre-existing vasculature of normal/healthy tissues to sup-
port tumor growth and tumor cell survival [44]. This process involves the movement
of tumor cells along the vasculature and contributes greatly to the infiltrative growth
of gliomas [45,46]. Some pre-clinical studies show that vessel co-option is a preferred
mechanism of vascularization in early-stage gliomas, which later may or may not switch
to the process of angiogenesis (i.e., development of new blood vessels) in GBM [47–49].
Angiogenesis in GBM can be induced by different factors such as basic fibroblast growth
factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta
(TGF-β), and angiopoietins [50]. However, tumor angiogenesis is oftentimes nonproduc-
tive due to abnormal vessels that lead to vascular occlusion [51,52] that causes a hypoxic
environment surrounding the failed vessel and ensuring central necrotic tissue [31]. Tumor
cells then actively migrate away from this central hypoxia, resulting in the formation of a
zone of hypercellular tissue surrounding an area of necrosis (defined as a pseudopalisade).
Pseudopalisades secrete hypoxia-inducible factor (HIF-1), vascular endothelial growth
factor (VEGF), hepatocyte growth factor (HGF), matrix metalloproteases (MMPs), and
interleukin-8 (IL-8) that promote microvascular proliferation, angiogenesis, and tumor
expansion [51]. Clinically, pseudopalisades are thought to be a major contributor to the
rapid disease progression and poor survival rate and response to treatment [53]. GBM
endothelial cells can be derived from bone marrow (BM)-derived endothelial progenitor
cells (EPCs) or GSCs through vasculogenesis [54] and endothelial cell trans-differentiation,
respectively [37,55]. GSCs also possess an ability to form a non-endothelial tube-like struc-
ture that mimics the tumor vasculature and supports tumor growth—a process otherwise
known as vascular mimicry that is associated with poor prognosis in GBM patients [56,57].
Importantly, the steps of GSC-induced tumor vascularization can also be potentiated by
GBM standard-of-care interventions [58,59]. For instance, traditional temozolomide (TMZ)
chemotherapy can promote neovascularization by inducing chemotherapeutic stress, which
helps transdifferentiate GSCs into endothelial cells and vascular mimicry [58]. Similar
to TMZ, ionizing radiation also promotes GSCs to transdifferentiate themselves into en-
dothelial cells through the Tie2 signaling pathway [59]. GSCs may also survive or be
enriched by anti-angiogenic therapy, leading to tumor recurrence and anti-angiogenic
therapy (AAT)-resistant tumors [60,61].

The relative volume of extracellular space in the normal brain is about 24%, which can
be increased by up to 48% during the progression from lower to higher-grade gliomas [62].
The expansion of this extracellular space is thought to create an ideal environment for
tumor migration and invasion [62]. GBM cells produce different ECM components such
as hyaluronic acid (HA), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9
(MMP9), integrins, tenascin-C [63], and fibronectin [64] to degrade and remodel the ECM
for tumor invasion [65–67]. Adhesion of tumor cells to ECM proteins is regulated by
transmembrane receptors known as integrins like αvβ3 and αvβ5. Both receptors are
highly expressed on GBM cells and GBM endothelial cells [68], and their overexpression is
associated with poor overall survival (OS) in GBM patients solely treated with standard
chemotherapy [69]. Inhibiting integrins blocks angiogenesis, tumor invasion, stemness,
and immunosuppression [68]. In addition, integrins such as α5β1 are overexpressed in
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GBM tumors that have reduced p53 activity due to TMZ treatment. The negative cross-talk
between α5β1 and p53 attributes to TMZ resistance [70]. GBM cells communicate with
surrounding tumor and non-tumor cells by secreting special structures known as extra-
cellular vesicles (EVs) that are often encapsulated with different factors to promote tumor
growth [71,72]. For example, EVs derived from GBM cells stimulate normal astrocytes to
be converted into a tumor-supportive phenotype via p53 and MYC signaling pathways,
leading to ECM destruction [71]. GSCs secrete different pro-angiogenic factors such as
VEGF or miRNAs such as miR-21 or miR-26a in EVs to promote angiogenesis [73–75] and
facilitate tumor growth under hypoxic conditions [76]. The mRNA and protein expression
of numerous invasion-associated ECM molecules such as Fms-related tyrosine kinase 4
(FLT4), mouse double minute 2 homolog (MDM2), and MMP-2 vary between different
GBM subtypes, and such ECM compositions can be used as prognostic indicators for
patients with GBM [77].

2.2. Molecular Heterogeneity

The Cancer Genome Atlas (TCGA) Project created a GBM classification system based
on 600 genes that were sequenced from 200 human tumor samples [78]. This system has
shed new light on the complexity of the genetic profile of GBM and led to the discovery that
molecular alterations can be used to distinguish primary and secondary gliomas. Primary
and secondary GBM are histologically similar but genetically and epigenetically different.
Primary GBMs, which are also designated as isocitrate dehydrogenase wild-type GBMs
(IDH-WT), are characterized by (i) overexpression of epidermal growth factor receptor
(EGFR), (ii) mutated telomerase reverse transcriptase promoter, p53, and phosphate and
tensin homologue (PTEN) genes, and (iii) loss of chromosome 10q and cyclin-dependent
kinase inhibitor 2A (CDKN2A) gene [11,79]. Secondary GBMs (also referred to as IDH-
mutant GBMs) typically harbor mutations in p53 and isocitrate dehydrogenase 1 (IDH1)
genes alongside the loss of chromosome 19q [79]. IDH-WT GBMs are more common,
respond poorly to treatment, and have an overall lower survival rate than IDH-mutant
GBMs [79,80].

GBM can also be categorized into four tumor subtypes: proneural, mesenchymal,
classical, and neural [81]. The signature gene alternations for each subtype are listed
in Table 1. Briefly, proneural GBM is characterized by the alteration of platelet-derived
growth factor receptor alpha (PDGFRA) and mutated IDH1 along with higher expres-
sion of certain proneural markers (e.g., SRY-related HMG-box genes [SOX], doublecortin
[DCX], delta-like canonical Notch ligand 3 [DLL3], achaete-scute family BHLH transcrip-
tion factor 1 [ASCL1], transcription factor 4 [TCF4] and oligodendrocytic development
genes (e.g., PDGFRA, NK2 homeobox 2 [NKX2-2], oligodendrocyte transcription factor 2
[OLIG2] [81–83]. Mesenchymal GBM is featured by focal hemizygous deletions of a chro-
mosomal region at 17q11.2, co-mutations in neurofibromin 1 (NF1) and PTEN genes, and
enrichment of tumor necrosis factor (TNF) super family pathway and nuclear factor kappa
B (NF-κB) pathway genes (e.g., TNFRSF1A associated via death domain [TRADD], v-rel
avian reticuloendotheliosis viral oncogene homolog B [RELB], TNF receptor superfamily
member 1A [TNFRSF1A]) [81]. Mesenchymal GBM is also linked to higher expression
of mesenchymal and astrocytic markers such as CD44 or c-mer proto-oncogene tyrosine
kinase (MERTK), which promote epithelial–mesenchymal (EMT) transition [81,84]. Clas-
sical GBM is characterized by amplification of chromosome 7 and loss of chromosome
10 [81]. Overexpression of EGFR, absence of TP53 mutations and focal 9p21.3 homozygous
deletion that targets cyclin-dependent kinase inhibitor 2A (CDKN2A) are also predom-
inant features in classical GBM [81]. The common markers for classical GBM include
the neural precursor and stem cell markers nestin, notch (neurogen locus notch homolog
protein 3 [NOTCH3], jagged canonical notch ligand 1 [JAG1], O-Fucosylpeptide 3-Beta-N-
Acetylglucosaminyltransferase [LFNG] and sonic hedgehog (smoothened, frizzled class
receptor [SMO], growth arrest-specific 1 [GAS1], GLI family zinc finger 2 [GLI2])) [81].
Lastly, the major properties of neural GBM include neuron projection, axon and synaptic
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transmission, and expression of neuronal markers such as neurofilament light (NEFL),
gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1), synaptotagmin 1
(SYT1), and solute carrier family 12 member 5 (SLC12A5) [81].

Table 1. Glioblastoma (GBM) molecular subtypes.

GBM Subtype Expression of Signature Genes Predominant Marker Distinct Neural Cell Types

Proneural
• PDGFRA alternation
• IDH1 point mutation

Proneural markers: SOX, DCX, DLL3,
ASCL1, TCF4 and

Oligodendrocytic development markers:
PDGFRA, NKX2-2 and OLIG2

Oligodendrocyte

Mesenchymal

• Lower NF1 expression
• NF1 and PTEN co-mutation
• High expression of TRADD, RELB,

TNFRSF1A

Mesenchymal and astrocytic markers
CD44, MERTK Astroglial

Classical

• Chromosome 7 amplification paired
with chromosome 10 loss

• High level of EGFR amplification
• Point or vIII EGFR mutation
• Lack of TP53 mutation

Neural precursor and stem cell markers
NES, NOTCH3, JAG1, LFNG, SMO,

GAS1, GLI2
Murine astrocytes

Neural
• Neuron projection, and axon and

synaptic transmission
Neuron markers such as NEFL,
GABRA1, SYT1 and SLC12A5.

Neuron, oligodendrocytes
and astrocytes

The distinction of the four GBM subtypes by the TCGA also revealed common themes
in altered-signaling pathways that dictate cell growth and regulation, DNA repair, and
apoptosis (Figure 1) [78–80]. In a TCGA-based study, GBM specimens routinely contained
aberrations in the following signaling pathways: p53 (87%), RB (78%), and RTK/Ras/PI3K
(88%) [78,79,85]. Disruptions in p53 signaling are associated with increased cell migration,
invasion, and survival [86]. The Rb pathway is controlled by phosphorylation of Rb by
cyclin D, cyclin-dependent kinase 4 (CDK4), or CDK6 [87]. CDK4 and CDK6 are further
regulated by CDK inhibitors (CDKN2A, CDKN2B, CDKN2C), and mutations to CDKN2A
or Rb1 cause cell cycle disruption, allowing uncontrolled cell proliferation and apoptosis
evasion [87]. RTKs (once activated) regulate cell proliferation, differentiation, angiogenesis,
and survival through either downstream PI3K/AKT/mTOR or Ras/MAPK/ERK signal-
ing [88]. Mutations or alterations in genes that encode RTKs (e.g., epidermal growth factor
receptor [EGFR], vascular endothelial growth factor [VEGF], or insulin-like growth factor 1
receptor [IGF-1R]), lead to unregulated cell proliferation and survival [80,88].
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Figure 1. Characteristics of the GBM tumor microenvironment. (A) Three dominant molecular alterations in GBM include
P53, retinoblastoma (Rb), and receptor tyrosine kinase (RTK) signaling pathways and their corresponding frequencies in
GBM. (B) The GBM tumor microenvironment (TME) is immunosuppressed mainly due to presence of dysfunctional T
cells and myeloid-derived suppressor cells (MDSCs). T cell dysfunction results from different mechanisms that involve
senescence, tolerance, anergy, exhaustion, and ignorance. T cells senescence is associated with loss of the co-stimulator
CD28, which may occur as a result of telomere damage, presence of Tregs, or TME metabolic stress. Tolerance of T cells is
mediated by FasL-induced apoptosis, recruitment of Tregs, and upregulation of factors that limit T cell effector functions. T
cell anergy occurs due to RAS/MAPK dysfunction or inefficient Zap70 kinase activity. Co-expression of immune checkpoint
molecules such as PD-1, LAG-3 and TIM-3 are also important contributors to T cell exhaustion in GBM. The loss of
sphingsosine-1-phosphate receptor 1 (S1P1) is associated with T cell ignorance. MDSCs release immunosuppressive growth
factors and other mediators to support growth of cancer cells. Cancer cells can also secret a number of immunosuppressive
factors to maintain their overall survival.

