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Abstract: The development of food allergy has been reported to be related with the changes in the gut
microbiome, however the specific microbe associated with the pathogenesis of food allergy remains
elusive. This study aimed to comprehensively characterize the gut microbiome and identify individ-
ual or group gut microbes relating to food-allergy using 16S rRNA gene sequencing with network
analysis. Faecal samples were collected from children with IgE-mediated food allergies (n = 33) and
without food allergy (n = 27). Gut microbiome was profiled by 16S rRNA gene sequencing. OTUs
obtained from 16S rRNA gene sequencing were then used to construct a co-abundance network using
Weighted Gene Co-expression Network Analysis (WGCNA) and mapped onto Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways. We identified a co-abundance network module to be
positively correlated with IgE-mediated food allergy and this module was characterized by a hub
taxon, namely Ruminococcaceae UCG-002 (phylum Firmicutes). Functional pathway analysis of all the
gut microbiome showed enrichment of methane metabolism and glycerolipid metabolism in the gut
microbiome of food-allergic children and enrichment of ubiquinone and other terpenoid-quinone
biosynthesis in the gut microbiome of non-food allergic children. We concluded that Ruminococcaceae
UCG-002 may play determinant roles in gut microbial community structure and function leading to
the development of IgE-mediated food allergy.

Keywords: 16S rRNA gene sequencing; food allergy; microbiome; WGCNA; Ruminococcaceae

1. Introduction

Emerging evidence has pointed towards the critical role of microbial communities
in human health and disease, including regulation of the mucosal barrier function [1–4],
metabolism [5–7] and host immune responses [3,4,8]. This is particularly evident in the gas-
trointestinal (GI) tract, where the diversity and richness of microorganisms are highest [9].
Changes in the gut microbiome commonly referred to as dysbiosis, may disrupt gut home-
ostasis and increase intestinal permeability, thereby causing immune system disorders
such as autoimmune diseases and allergic disorders including food allergy [10–12].
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Previous studies have started to unveil an association between the gut microbiome
and the development of food allergy. A large observational cohort study in the United
States showed that food-allergic children had a higher abundance of Bacteroidetes and a
lower abundance of Firmicutes than children with resolved food allergy [13], while some
studies showed the opposite results [14,15].

Considering the complexity of structure, function and compositional variability,
the gut microbiome can be modelled and expressed as networks to infer the dynamic