2.3. Immunosuppressive Features

The CNS is separated from the circulatory system by the blood–brain barrier (BBB)
that effectively prevents the passive diffusion of molecules. The CNS was previously
viewed as an immune-privileged site [89]. However, recent discoveries have identified
functional lymphatic vessels in the brain’s dura matter that drain cerebrospinal fluid into
cervical lymph nodes [90,91]. In this way, tumor-derived antigens can concentrate within
lymph nodes to stimulate immune cell responses involving T cells [90]. However, after
infiltrating into the GBM tumor, T cells become dysfunctional via different mechanisms
that could include senescence, tolerance, anergy, exhaustion, or ignorance that ultimately
leads to poor GBM prognosis (Figure 1) [92]. T cell senescence is associated with the loss
of the co-stimulatory molecule CD28, which could occur as a result of telomere damage,
regulatory T cell (Treg) interaction, or metabolic competition in the tumor microenviron-
ment (TME) [93,94]. T cell tolerance is mediated by Fas ligand (FasL)-induced apoptosis,
recruitment of Tregs, and upregulation of factors that dampen T cell effector function such
as cytotoxic T-lymphocyte antigen-4 (CTLA-4), indoleamine 2,3-dioxygenase 1 (IDO-1),
and signal transducer and activator of transcription 3 (STAT3) [92,95–97]. Anergy is mainly
observed in infiltrating CD4+ T cells and is due in part to RAS/MAPK dysfunction or
inefficient Zap70 kinase activity that impairs interleukin-2 (IL-2) production (and, hence,
T cell activation/proliferation) [92]. The co-expression of immune checkpoint molecules
such as programmed cell death 1 (PD-1), lymphocyte-activation gene 3 (LAG3), and T-cell
immunoglobulin mucin-3 (TIM-3) are also important contributors to T cell exhaustion in
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GBM [92]. For example, GBM may express PD-L1 and induce T cell exhaustion through
interaction with its cognate receptor PD-1 expressed by T cells [98,99]. T cell ignorance as a
result of sphingsosine-1-phosphate receptor 1 (S1P1) loss that prevents T cells from traffick-
ing to the tumor site, disrupting T cell-mediated anti-tumor immunity and contributing to
tumor progression [92]. Additionally, T cell function can be further impaired through the
GBM vasculature instituting physically-induced constraints (e.g., hypoxia) and promot-
ing infiltration of immunosuppressive immune cells (such as macrophages, neutrophils,
and myeloid-derived suppressor cells [MDSCs]) [100]. Such immune cell subsets release
pro-inflammatory mediators and cytotoxic cytokines, growth factors, bioactive lipids, hy-
drolytic enzymes, matrix metalloproteinases, reactive oxygen intermediates, and nitric
oxide to support the continued growth of cancer cells [100]. GBM cells also release a num-
ber of immunosuppressive factors, including TGF-β, prostaglandin E (PGE), interleukin-1
(IL-1), interleukin-10 (IL-10), and fibrinogen-like protein 2 (FGL2) that suppress DC prim-
ing/activation of immune effector cells [101]. Tumor-derived immunosuppressive factors
also help recruit pro-tumoral M2 macrophages and Tregs, which further secrete TGF-β1
and IL-10 and eventually suppress T cell effector functions [102–105]. In a recent study, an
extensive level of tumor immunosuppression in GBM (excluding grade II and III gliomas),
is found due to the presence of blood-derived macrophages, tumoral expression of pro-
grammed cell death ligand 1 (PD-L1), and T cell expression of PD-1 [106]. The same study
reported that bone marrow-derived macrophages migrate to the tumor site and accumulate
centrally in GBM lesions, exerting strong immune suppression by releasing iron that is
necessary to maintain tumor cell survival and tumor progression. In contrast, resident
microglia exert little to no immunosuppressive function [106].

3. Current Treatment
3.1. Standard of Care and Other FDA Approved Treatments

The current standards of care for GBM include maximal resection surgery, radiation,
and temozolomide (TMZ) therapy—with TMZ and radiation being commenced within
30 days post-surgery [107–109]. Unfortunately, GBM response to TMZ varies between
patients, and many types of GBM carry resistance to the compound. Treatment resistance to
standard therapies is likely due to a combination of upregulated DNA repair mechanisms
and the presence of GSCs that maintain an ability to self-renew and differentiate [110]. TMZ
resistance also appears to be driven by the DNA repair enzyme O6-methylguanine-DNA
methyltransferase (MGMT) that repairs DNA alkylation since patients bearing MGMT
genes with methylated promoters seem to be more responsive to TMZ treatment [110].
However, TMZ damages both tumor and normal cells and does not eliminate GBM, so,
options for alternative treatments are desperately needed [4].

Other treatments approved by the FDA for use in GBM therapy include bevacizumab
and tumor-treating fields (TTFs). Bevacizumab is a humanized monoclonal antibody
(mAb) that targets the angiogenic factor VEGF and was the first anti-angiogenic drug
approved for patient use after showing increased overall survival in colorectal and non-
small-cell lung cancers when combined with chemotherapy [111,112]. In addition, the
antibody was observed to be safe in patients and mediate effective anti-tumor responses
in Phase II clinical trial for recurrent GBM when combined with the chemotherapeutic
drug irinotecan [113]. However, in two Phase III trials conducted in newly diagnosed GBM
patients, treatment with bevacizumab in addition to either radiation or radiation plus TMZ
showed no significant difference in overall survival compared to the placebo [114,115].
Although progression-free survival was better with treatment, patients suffered a higher
frequency of adverse events and poorer quality of life [115].

TTFs are a non-invasive and anti-mitotic FDA-approved strategy for newly diagnosed
cases of GBM (i.e., as adjuvant therapy) or recurring disease [116,117]. It involves using
alternating electrical fields with a frequency range of 100-300 kHz and an intensity of 1 to
3 V/cm to interfere with the functions of rapidly dividing cancer cells, causing cessation of
cell division and ultimately leading to cell death [116,118]. The theory behind this treatment
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is that the electrical fields create space between the growing ends of microtubules and tubu-
lin dimers, thus, interfering with microtubule polymerization of the mitotic spindle [117].
Recently, TTF has been tested in combination with current standard-of-care in newly di-
agnosed GBM patients. Concurrent administration of TTF/radiation/TMZ followed by
adjuvant TMZ/TTF demonstrated safety and promising preliminary efficacy [119], which
warrants further clinical investigation in a larger patient cohort. In fact, a clinical study is
currently ongoing utilizing this triple combination in 60 newly diagnosed GBM patients
(NCT03869242).

3.2. Hurdles with Current Treatments

There are many aspects that make GBM difficult to effectively treat [120]. One compli-
cation is enabling the treatment drug to cross the BBB and reach the tumor [108]. It was
previously thought that the BBB was uniformly disrupted in cases of GBM, and was,
therefore, not an issue when designing treatment plans [108]. However, recent evidence
suggests that a large portion of the BBB remains intact, presenting a challenge to many
drug therapies [108]. Considering that drug molecules are unable to reach the tumor to
potentiate effects, BBB transporters often remove most of the molecules that do manage to
pass through [4].

The infiltrative and invasive growth of GBM also impedes complete surgical resection
of tumor cells. Thus, secondary treatment is usually needed following surgery [121,122].
In addition, most GBMs that initially respond well to treatment recur after a period of
a few months. Relapsed tumors generally have an even poorer overall survival and do
not respond well to previously used treatments [123] as they acquire new mutations and
evasive properties [124]. Tremendous efforts have been made to target those mutations by
targeted therapies (discussed in more detail below).

Other major reasons for treatment failure can include: (i) GBM is extremely immuno-
suppressive [125–127], (ii) tumor cells contain a low somatic mutational load [78,128],
which could explain poor responses to immune checkpoint blockade to the anti-PD-1
antibody (CheckMate-143), and (iii) presence of GSCs that help drive resistance to radio-
therapy [129,130], chemotherapy [131], and anti-VEGF therapy [132]. Although TMZ is
effective against MGMT-negative GSCs [133], the drug is incapable of eliminating MGMT-
positive GSCs [134]. Resistance to TMZ in particular and other therapies mediated by
GSCs also rely on an ability to regulate various miRNA molecules that can remodel dif-
ferent signaling pathways in response to treatment [135,136]. GSC plasticity also allows
differentiation into a slow-cycling and persistent cellular state that can escape cytotox-
icity from different targeted therapies [137]. Treatment-resistant GSCs further induce
immunosuppression by recruiting M2-like tumor-associated macrophages (TAMs) and
Tregs into the TME [138,139]. Lastly (iv), while effective anti-tumor immunity in GBM is
profoundly inhibited, possibly by promoting subsets of dysfunctional T cells through vari-
ous mechanisms [92], it is important to note that current standard therapies (including TMZ
and high-dose corticosteroids) might worsen GBM’s immunosuppressive status [140–142].
Thus, there is a need to develop newer forms of immunotherapy that overcome immuno-
suppression and boost the host’s anti-tumor immune responses [121].

4. Treatments in Development
4.1. Targeted Therapies

Based on dysregulated signaling in GBM, targeted therapies are mainly categorized
to ablate: the p53, RB, and receptor tyrosine kinase (RTK) signaling pathways (Figure 2).
In general, intra- and inter-tumoral heterogeneity of mutated signaling pathways in GBM
incite resistant mechanisms to monotherapeutic treatment with targeted agents. While
combination therapies to target multiple pathways is one potential route to overcoming
resistance, developing improved better strategies to impact each individual mutational
alteration in GBM are gaining interest [121].
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Figure 2. An overview of targeted therapies in GBM. Classification of current targeted therapies in GBM according to the
three main signaling pathway alterations of the P53, Rb, and RTK pathways.

4.1.1. Targeting the p53 Pathway

The P53 pathway (including CDKN2A, MDM2 and TP53) is dysregulated in 85% of
GBM tumors [78], with prevalence varying between different GBM molecular subtypes
(proneural 54%, mesenchymal 32%, neural 21%, and classical 0%) [81]. Current options
to target the p53 pathway in GBM include inhibiting the MDM2/p53 complex, restoring
wt-p53 conformation and gain of function (GOF), and degrading Mut-p53 [86].

Inhibiting MDM2/p53 interaction to reactivate the anti-tumor function of p53 offers a
promising approach for patients, with many MDM2 inhibitors currently in development
for GBM preclinically (such as RG7112, MI77301, CGM097, and MK8242) and clinically
(such as RG-7388 and AMG-232). AMG-232 treatment, either as a monotherapy or in
combination with other chemotherapies, markedly increases activation of p53 signaling
in tumors, making the drug the most potent MDM2 inhibitor to date [143]. Clinical trials
for MDM2 inhibitors are currently running in both newly diagnosed and recurrent GBM
patients (Table 2).

Table 2. Current on-going clinical trials of targeted therapies in GBM within the last 5 years.

Targeted Pathway Targeted Therapy Drug Name In Combination Condition Phase N NCT
(Accessed On)

The p53 pathway

MDM2 inhibitors
AMG232 Radiation Newly Diagnosed and

recurrent GBM I 86 NCT03107780
(04/09/2020)

RG7388
(Idasanutlin) Radiation Newly Diagnosed GBM Without

MGMT Promoter Methylation I/IIa 350 NCT03158389
(04/09/2020)

HDAC inhibitors

SAHA
(Vorinostat)

Radiation
Pembrolizumab

TMZ
Newly Diagnosed GBM I 32 NCT03426891

(04/09/2020)

Isotretinoin
TMZ Recurrent GBM I/II 135 NCT00555399

(04/09/2020)

Radiation
TMZ Newly Diagnosed GBM I/II 125 NCT00731731

(04/09/2020)

Bevacizumab Recurrent GBM II 48 NCT01738646
(04/09/2020)

CUDC-907
(Fimepinostat) Surgery Recurrent GBM Early I 30 NCT03893487

(04/09/2020)
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Table 2. Cont.

Targeted Pathway Targeted Therapy Drug Name In Combination Condition Phase N NCT
(Accessed On)

The Rb pathway CDK inhibitor

PD-332991
(Palbociclib) Radiation Newly Diagnosed GBM Without

MGMT Promoter Methylation I/IIa 350 NCT03158389
(04/09/2020)

LEE011
(Ribociclib)

Everolimus Recurrent GBM Early I 24 NCT03834740
(04/09/2020)

Preoperative GBM Early I 48 NCT02933736
(04/09/2020)

LY2835219
(Abemaciclib)

Bevacizumab Recurrent GBM Early I 10 NCT04074785
(04/09/2020)

Recurrent GBM II 42 NCT02981940
(04/09/2020)

LY3214996 Recurrent GBM Early I 50 NCT04391595
(04/09/2020)

TMZ GBM II 280 NCT02977780
(04/09/2020)

The RTK pathway

EGFR inhibitors

OSI-774
(Erlotinib)

Relapsed/Refractory GBM I/II 11 NCT00301418
(04/09/2020)

Bevacizumab
TMZ Newly Diagnosed GBM II 115 NCT00720356

(04/09/2020)

Sorafenib Progressive or recurrent GBM II 56 NCT00445588
(04/09/2020)

Cetuximab

Mannitol
Radiation Relapsed/Refractory GBM II 37 NCT02800486

(04/09/2020)

Mannitol Newly Diagnosed GBM I/II 33 NCT02861898
(04/09/2020)

AZD9291
(Osimertinib)

Fludeoxyglucose
F-18 PET Recurrent GBM II 12 NCT03732352

(04/09/2020)

Nimotuzumab

Radiation
TMZ Newly Diagnosed GBM II 39 NCT03388372

(04/09/2020)

Newly Diagnosed GBM III 150 NCT00753246
(04/09/2020)

CDX-110
(Rindopepimut)

TMZ
Newly Diagnosed,

Surgically Resected,
EGFRvIII-positive GBM

III 745 NCT01480479
(04/09/2020)

Radiation
TMZ Newly Diagnosed GBM II 82 NCT00458601

(04/09/2020)

ABT-414
(Depatuxizumab)

TMZ Recurrent GBM II 266 NCT02343406
(04/09/2020)

Radiation
TMZ GBM I 202 NCT01800695

(04/09/2020)

Radiation
TMZ

Newly Diagnosed GBM With
EGFR Amplification III 691 NCT02573324

(04/09/2020)

Radiation
TMZ

Newly diagnosed or
recurrent GBM I/II 53 NCT02590263

(04/09/2020)

PI3K/AKT/mTOR
inhibitors

CCI-779
(Temsirolimus)

Sorafenib
Tosylate Recurrent GBM I/II 115 NCT00329719

(04/09/2020)

Sorafenib
Tosylate Recurrent GBM I/II 92 NCT00335764

(04/09/2020)

Perifosine Recurrent GBM I 10 NCT02238496
(04/09/2020)

TMZ Recurrent GBM II 266 NCT02343406
(04/09/2020)

RAD001
(Everolimus)

Ribociclib Recurrent GBM Early I 24 NCT03834740
(04/09/2020)

Radiation
TMZ Newly diagnosed GBM I/II 122 NCT00553150

(04/09/2020)

Radiation
TMZ Newly diagnosed GBM I/II 279 NCT01062399

(04/09/2020)

Sorafenib Recurrent GBM I/II 118 NCT01434602
(04/09/2020)
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Table 2. Cont.

Targeted Pathway Targeted Therapy Drug Name In Combination Condition Phase N NCT
(Accessed On)

BKM120
(Buparlisib)

Bevacizumab Relapsed/Refractory GBM I/II 88 NCT01349660
(04/09/2020)

Radiation
TMZ Newly diagnosed GBM I 38 NCT01473901

(04/09/2020)

Lomustine or
Carboplatin Recurrent GBM Ib/II 35 NCT01934361

(04/09/2020)

Recurrent GBM II 65 NCT01339052
(04/09/2020)

MET inhibitors

AMG 102
(Rilotumumab) Bevacizumab Recurrent GBM II 36 NCT01113398

(04/09/2020)

(RO5490258)
Onartuzumab Bevacizumab Recurrent GBM II 135 NCT01632228

(04/09/2020)

INC280
(Capmatinib) Bevacizumab GBM I 65 NCT02386826

(04/09/2020)

FGFR inhibitors
Infigratinib Recurrent GBM Early I 20 NCT04424966

(04/09/2020)

AZD4547 GBM with FGFR-TACC
gene fusion I/II 14 NCT02824133

(01/02/2021)

VEFGR inhibitors

Cediranib Bevacizumab
Olaparib Recurrent GBM II 70 NCT02974621

(04/09/2020)

Sunitinib Lomustine Recurrent GBM II/III 100 NCT03025893
(04/09/2020)

Pazopanib Topotecan Recurrent GBM II 35 NCT01931098
(04/09/2020)

N/A Newly diagnosed GBM I/II 51 NCT02331498
(04/09/2020)

Vandetanib Sirolimus Recurrent GBM I 33 NCT00821080
(04/09/2020)

Sorafenib Everolimus Recurrent GBM I/II 118 NCT01434602
(04/09/2020)

Lenvatinib Pembrolizumab GBM II 600 NCT03797326
(04/09/2020)

Cabozantinib N/A Recurrent GBM II 10 NCT02885324
(04/09/2020)

Other pathways

TGF-β inhibitors

BCA101 Pembrolizumab GBM I 292 NCT04429542
(04/09/2020)

LY2157299
(Galunisertib) Lomustine Recurrent GBM II 180 NCT01582269

(04/09/2020)

Proteasome
inhibitors

Bortezomib
TMZ

Recurrent GBM with
Unmethylated MGMT

Promoter to TMZ
1B/II 63 NCT03643549

(04/09/2020)

Bevacizumab
TMZ Recurrent GBM I 12 NCT01435395

(04/09/2020)

Ixazomib N/A GBM Early
phase I 3 NCT02630030

(04/09/2020)

Marizomib

Radiation
TMZ Newly diagnosed GBM III 750 NCT03345095

(04/09/2020)

Bevacizumab GBM I/II 121 NCT02330562
(04/09/2020)

Radiation
TMZ

Optune
Newly diagnosed GBM IB 66 NCT02903069

(04/09/2020)

ABI-009 (Nab-
Rapamycin) Newly diagnosed GBM II 56 NCT03463265

(04/09/2020)

ATM inhibitor AZD1390 Radiation Newly diagnosed and
recurrent GBM I 132 NCT03423628

(01/02/2021)
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Table 2. Cont.

Targeted Pathway Targeted Therapy Drug Name In Combination Condition Phase N NCT
(Accessed On)

PARP inhibitor

Veliparib

Radiation
TMZ GBM I/II 66 NCT01514201

(01/02/2021)

Radiation
TMZ GBM II 115 NCT03581292

(01/02/2021)

TMZ
Newly Diagnosed GBM With

MGMT Promoter
Hypermethylation

II/III 440 NCT02152982
(01/02/2021)

Olaparib

Bevacizumab
Cediranib Recurrent GBM II 70 NCT02974621

(01/02/2021)

Radiation
Pamiparib

TMZ

Newly diagnosed and recurrent
GBM I 30 NCT04614909

(01/02/2021)

N/A GBM II 145 NCT03212274
(01/02/2021)

Pamiparib

Radiation
TMZ

Newly diagnosed and
recurrent GBM I/II 116 NCT03150862

(01/02/2021)

TMZ Recurrent GBM I/II 100 NCT03914742
(01/02/2021)

TMZ Recurrent GBM I 78 NCT03749187
(01/02/2021)

N—Number of participants, NCT—National Clinical Trial, MDM2—Mouse double minute 2 homolog, HDAC—Histone deacetylase,
CDK—Cyclin-dependent kinase, RB—Retinoblastoma, RTK—Receptor Tyrosine kinase, PI3K/AKT/mTOR—Phosphatidylinositol-3-
kinase/AKT/mammalian target of rapamycin, MET—Mesenchymal Epithelial Transition, FGFR—Fibroblast growth factor receptor,
VEFGR—Vascular Endothelial Growth Factor receptor, TGF-β—Transforming growth factor beta, GBM—Glioblastoma Multiforme,.
MGMT- O6-Methylguanine-DNA Methyltransferase, TMZ—Temozolomide, ATM—ataxia telangiectasia mutated, PARP—poly (ADP-
ribose) polymerase 1.

Cancer-associated p53 mutation is often a single amino acid substitution that favors
cancer cell survival and tumor progression [144]. Since mutant p53 is associated with
malignant progression, chemoresistance, invasion, cancer maintenance, and metastasis,
GOF p53 mutations represent promising targets for novel cancer therapy development [145].
PRIMA-1 and its structural analogue PRIMA-1MET (APR-246) are the most extensively
studied compounds that restore wt-p53 conformation and p53 function [86]. Both drugs
induce p21 expression, cell cycle arrest and apoptosis, and inhibit GBM stemness and
growth [146–149]. While PRIMA-1 and APR-246 have been successfully tested in different
cancer types, there is no clinical trial of APR-246 reported so far in GBM. Other drugs
in this class include PK11007, PK7088, PEITC, ZMC1, COTI-2, CP-31398, small peptides
(ReACp53 and pCAPs), and RETRA [86,145].

Another p53 targeting approach involves degrading mutant p53 by inhibiting interac-
tions with the heat shock proteins (Hsp) Hsp70 and Hsp90. Histone deacetylase 6 (HDAC6)
is required to form the mutant p53-Hsp70/Hsp90 complex. Thus, histone deacetylase
inhibitors (HDACi) (such as trichostatin A, CUDC-101, CUDC-907, and vorinostat) used
either alone or in combination with other drugs can disrupt this mutant p53-Hsp com-
plex, resulting in the degradation of mutant p53 in GBM [150–153]. Detailed mechanisms
and clinical significance of HDACi in GBM have been previously discussed [154]. Cur-
rent clinical studies are focused on exploring the synergistic combination of HDACi and
chemotherapy and/or radiotherapy in GBM patients as listed in Table 2.

4.1.2. Targeting the Rb Pathway

The genes that are mostly altered in the RB pathway in GBM include CDK4, CDK6,
CCND2, CDKN2A/B, and Rb1 [78]. The tumor suppressor pRb plays a crucial role in cell
cycle progression through the regulation of cyclin-dependent kinases (CDKs) at the G1/S
phase. Although mutation of cycD1-CDK4/6-Rb1 occurs in approximately 80% of GBM
cases and is one of the top three most altered pathways [78,155], the essential function of
this pathway in normal healthy cells has limited its potential as a target for GBM treatment.
CDK inhibitor such as palbociclib directly suppresses phosphorylated Rb1 and induces
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cell cycle arrest and apoptosis [156] and include drugs such as palbociclib, ribociclib or
abemaciclib that are FDA approved for other cancer types and are currently being clinically
evaluated in GBM (Table 2) [157,158]. Palbociclib alone has not been effective in patients
with recurrent GBM [157], indicating combination with other therapies is likely required
to improve therapeutic outcomes [156,159]. In fact, combined CDK4/6 inhibition with
radiotherapy resulted in an improved survival advantage over monotherapies in a mouse
model of GBM, which was associated with a significant increase in γH2AX (a marker
for DNA damage) and cleaved poly (ADP-ribose) polymerase (PARP) (a measure for
apoptosis) [156]. Combined CDK4/6 and mTOR inhibition has also resulted in disruption
of GBM metabolic pathways, leading to significant induction of apoptosis compared to
single treatments [159].

4.1.3. Targeting the RTK Pathway
Epidermal Growth Factor Receptor (EGFR) Inhibitors

EGFR mutations occur at high frequencies (57.4%) in GBM [78] and indicate poor
prognosis [160]. The bulk of EGFR mutations in GBM are largely classified as EGFRvI (N-
terminal deletion), vII (deletion of exons 14–15), vIII (deletion of exons 2–7), vIV (deletion
of exons 25–27), and vV (deletion of exons 25–28) [161]. Among these mutants, vII/vIII are
oncogenic [161], and vIII is the most common variant in GBM [78,162]. Unfortunately, pre-
vious attempts targeting EGFR in GBM have not been successful and may be a result of the
diverse molecular features of the molecule [163]. In addition, Kwatra and colleagues [164]
outlined the major flaws of failed clinical trials with first- and second-generation EGFR ty-
rosine kinase inhibitors (EGFR-TKIs): (i) EGFR-TKI gefitinib blocks the cell-surface receptor
but does not abrogate downstream signaling, promoting alternate tumor growth signaling
pathways; (ii) Failed clinical trials included both wild-type and EGFR-activated GBM
patients instead of patients with activated EGFR or EGFRvIII; and (iii) Most EGFR-TKIs
(e.g., erlotinib, gefitinib, afatinib, and lapatinib) are poorly penetrant to the brain [165].
However, a third-generation EGFR-TKI, AZD9291, has recently been approved for the
treatment of non-small cell lung cancer, irreversibly binds with high affinity to EGFRvIII,
and is ~10 times more efficient than first-generation EGFR inhibitors in inhibiting tumor
cell proliferation in an orthotopic GBM model [166]. These findings suggest AZD9291
efficiently crosses the BBB and could be a useful EGFR-TKI for GBM patients.

Overall, current clinical approaches to specifically targeting EGFR and EGFRvIII in-
clude EGFR-TKIs, unmodified anti-EGFR antibodies (e.g., cetuximab, panitumumab, and
nimotuzumab), engineered anti-EGFR antibodies (e.g., conjugated with a radioactive iso-
tope [125I mAb 425] [167], antibody–drug conjugate (e.g., depatuxizumab mafodotin) [168],
bispecific format [bscEGFRvIIIxCD3]), anti-EGFRvIII vaccines (CDX-110), EGFRvIII-specific
CAR-T cells, and RNA-based formulations that have been described elsewhere [162]. In
general, strategies directed against EGFR/EGFRvIII have not yet gained clinical benefits
in a majority of patients and would likely benefit from a clearer understanding of the
molecular dynamics of EGFR/EGFRvIII cancer cell signaling [162].

Phosphatidylinositol-3-Kinase/AKT/Mammalian Target of Rapamycin
(PI3K/AKT/mTOR) Inhibitors

PI3K/AKT/mTOR is an important signaling pathway to regulate cell growth, motil-
ity, survival, metabolism, and angiogenesis [169,170]. Impairment in PI3K/AKT/mTOR
pathway in GBM can be caused by different mechanisms such as loss/inactivation of
PTEN, mutation/amplification of PIK3CA, and activation of RTKs or oncogenes upstream
of PI3K [78,171]. Although more than 50 PI3K inhibitors have been tested in various
types of cancer, a limited number of drugs have entered into clinical trials for GBM pa-
tients [172]. Development of resistance to PI3K inhibition, reduced BBB permeability, and
poor safety profile of PI3K inhibitors are major contributors to a less than pronounced
clinical translation [171].
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AKT stands as a midpoint between upstream and downstream regulation of cell
growth and survival signals—the main mechanism of resistance to chemo- and radio-
therapy, making its inhibition an attractive target for GBM [173]. AKT inhibitors can be
sub-divided into lipid-based phosphatidyl-inositol analogues, ATP-competitive inhibitors,
and allosteric inhibitors [173]. However, the AKT pathway is complex and promiscuous
and contains different AKT isozymes that differ in function and tissue distribution, making
any promise of selective AKT drugs difficult to realize. For example, inhibiting AKTs as
a single agent has shown marginal effects in a phase II trial (NCT00590954). Disrupting
mTOR, which controls downstream targets of phosphorylated Akt that regulate protein
synthesis, cancer cell survival, invasiveness and GSC maintenance, chemotherapy resis-
tance, and angiogenesis, is another attractive approach for GBM [174]. In fact, combining
mTOR inhibitors with other therapies such as CDK4/6 [159] or MDM2 blockade [175] has
provided some promise in GBM treatment. Along with instigating direct anti-proliferative
activities following mTOR inhibition, mTOR disruption offers another potential anti-tumor
mechanism [176]. For instance, mTOR is activated in 39% of tumor-associated microglial
cells (as tested in 42 human GBM tumor specimens) but is downregulated following treat-
ment with an mTOR inhibitor, which suggests mTOR disbarment in GBM patients might
reduce the frequency of pro-tumorigenic M2-type macrophages [176]. However, the direct
role of mTOR inhibitors on the immune system is controversial, since mTOR blockade can
lead to either immunosuppressive or immunomodulatory effects depending on the cell
types and nature of stimuli involved [177,178]. Further research is obviously warranted to
possibly exploit mTOR inhibition for the improvement of GBM immunity.

Hepatocyte Growth Factor Receptor (HGFR/c-MET) Inhibitors

Interaction of hepatocyte growth factor (HGF) to MET triggers several downstream
signaling pathways and promotes carcinogenesis [179]. MET amplification is detected
in 1.6–4% of GBM patients [78,155] and its expression is associated with poor progno-
sis [180,181]. MET targeted therapies can either be mAb or small molecule inhibitors.
Despite a better understanding of MET signaling and its associated resistance mechanisms,
the clinical benefit of anti-MET therapies remains minimal. Results from a recent random-
ized, double-blinded, placebo-controlled, multicentered phase II study in patients with
recurrent GBM showed that the anti-MET mAb onartuzumab failed to provide additional
clinical benefit when added alongside bevacizumab [182].

Fibroblast Growth Factor Receptor (FGFR) Inhibitors

The FGF-FGFR signaling pathway regulates many biological functions, including
cell proliferation, survival, and cytoskeletal regulation [183]. FGFR mutations are found
in 3% of GBM cases and associated with poor overall survival in GBM patients treated
with chemoradiation [184]. The heterogeneous expression of different FGFRs (type 1-4)
in GBM, along with a lack of understanding of FGFR’s contribution to GBM progression
make this target’s outlook for GBM less clear. Interestingly, recent research finds that
GBM upregulates the FGFR pathway in response to dual blockade of MET and EGFR [185],
suggesting that a more comprehensive drug cocktail (i.e., inhibiting FGFR, MET, and EGFR)
might provide patients added benefit.

Vascular Endothelial Growth Factor Receptor (VEGFR) Inhibitors

Since GBM is a highly vascularized tumor, disrupting the tumor vasculature by
targeting the VEGF/VEGFR pathway represents an attractive approach to control GBM
progression. The VEGF gene family consists of six secreted ligands, including VEGF-
A, -B, -C, -D, and placental growth factors (PIGF) 1 and 2 [186]. These ligands bind their
corresponding receptors (i.e., VEGFR-1, -2, and -3) and trigger angiogenesis, vasculogenesis,
or lymphangiogenesis [186]. VEGF can be blocked using the anti-VEGF mAb bevacizumab
or trapped by a soluble decoy receptor such as aflibercept. VEGFR signaling could also be
inactivated by an interfering interaction with its ligand by icrucumab [VEGFR-1 inhibitor],
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ramucirumab [VEGFR-2 inhibitor] or tyrosine kinase activation (e.g., cediranib, sunitinib,
pazopanib) [50]. The current clinical trials employing angiogenic VEGFR inhibitors in
GBM are listed in Table 2. Although VEGFR inhibitors are being extensively studied, a
recent meta-analysis on approximately 2000 GBM patients revealed that an anti-VEGF
mAb in combination with standard therapy did not improve the OS of GBM patients
compared to standard therapy alone [187]. GBM often develops resistance to vascular
inhibitor drugs [188]. Essentially, a better understanding of acquired GBM resistance to
VEGF/VEGFR targeted therapies is needed to select an optimal combined therapy to
improve therapeutic outcomes.

Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors

PDGF amplifications are observed in 13% of GBM cases, which makes them the second
most frequent somatic alteration in GBM after EGFR [78]. GBM expresses all isoforms of
PDGF ligands including PDGF-A, -B, -C, and -D. These growth factors bind their transmem-
brane receptors PDGFR-α or -β and initiate downstream autophosphorylation events [189]
that contribute to various physiological mechanisms of GBM progression including the
transformation of glial cells into stem cells, angiogenesis, lymphangiogenesis, and immuno-
suppression [189,190]. Overexpression of PDGFR in GBM is oftentimes associated with
a poor prognosis [191]. Although pre-clinical efficacy of PDGFR inhibitors is compelling,
PDGFR inhibitors are facing clinical hurdles in patients since GBM cells often induce a
number of signaling pathways such as receptor tyrosine-protein kinase erbB-3 (ERBB3),
insulin-like growth factor 1 receptor (IGF1R), and transforming growth factor-beta receptor
II (TGFBR2) that provoke resistance to PDGFR abrogation [192,193].

4.1.4. Targeting Other Pathways
Transforming Growth Factor-Beta (TGF-β) Inhibitors

TGF-β is a pleiotropic cytokine involved in GBM angiogenesis, proliferation, progres-
sion, and invasion [194]. High expression of TGF-β is associated with poor prognosis in
newly diagnosed GBM patients rather than individuals with recurrent disease [194]. Due
to TGF-β′s complex cross-talk with other signaling pathways such as Wnt, Notch, Hippo,
MAPK, PI3K-Akt and NF-κB/IKK [195], TGF-β inhibition has not yet gained clinical ben-
efits. In a recent phase Ib/IIa trial, the addition of galunisertib (a small molecule TGF-β
inhibitor) with TMZ and radiotherapy in newly diagnosed GBM patients did not improve
progression-free survival (PFS) or OS [196].

Proteasome Inhibitors

Proteasomal inhibition is another approach for GBM treatment intervention [197,198].
The over-expression and enhanced activity of the proteasome are observed in GBM cells fol-
lowing radiotherapy and subsequent proteasome inhibition prevents GBM recurrence [199].
Proteasome inhibitors that have gained access in GBM clinical studies include bortezomib,
ixazomib, and marizomib [200]. However, results from bortezomib clinical trial are disap-
pointing as the drug does not cross the BBB [200].

DNA Damage Response (DDR) Inhibitors

GSCs upregulate various DNA repair proteins such as ataxia telangiectasia mutated
(ATM), ataxia telangiectasia and Rad3-related (ATR), or poly (ADP-ribose) polymerase 1
(PARP-1) that facilitate GBM resistance to chemotherapy and/or radiotherapy [201,202].
Therefore, inhibition of these DDR proteins offers an attractive therapeutic approach
for GBM patients to overcome resistance to the current standard-of-care. In fact, ATM
inhibition defeats DDR-mediated resistance and significantly radio-sensitizes GBM pre-
clinically [203]. The current number of clinical trials with ATM/ATR inhibition in GBM
is limited (Table 2). The PARP inhibitors (PARPi) such as olaparib, veliparib, pamiparib
are also currently being tested in a number of clinical trials either as single agents or in
combination with other therapies (Table 2).
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4.2. Immunotherapy
4.2.1. Immune Checkpoint Inhibitors (ICIs)
Anti-PD-1/PD-L1 Antibodies

A number of newer therapies in development constitute a major area in immunother-
apy (Figure 3) [20,21,204–207]. GBM is an immunosuppressive tumor, with varying degrees
of PD-L1 expression in tumor cells in GBM patients ranging from 61% to 88% [208]. Block-
ing PD-1/PD-L1 interactions unleash anti-tumor immune responses in various cancers
such as melanoma. In GBM, although preclinical experience with PD-1/PD-L1 inhibition is
quite promising [209–212], the clinical outcome of PD-1 blockade has been disappointing.
For instance, the first large-scale randomized trial in recurrent GBM (CheckMate-143) re-
vealed no significant difference in overall survival between patients receiving bevacizumab
or nivolumab (an anti-PD-1 mAb), leading to premature termination of the nivolumab
arm [213]. The inability of ICIs to cross the BBB, reduced frequency of immune infiltrates
in the GBM TME, and a high level of GBM immunosuppression are considered major
contributors of treatment failure for this approach in general [213]. In addition, the TME
of PD-1 blockade non-responders is enriched with PTEN mutations regardless of GBM
subtype, suggesting that combined targeting of PTEN and PD-1 could provide additive
treatment benefits for this lethal disease [214]. Although adjuvant monotherapy of anti-
PD-1 mAb failed to generate effective anti-tumor immunity, neoadjuvant PD-1 blockade
led to the activation of GBM-specific T cells and downregulation of genes associated with
the tumor cell-cycle. Therefore, timing of anti-PD-1/PD-L1 interventions in patients is
probably crucial for mediating objective response rates and managing GBM [215].

Figure 3. A brief overview of immunotherapies in GBM. Current immunotherapeutic approaches in GBM include checkpoint
blockade, oncolytic virus, therapeutic vaccines, adoptive cell therapy, and macrophage-based strategies.

Anti-CTLA-4 Antibody

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is found on antigen-presenting
cells (APCs) and Tregs, although the prognostic role of CTLA-4 expression in cancer
patients is controversial [216]. A recent study demonstrated that increased expression of
CTLA-4 in the GBM TME positively correlated with elevated expression of specific gene
signatures in immune cells such as CD8+ T cells, Tregs, and macrophages, suggesting a
greater immune cell infiltration in tumors with higher CTLA-4 expression [97,217]. Patients
with increased levels of CTLA-4 are also likely to beneficially respond to CTLA-4 blockade.
The same study concluded that glioma patients with lower CTLA-4 expression have
significantly longer OS rates [97]. Relatedly, the safety and efficacy of anti-CTLA4 mAb
therapy (e.g., ipilimumab) have been demonstrated in melanoma patients harboring brain
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metastasis, suggesting promise for individuals with GBM [217–219]. Consistent with
convincing reports from preclinical studies [217,219], anti-CTLA4 treatment is currently
showing encouraging results in clinical trials. In one study in recurrent GBM, ipilimumab
in combination with GM-CSF and bevacizumab resulted in partial responses (31%) and
stable disease (31%) in select patients [220]. Currently, several clinical trials are running in
GBM to determine the safety and efficacy of ipilimumab in combination with drugs such
as TMZ, bevacizumab, and other ICIs (Table 3).

Table 3. Clinical status of immunotherapies in GBM within the last 5 years (since 2015).

Immunotherapies Drug Name In Combination Condition Phase N NCT (Accessed on)

Anti-PD-1

Spartalizumab
MBG453 Recurrent GBM I 15 NCT03961971

(11/09/2020)

BLZ945 Advanced/metastatic/recurrent
IDH wild-type GBM I/II 200 NCT02829723

(11/09/2020)

INCMGA00012

INCAGN01876,
stereotactic radiosurgery Recurrent GBM II 32 NCT04225039

(11/09/2020)

Bevacizumab, radiation Recurrent GBM II 55 NCT03532295
(11/09/2020)

Nivolumab

BMS-986016 Recurrent GBM I 63 NCT02658981
(11/09/2020)

Dendritic vaccine GBM I 6 NCT02529072
(11/09/2020)

Bevacizumab Recurrent GBM II 90 NCT03452579
(11/09/2020)

Ipilimumab, Radiation Newly Diagnosed, MGMT
Unmethylated Glioblastoma II 24 NCT03367715

(11/09/2020)

TMZ Newly Diagnosed Elderly
Patients With GBM II 102 NCT04195139

(11/09/2020)

Ipilimumab,
NovoTTF200A (Optune) Recurrent GBM II 60 NCT03430791

(11/09/2020)

Ad-RTS-hIL-12,
Veledimex Recurrent or Progressive GBM I 21 NCT03636477

(11/09/2020)

Ipilimumab Recurrent GBM I 6 NCT03233152
(11/09/2020)

Ipilimumab, TMZ Newly Diagnosed GBM I 32 NCT02311920
(11/09/2020)

Bevacizumab,
Re-irradiation

Recurrent MGMT Methylated
GBM II 94 NCT03743662

(11/09/2020)

Ipilimumab Recurrent GBM with elevated
mutational II 37 NCT04145115

(11/09/2020)

BMS-986205, TMZ,
Radiation Newly diagnosed GBM I 30 NCT04047706

(11/09/2020)

IL13Ralpha2-CRT T cells,
Ipilimumab Recurrent GBM I 60 NCT04003649

(11/09/2020)

Ipilimumab Newly Diagnosed, MGMT
Unmethylated GBM II/III 485 NCT04396860

(11/09/2020)

TMZ, radiation Newly Diagnosed, MGMT
Methylated GBM III 693 NCT02667587

(11/09/2020)

TMZ Newly Diagnosed, MGMT
Unmethylated GBM III 550 NCT02617589

(11/09/2020)

Bevacizumab Recurrent GBM II 40 NCT03890952
(11/09/2020)

NeoVax, Ipilimumab Newly Diagnosed, MGMT
Unmethylated GBM I 3 NCT03422094

(11/09/2020)

Therapeutic vaccine
EO2401 Progressive Glioblastoma Ib/IIa 32 NCT04116658

(11/09/2020)

N/A IDH-Mutant GBM with and
without hypermutator phenotype II 95 NCT03718767

(11/09/2020)

Ipilimumab Recurrent GBM I 45 NCT04323046
(11/09/2020)
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Table 3. Cont.

Immunotherapies Drug Name In Combination Condition Phase N NCT (Accessed on)

Pembrolizumab

SurVaxM, Sargramostim,
Montanide ISA51 Recurrent GBM II 51 NCT04013672

(11/09/2020)

Radiation, TMZ,
NeoAntigen vaccine

MGMT Unmethylated, Newly
Diagnosed GBM I 56 NCT02287428

(11/09/2020)

Bevacizumab,
radiation Recurrent GBM II 60 NCT03661723

(11/09/2020)

HSPPC-96, TMZ Newly Diagnosed GBM II 108 NCT03018288
(11/09/2020)

N/A Newly Diagnosed GBM II 56 NCT03899857
(11/09/2020)

Laser Interstitial
Thermotherapy Recurrent GBM I/II 34 NCT03277638

(11/09/2020)

TTF Newly Diagnosed GBM II 29 NCT03405792
(11/09/2020)

TTAC-0001 Recurrent GBM I 9 NCT03722342
(11/09/2020)

EGFRvIII-CAR T Cells Newly diagnosed, MGMT
unmethylated GBM I 7 NCT03726515

(11/09/2020)

Vorinostat, TMZ,
radiation Newly Diagnosed GBM I 32 NCT03426891

(11/09/2020)

Ferumoxytol Newly Diagnosed GBM II 45 NCT03347617
(11/09/2020)

IMA950/Poly-ICLC Recurrent GBM I/II 24 NCT03665545
(11/09/2020)

Dendritic Cell Tumor
Cell Lysate Vaccine Recurrent or progressive GBM I 40 NCT04201873

(11/09/2020)

N/A Recurrent GBM II 20 NCT02337686
(11/09/2020)

Oncolytic
Polio/Rhinovirus

Recombinant (PVSRIPO)
Recurrent GBM I 10 NCT04479241

(11/09/2020)

Radiation, TMZ Newly Diagnosed GBM II 90 NCT03197506
(11/09/2020)

N/A Recurrent or progressive GBM I 35 NCT02852655
(11/09/2020)

Adenovirus (DNX-2401) Recurrent GBM II 49 NCT02798406
(11/09/2020)

Lenvatinib GBM II 600 NCT03797326
(11/09/2020)

Cyclophosphamide,
fludarabine,

aldesleukin, TIL
Progressive GBM II 332 NCT01174121

(11/09/2020)

Cyclophosphamide,
fludarabine, aldesleukin,

TCR
GBM II 270 NCT03412877

(11/09/2020)

MRI-guided
Laser Ablation Recurrent GBM I/II 58 NCT02311582

(11/09/2020)

N/A Recurrent GBM With a
Hypermutator Phenotype Pilot 44 NCT02658279

(11/09/2020)

Radiation, Bevacizumab Recurrent GBM I 32 NCT02313272
(11/09/2020)

Radiation, TMZ GBM I/II 50 NCT02530502
(11/09/2020)

Cemiplimab

Ad-RTS-hIL-12,
Veledimex Recurrent or progressive GBM II 36 NCT04006119

(11/09/2020)

INO-5401 and INO-9012 Newly Diagnosed GBM I/II 52 NCT03491683
(11/09/2020)
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Table 3. Cont.

Immunotherapies Drug Name In Combination Condition Phase N NCT (Accessed on)

Anti-PD-L1

Atezolizumab

Radiation, TMZ Newly Diagnosed GBM I/II 80 NCT03174197
(11/09/2020)

Ipatasertib GBM I/II 51 NCT03673787
(11/09/2020)

Radiation MGMT unmethylated GBM I/II 350 NCT03158389
(11/09/2020)

D2C7-IT Recurrent GBM I 18 NCT04160494
(11/09/2020)

Avelumab

MRI-guided
LITT therapy Recurrent GBM I 30 NCT03341806

(11/09/2020)

Hypofractionated
radiation therapy IDH mutant GBM II 43 NCT02968940

(11/09/2020)

VXM01 Progressive GBM I/II 30 NCT03750071
(11/09/2020)

TMZ Newly Diagnosed GBM II 30 NCT03047473
(11/09/2020)

Axitinib Recurrent GBM II 52 NCT03291314
(11/09/2020)

Durvalumab

Bevacizumab, radiation GBM II 159 NCT02336165
(11/09/2020)

Hypofractionated
stereotactic

radiation therapy
Recurrent GBM I/II 112 NCT02866747

(11/09/2020)

Tremelimumab Recurrent GBM II 36 NCT02794883
(11/09/2020)

Anti-CLTA4

Tremelimumab Durvalumab Recurrent GBM II 36 NCT02794883
(11/09/2020)

Ipilimumab

Nivolumab, Radiation Newly Diagnosed, MGMT
Unmethylated Glioblastoma II 24 NCT03367715

(11/09/2020)

Nivolumab,
NovoTTF200A (Optune) Recurrent GBM II 60 NCT03430791

(11/09/2020)

Nivolumab Recurrent GBM I 6 NCT03233152
(11/09/2020)

Nivolumab Recurrent GBM with elevated
mutational II 37 NCT04145115

(11/09/2020)

Nivolumab, TMZ Newly Diagnosed GBM I 32 NCT02311920
(11/09/2020)

IL13Ralpha2-CRT T cells,
Nivolumab Recurrent GBM I 60 NCT04003649

(11/09/2020)

Nivolumab Newly Diagnosed, MGMT
Unmethylated GBM II/III 485 NCT04396860

(11/09/2020)

NeoVax, Nivolumab Newly Diagnosed, MGMT
Unmethylated GBM I 3 NCT03422094

(11/09/2020)

Nivolumab Recurrent GBM I 45 NCT04323046
(11/09/2020)

Anti-IDO1

BMS-986205 (Linrodostat) Nivolumab, TMZ,
Radiation Newly diagnosed GBM I 30 NCT04047706

(11/09/2020)

Indoximod

TMZ, radiation,
cyclophosphamide,

etoposide
Newly diagnosed GBM I 81 NCT02502708

(11/09/2020)

TMZ, bevacizumab,
stereotactic radiation GBM I/II 160 NCT02052648

(11/09/2020)

TMZ, radiation,
cyclophosphamide,

etoposide, lomustine
Progressive GBM II 140 NCT04049669

(11/09/2020)
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Table 3. Cont.

Immunotherapies Drug Name In Combination Condition Phase N NCT (Accessed on)

Oncolytic viruses

TG6002 5-flucytosine Recurrent GBM I/II 78 NCT03294486
(11/09/2020)

DNX-2440 N/A Recurrent GBM I 24 NCT03714334
(11/09/2020)

DNX-2401

IFNg Recurrent GBM I 37 NCT02197169
(11/09/2020)

Pembrolizumab Recurrent GBM II 49 NCT02798406
(11/09/2020)

TMZ Recurrent GBM I 31 NCT01956734
(11/09/2020)

N/A Recurrent GBM I 36 NCT03896568
(11/09/2020)

C134 N/A Recurrent GBM I 24 NCT03657576
(11/09/2020)

M032 N/A Recurrent GBM I 36 NCT02062827
(11/09/2020)

G207

Radiation Recurrent GBM II 30 NCT04482933
(11/09/2020)

N/A Recurrent GBM I 15 NCT03911388
(11/09/2020)

N/A Recurrent or progressive GBM I 12 NCT02457845
(11/09/2020)

Therapeutic
vaccines

Percellvac N/A Newly diagnosed GBM I 10 NCT02709616
(11/09/2020)

Percellvac2 N/A Newly diagnosed GBM I 10 NCT02808364
(11/09/2020)

GNOS-PV01 Plasmid encoded IL-12 Newly diagnosed,
unmethylated GBM I 6 NCT04015700

(11/09/2020)

VBI-1901 N/A Recurrent GBM I/II 38 NCT03382977
(11/09/2020)

MTA-based
Personalized Vaccine TTF, Poly-ICLC Newly diagnosed GBM I 20 NCT03223103

(11/09/2020)

Autologous DCV TMZ GBM II 28 NCT04523688
(11/09/2020)

UCPVax N/A GBM I/II 28 NCT04280848
(11/09/2020)

NeoAntigen vaccine Radiation, TMZ,
Pembrolizumab

MGMT Unmethylated, Newly
Diagnosed GBM I 56 NCT02287428

(11/09/2020)

Dendritic Cell Tumor Cell
Lysate Vaccine

Pembrolizumab,
Poly ICLC Recurrent or progressive GBM I 40 NCT04201873

(11/09/2020)

TMZ, radiation,
bevacizumab

Newly diagnosed or
recurrent GBM I 39 NCT02010606

(11/09/2020)

NeoVax Nivolumab, Ipilimumab Newly Diagnosed, MGMT
Unmethylated GBM I 3 NCT03422094

(11/09/2020)

DC/tumor cell fusion vaccine IL-12, TMZ Newly diagnosed GBM I/II 10 NCT04388033
(11/09/2020)

Malignant Glioma Tumor
Lysate-Pulsed

Autologous DCV

N/A Recurrent GBM I 20 NCT03360708
(11/09/2020)

TMZ Newly diagnosed GBM I 21 NCT01957956
(11/09/2020)

0.2% resiquimod,
polyICLC GBM 2 60 NCT01204684

(11/09/2020)

Autologous, tumor
lysate-loaded, mature DCs TMZ, radiation Newly diagnosed GBM II 136 NCT03395587

(11/09/2020)

Autologous DCV TMZ, radiation Newly diagnosed GBM I/II 20 NCT02649582
(11/09/2020)

Autologous DCs loaded with
autogeneic glioma stem-like

cells (A2B5+)

Surgery, chemotherapy,
and radiotherapy. GBM II 100 NCT01567202

(11/09/2020)

EO2401 N/A Progressive or first recurrent GBM I/II 32 NCT04116658
(11/09/2020)
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Table 3. Cont.

Immunotherapies Drug Name In Combination Condition Phase N NCT (Accessed on)

SurVaxM TMZ, Montanide ISA 51
VG, Sargramostim Newly diagnosed GBM II 64 NCT02455557

(11/09/2020)

CMV RNA-Pulsed
Dendritic Cells

Tetanus-Diphtheria
Toxoid Vaccine Newly diagnosed GBM II 120 NCT02465268

(11/09/2020)

Tetanus-Diphtheria
Toxoid Vaccine Recurrent GBM I 11 NCT03615404

(11/09/2020)

HSPPC-96 Pembrolizumab, TMZ Newly diagnosed GBM II 108 NCT03018288
(11/09/2020)

Autologous DCV metronomic
cyclophosphamide Recurrent GBM I/II 25 NCT03879512

(11/09/2020)

CMV-specific dendritic
cell vaccine

TMZ,
Tetanus-Diphtheria

Toxoid, GM-CSF

Newly diagnosed
Unmethylated GBM II 48 NCT03927222

(11/09/2020)

DEN-STEM TMZ IDH wild-type, MGMT
methylated GBM II/III 60 NCT03548571

(11/09/2020)

ADCV01 N/A GBM II 24 NCT04115761
(11/09/2020)

VXM01 Avelumab Progressive GBM I/II 30 NCT03750071
(11/09/2020)

IMA950 Pembrolizumab/Poly-
ICLC Recurrent GBM I/II 24 NCT03665545

(11/09/2020)

ADCTA-SSI-G1 Bevacizumab Recurrent GBM III 118 NCT04277221
(11/09/2020)

AV-GBM-1 N/A Newly diagnosed GBM II 55 NCT03400917
(11/09/2020)

Human CMV pp65-LAMP
mRNA-pulsed

autologous DCs
Variliumab Newly diagnosed GBM II 112 NCT03688178

(11/09/2020)

Adoptive cell
therapy

PD1-TIL N/A GBM I 40 NCT03347097
(11/09/2020)

TIL
Cyclophosphamide,

fludarabine, aldesleukin,
pembrolizumab

Progressive GBM II 332 NCT01174121
(11/09/2020)

Autologous T-Cells Express
TCRs Reactive Against
Mutated Neoantigens

Cyclophosphamide,
fludarabine, aldesleukin,

pembrolizumab
GBM II 270 NCT03412877

(11/09/2020)

EGFRvIII CAR-T Pembrolizumab Newly diagnosed, MGMT
unmethylated GBM I 7 NCT03726515

(11/09/2020)

B7-H3 CAR-T TMZ Recurrent GBM I 12 NCT04385173
(11/09/2020)

CD147 CAR-T N/A Recurrent GBM I 31 NCT04045847
(11/09/2020)

Chlorotoxin (EQ)-CD28-
CD3zeta-CD19t-expressing

CAR-T
N/A Recurrent GBM I 36 NCT04214392

(11/09/2020)

IL13Ralpha2 CAR-T Nivolumab, Ipilimumab Recurrent GBM I 60 NCT04003649
(11/09/2020)

NKG2D-based CAR-T N/A Recurrent GBM I 10 NCT04270461
(11/09/2020)

IL13Ralpha2-specific
hinge-optimized

41BB-co-stimulatory CAR
Truncated CD19-expressing
Autologous T-Lymphocytes

N/A Recurrent GBM I 92 NCT02208362
(11/09/2020)

Macrophage based
therapy

BLZ945 Spartalizumab Advanced/metastatic/recurrent
IDH wild-type GBM I/II 200 NCT02829723

(11/09/2020)

APX005M N/A GBM I 45 NCT03389802
(11/09/2020)

NK cell therapy NK-92/5.28.z Cells N/A Recurrent HER2-positive GBM I 30 NCT03383978
(11/09/2020)

N—Number of participants, NCT—National Clinical Trial, MRI—Magnetic resonance imaging, IDH—Isocitrate dehydrogenase, N/A—not
applicant, PD-1—program death 1, PD-L1—program death ligand 1, IDO-1—Indoleamine 2,3-dioxygenase, TTF—NovoTTF-100A System
or Optune, EGFR—epidermal growth factor receptor, TIL—tumor infiltrating lymphocytes, CAR-T- Chimeric antigen receptor T cells, NK-
Natural killer cells.
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IDO Inhibition

The less pronounced efficacy of various ICIs (such as anti-PD-1, PD-L1 or CTLA-4
mAbs) in GBM can be attributed, in part, to immunosuppression mediated by alterna-
tive pathways such as indoleamine 2,3 dioxygenase (IDO) [221,222]. Indoleamine 2,3
dioxygenase 1 (IDO1) is a rate-limiting enzyme in the kynurenine pathway of tryptophan
metabolism [223,224]. Cancer cells activate IDO as a mechanism to limit the bioavailability
of tryptophan and, thereby, limit the function of CD8+ T and NK cells while also induc-
ing the differentiation of CD4+ Tregs [223,225]. The kynurenine pathway is considered
a primary resistance mechanism of GBM to chemotherapy and radiation therapy [222],
and increased expression of IDO1 in tumor-infiltrating T cells is usually linked to poor
overall survival in brain tumor patients [226,227], while IDO loss is associated with reduced
recruitment of Tregs in the brain and significantly better patient prognosis [95]. Since the
IDO pathway plays a critical role in GBM immunosuppression, interest in IDO pathway
inhibition is rapidly increasing. IDO-deficient gliomas recruit antigen-specific CD4+ T cells,
leading to a significant extension of survival compared to IDO-competent tumors [228].
Anti-tumor efficacy of IDO blockade in vivo is further enhanced by anti-PD-1 and/or
radiation therapy [229]. In addition, the combination of IDO inhibition and TMZ/radiation
therapy increased tumor cell destruction and survival in mouse GBM models [107,230].
The simultaneous use of IDO inhibition and anti-PD-L1/anti-CTLA4 treatment also led to
100% long-term survivors of mice bearing intracranial gliomas [228]. Currently, several
IDO inhibitors are being tested clinically in combination with standard therapies and/or
ICIs in GBM (Table 3).

4.2.2. Oncolytic Viruses (OVs)

Oncolytic viruses (OVs) are a major developmental therapy of interest and have gained
success in different cancer types, including GBM [139,205,231–243]. The recent FDA ap-
proval of an oncolytic herpes simplex virus (oHSV) (designated talimogene laherparepvec)
has further fueled the field of oncolytic virotherapy. Tumor cells are noticeably distinct
from normal cells by adopting behaviors such as increased proliferation and vasculariza-
tion. OVs selectively infect tumor cells, killing them following replication, while leaving
normal cells unscathed. At the same time, OVs trigger a cascade of anti-tumor immune
responses [244], including increased tumor infiltration of immune cells [238,245]. OVs in-
cluding oHSVs have shown promising efficacy in preclinical models of GBM [238,246,247]
as well as in GBM patients [248]. In a recently published case study, four previously treated
GBM patients received individualized treatment regimens comprised of three OVs (wild-
type Newcastle disease virus [NDV], wild-type parvovirus [PV], and wild-type vaccinia
virus [VV]). OVs were sequentially administered using the same catheter with a dose of
109 TCID50 for each virus in a volume of 10 mL and demonstrated impressive clinical
and radiological responses with long-term survival up to 14 years [249]. OV-induced
anti-tumor immunity can be further enhanced through OV-mediated expression of various
cytokines/chemokines and immunomodulatory molecules [250]. OVs can also be used
in combination with standard of care TMZ that produces synergistic anti-tumor effects in
various preclinical cancer models including GBM [251–256]. However, a recent preclinical
combination study (OV+TMZ) in GBM demonstrated conflicting results. Concurrent OV
and TMZ therapy antagonized the anti-tumor properties of oncolytic virotherapy [239],
indicating that co-applied administration of OV and TMZ represent a failed synergistic
strategy as opposed to the pre-clinical benefits observed when TMZ was administered
either before or after OV treatment [254,256,257]. Altogether, OVs serve to beneficially alter
the TME to increase tumor immunogenicity, and synergize with ICIs [205,258]. Newer
clinical studies are aiming to combine OVs and ICIs in order to improve patient outcomes
as listed in Table 3 [258].
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4.2.3. Therapeutic Vaccines

Vaccines are an active form of immunotherapy that has recently gained interest for
GBM treatment [259,260]. The antigens such as EGFRvIII, heat shock protein (HSP), and
any tumor-derived antigens can be loaded to DCs to incite immune responses against
GBM [260]. In a randomized Phase II clinical trial in patients with relapsed EGFRvIII+ GBM,
the EGFRvIII vaccine (designated Rindopepimut or CDX-110) delivered intradermally with
GM-CSF (NCT01498328) resulted in the induction of EGFRvIII-specific immune responses,
encouraging PFS and OS, and a significant extension of survival when the vaccine was
administered in combination with bevacizumab [261]. The promising results of this trial
led to a Phase III trial with Rindopepimut/GM-CSF in patients with newly diagnosed
GBM, where all patients received standard-of-care TMZ (NCT01480479). Unfortunately,
this Phase III trial was discontinued in early 2016 since Rindopepimut failed to significantly
improve survival [262] and emphasizes the importance of identifying alternate and newer
vaccine-based strategies to tackle GBM [263].

In contrast to EGFRvIII immunization that elicits immune responses to pre-defined
tumor target, HSP vaccines offer immunity against a broad range of antigens. Induction
of anti-tumor immunity against various antigenic targets is important to help minimize
the outgrowth of target null variants, especially for cancer types that have high intra-
tumoral heterogeneity like GBM [264]. The most well-known HSP vaccine is heat-shock
protein peptide complex-96 (HSPPC-96) [265]. The safety and immunogenicity of HSPPC-
96 monotherapy were demonstrated in a Phase I clinical trial in newly diagnosed GBM
Patients [265]. HSPPC-96 is currently being tested in two separate Phase II clinical trials;
one in combination with TMZ in patients with newly diagnosed GBM (NCT00905060)
and the other in combination with bevacizumab in surgically resectable recurrent GBMs
(NCT01814813) (Table 3).

DCs play a central role in linking innate and adaptive anti-tumor immune responses [266].
The principle of dendritic cell vaccines (DCV) is based on the ability of primed DCs
to process/present tumor antigens and activate cytotoxic lymphocytes [267]. DCVs are
prepared by isolating CD14+ monocytes from patient peripheral blood and further culturing
cells ex vivo with granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin
4 (IL-4), and tumor antigens, prior to injecting the cells back into patients [268]. Although
interest in DCV is further compelled by an FDA-approved DCV for the treatment of
prostate cancer (Sipuleucel-T), most DCV-based clinical trials in GBM are still under phase
I and II evaluations. For example, DCVax, an approved DCV for treatment of GBM in
Switzerland, is currently being assessed in the US in patients with newly diagnosed GBM
(NCT00045968) [269]. In a recent phase III study, DCVax was used alongside standard
options and resulted in the extended survival of patients by 8 months compared to the
control cohort [269,270]. Personalized neoantigen vaccine has also recently been tested
in GBM clinical trials. For instance, in a Phase I/Ib study in newly diagnosed MGMT-
unmethylated GBM, patients who did not receive dexamethasone had better neoantigen-
specific CD4+ and CD8+ T cell responses with a higher number of TILs [271].

4.2.4. Adoptive Cell Therapies (ACTs)

In contrast to active immunotherapies such as OVs or anti-cancer vaccines that induce
anti-tumor immunity within the host, ACTs are considered a passive form of immunother-
apy where T cells are harvested from patients, expanded and activated ex vivo under
appropriate conditions, and reinfused back into patients [272]. There are several types of
ACT currently under development for GBM treatment, such as lymphokine-activated killer
cells, allogenic donor lymphocyte infusion, autologous lymphocytes, tumor-infiltrating
lymphocytes (TILs), transgenic T-cell receptor (TCR) T cells, antibody-armed T cells, and
chimeric antigen receptor (CAR) T cells [272]. ACTs using autologous TILs and CAR-T
cells are the most prevalent strategy being explored in GBM, as evidenced by the number
of completed or running clinical trials [272]. ACT by autologous lymphocytes relies on
MHC-restricted tumor antigen recognition via T cell receptors (TCRs) [273]. It has also been
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demonstrated that TILs harvested from GBM patients can recognize and kill autologous
tumor cells [274], but recent studies reveal that not all TILs are tumor-specific. Ultimately,
TILs that express CD39 (CD39+CD8+ T cells) are predominantly tumor-reactive [275,276]
and these reports suggest that ACT strategies should incorporate CD39+CD8+ cells over
bulk TILs also containing CD39-CD8+ cells.

Among ACT-based treatment strategies, CAR-T cell therapy is the furthest along in
the clinic [277]. CAR-T cells are engineered to directly recognize tumor-specific antigens
(e.g., EGFRvIII, HER2, IL-13Rα2, EphA2.) in an MHC-independent manner [273]. As an
example, single intravenous infusion of CAR-T cells redirected to EGFRvIII antigen in
patients with recurrent GBM lead to the loss of EGFRvIII in 5/7 patients [278]. Yet, CART-
EGFRvIII therapy also induced the overexpression of inhibitory molecules such as immune
checkpoints in the TME and increased tumor infiltration of immunosuppressive Tregs [278].
Recently, PD1-TILs have been engineered to overcome the inhibitory functions of the PD-1
molecule. PD1-TILs express full-length PD-1 antibody and are currently being tested in
GBM patients in an early Phase I clinical trial (NCT03347097). In another study, a recurrent
GBM patient received multiple intracranial infusions of IL13Rα2-specific CAR-T cells
directly into the resected tumor cavity followed by infusions into the ventricular system
over a period of 220 days. This strategy resulted in the regression of all intracranial and
spinal tumors [279].

4.2.5. Macrophage and NK Cell-Based Immunotherapy

TAMs are another interesting therapeutic target in GBM since these cells are the
most abundant infiltrating immune cells in GBM [280] and their immunosuppressive func-
tions promote tumor progression [281]. TAMs can be divided into two major phenotypes:
(i) M1-polarized cells that are generally considered anti-tumoral and (ii) M2-like cells that
contribute to pro-tumoral activities [282]. The strategies to target TAMs in GBM include:
(i) Inhibiting TAM recruitment by preventing interactions between C-C motif chemokine
ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) [283]; (ii) Increasing M1
polarization by disrupting the CD47-SIRPα-SHP-1 signaling pathway [284] or activating
CD40 or toll-like receptors (TLRs) [285,286]; and (iii) Depleting TAMs using CSF1R in-
hibitors [287]. Overall, these aforementioned approaches have demonstrated promise in
preclinical GBM studies and are well-tolerated among cancer patients [288]. Nevertheless,
the safety and efficacy of macrophage-based immunotherapies need to be confirmed in
GBM patients.

In contrast to macrophages, NK cells are the least abundant infiltrating immune cell
type in GBM. Interestingly, NK cells contribute to immune surveillance by preventing
spontaneous metastasis in GBM [289,290]. Therapeutic approaches that deploy NK cells in
GBM are still in early developmental stages, with only one phase I clinical trial exploring
the safety and objective response rates following NK cell-based immunotherapy in recur-
rent GBM patients (NCT04489420). In this study, CYNK-001 cells (i.e., NK cells derived
from human placental CD34+ cells) will be intravenously infused after a lymphodepleting
cyclophosphamide-based chemotherapy or provided intratumorally prior to surgery with-
out lymphodepletion. Although no NK cell-based product has yet received FDA approval,
numerous CAR-NK cells have been engineered to target tumor antigens such as EGFRvIII,
HER2, IL-13Rα2, EphA2, CSPG4, CD133, or CD70 preclinically in GBM [289].

4.3. Nanomedicine

The neoplastic vasculature network is typically defective and leaky, which enhances
the permeability and retention of nanoparticles in the TME [291,292]. Nanomedicine has
been validated to enhance the efficacy of chemotherapies [293] and radiotherapy [294],
but the safety and delivery of this approach have always been a major concern since
nanoparticles preferentially deposit in the reticuloendothelial tissues of the kidneys, liver,
and spleen [295,296]. Despite these issues, various anti-cancer nanoparticle therapies can
produce superior efficacy versus non-nanoparticle formulation. For example, paclitaxel
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(PTX) or doxorubicin when administered as nanoparticles potentiate improved cytotoxicity
against GBM compared to their parental compounds [297]. Several clinical trials are
evaluating the therapeutic properties of different nanomedicine formulations such as
nanoliposome (NCT00734682, NCT00944801, NCT01906385), Spherical Nucleic Acid (SNA)
gold nanoparticles (NCT03020017), and nanocells (NCT02766699). To further advance this
field in GBM and improve safety, an improved understanding of the long-term stability,
biodistribution, and clearance mechanisms of nanoparticles is required.

4.4. Photodynamic Therapy (PDT)

Photodynamic therapy (PDT) is a form of light therapy that preferentially damages
residual tumor cells following surgical resection [298]. PDT requires molecular oxygen
(a photosensitizing [PS] agent) and a light source [299]. Based on their chemical struc-
ture, PS agents can be classified as derivatives of chlorin, porphyrin, bacteriochlorin, or
phthalocyanine [300]. Ultimately, the PS agent is localized in tumor cells and remains
non-toxic until activated by a light source. As the PS agent absorbs photons at a specific
wavelength, the transfer of energy converts the PS agent to an excited state and promotes
two types of photochemical reactions [301]: (i) Direct interaction between excited PS agents
and biochemical molecules within target cells eventually generate cell-destroying free
radicles; (ii) The radical anion of an excited PS indirectly interacts with oxygen, leading
to the formation of single oxygen molecules that damage mitochondrial DNA and pro-
mote mitotic arrest and apoptosis [302,303]. Interestingly, the formation of these oxygen
molecules is short-lived (4 micro-seconds) and limited to a maximum 1 µm migration path,
which confer minimal harm to surrounding normal cells [304]. A meta-analysis of more
than 1,000 GBM patients from several observational studies and three randomized clinical
trials (RCTs) [305,306] (NCT01966809) indicate that PDT is safe and significantly improved
the quality of life, survival, and delayed tumor relapse in patients (p < 0.001) [307]. The
combination of PDT with standard therapies (i.e., maximum resection surgery followed by
concomitant radio-chemotherapy and adjuvant chemotherapy) is also found to be safe and
well-tolerated [308]. A comprehensive review of PDT (including its immunological effects
and translational feasibility) has been previously discussed [303]. Although PDT shows
favorable outcomes in GBM patients, the field still requires a greater number of pre-clinical
studies and RCTs to better confirm safety and efficacy for GBM management.

4.5. Inhibition of Extracellular Vesicles (EVs) and Micro RNA (miRNA)-Based Therapies

Cells in general communicate and sense their environment by employing EVs loaded
with nucleic acids, lipids, and proteins [309]. EVs can include exosomes, micro-vesicles,
apoptotic bodies, and oncosomes, and are involved in directing cell metabolism and move-
ment [309]. Within the realm of GBM, EVs can be utilized as biomarkers for diagnosis,
prognosis and GBM recurrence [310,311]. More specifically, an increase in plasma EV con-
centration is associated with GBM recurrence [310] while EVs contribute to GBM invasion
and recurrence after treatment by transferring therapy-resistant epigenetic materials be-
tween GBM cells [312]. Additionally, GBM cells can internalize bevacizumab and release it
back into the TME where EVs neutralize the antibody to prevent VEGF-A binding, leading
to drug resistance [313]. Therefore, EV inhibition is expected to enhance GBM treatment
outcomes. EV production can be prevented by either preventing EV trafficking [312] or
lipid metabolism [313]. CCR8 is usually required for EV fusion to cells [313]. As such,
the small molecule CCR8 inhibitor R243 (when used in combination with TMZ) demon-
strated a significant delay of tumor recurrence [313]. A separate lipid metabolism inhibitor
(designated GW4869) also enhanced the cytotoxic effect of bevacizumab in GBM [313].

miRNA is the distinct cellular product transferred by EVs between GBM cells [309].
miRNAs are non-coding RNAs that consist of about 22 base pairs and regulate gene ex-
pression by binding complementary mRNA sequences to silence translation. miRNA is
a major cellular communication scheme in GBM [314] and abnormal miRNA regulation
favors tumor growth and invasion [315]. GBM patients have distinct miRNA expression
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profiles over healthy individuals—with at least 30 miRNAs that can be used as biomark-
ers [315]. The most frequently up-regulated miRNAs in GBM include miR-21, miR-10b, and
miR-25, whereas miR-139, miR-218, and miR-124 are commonly down-regulated in GBM
patients [315]. Emerging approaches to target miRNAs include inhibiting their occurrence
by administering anti-sense oligonucleotides or therapeutics that silence miRNA expres-
sion. For example, inhibition of miR-21 suppresses GBM proliferation by inhibiting EGFR
signaling pathway [316], increasing PTEN expression [317], and enhancing chemosensi-
tivity [136,318]. Systemic administration of miR-10b antisense oligonucleotide inhibitors
(ASO) also significantly prolonged survival in a xenograft model of mouse GBM [319]. Ex-
pression of miRNA-10b and its relation to OS and PFS in glioma patients is likewise currently
under investigation (NCT01849952). The exogenous delivery of miR-124 decreases tumor
growth and invasion and sensitizes GBM cells to chemotherapy [320]. Lastly, GSCs express
different miRNAs over non-stem GBM cells that correlates with patient survival [321]. Some
clinical trials consist of miRNA-based therapies and EV inhibitors are currently underway
for a variety of cancer types (NCT02580552, NCT03713320, NCT03608631, NCT04167722),
but these strategies have not yet been evaluated in GBM patients.

4.6. Targeting Vessel Co-Option and Vascular Mimicry

As discussed above, neovascularization of GBM comprises vessel co-option, angio-
genesis, vasculogenesis, endothelial cell trans-differentiation, and vascular mimicry [43].
Among therapies that target GBM tumor vasculature, AAT is the most studied in the clinic.
However, GBM treatment with AAT oftentimes increases vascular co-option [322] and
results in resistance to AAT [323]. Mechanisms that drive vessel co-option in GBM and
non-GBM cancers are poorly understood, although various tumor cell invasion/adhesion
pathways are known to be involved as drivers of vessel co-option in glioma [45], such as
bradykinin, CXC-chemokine receptor-4 (CXCR4)-binding cytokines, stromal cell-derived
factor-1α (SDF1α), interleukin 8 (IL-8), angiopoietin 2 (Ang-2), cell division control protein
42 (CDC42), EGFRvIII, mammary-derived growth inhibitor/fatty acid-binding protein 3
(MDGI/FABP3), inositol-requiring enzyme-1α (IRE1α), homologous wingless and Int-1
(Wnt), and oligodendrocyte transcription factor (Olig2) [45,324–326]. It has been proposed
that sequential treatment of vessel co-option inhibition by LGK974 (a porcupine inhibitor
that blocks Wnt secretion) followed by anti-angiogenic therapy could produce synergistic
effects that are superior to single treatments [323]. Vascular mimicry is a separate mech-
anism observed in GBM following AAT-induced resistance [61]. Treatment with AAT
enhances a population of CXCR2-positive GBM-stem cells with endothelial-like pheno-
types that promote tumor growth. Targeting vascular mimicry in this scenario by blocking
the expression of CXCR2 with the compound SB225002 demonstrated significant reduction
of tumor burden [61].

5. Conclusions

GBM is a devastating disease with an exceedingly poor prognosis and has an expected
survival of only 12–15 months [1,2]. Currently approved treatments only manage to
increase overall survival by a few months and further research is desperately needed
in order to make a significant difference in the progression of the disease. Increasing
our understanding of GBM pathogenesis is vital toward developing efficacious and long-
lasting therapies. Heterogeneity of GBM is observed at both intra-and inter-tumoral
levels, making targeted approaches (including small molecule drugs and immunotherapies)
difficult to produce substantial clinical benefits. Therefore, a better understanding of the
molecular heterogeneity and immunosuppressive profile of GBM would provide a more
comprehensive insight into strategies that can overcome resistance acquired by this lethal
disease. While combination therapies in development with the current standard of care
options are gaining more attention, it is crucial to assess whether antagonizing properties
develop. For example, while the addition of a histone deacetylase inhibitor to TMZ ensures
GBM eradication [327], anti-EGFRvIII or anti-MAPK strategies potentially abrogate TMZ
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efficacy by interfering with the regulation of DNA mismatch repair in GBM [328]. Similarly,
the combination of OV and TMZ shows a reduced efficacy against GBM compared to either
agent alone [239]. It is also needed to investigate sequential administration of different
therapies to potentially gain synergistic effects. For example, drugs that target EVs could
be administered prior to AATs. Another consideration for improved GBM prognosis and
treatment is the timing and method of diagnosis. The BBB is another major obstacle that
should be addressed to achieve suitable therapeutic responses in individuals with GBM,
particularly for emerging treatment approaches such as OVs, small molecule inhibitors,
therapeutic vaccines, miRNA-based treatments, and EVs. It also remains vital to find
new therapeutic targets in GBM. Since GSCs play an important role in GBM pathogenesis
and therapy resistance, targeting GSCs would offer a unique way to eradicate the disease.
Recently, ADAM Like Decysin 1 (ADAMDEC1) was discovered as a novel target in GBM
and is overexpressed by GSCs, which regulate stem cell proliferation and sphere formation,
and promote tumor growth through an ADAMDEC1-FGFR1-ZEB1 signaling loop [329].
Overall, the rapid growth and aggressive nature of GBM likely demand the necessary focus
on developing effective treatments that will work alongside current mainstays of treatment.
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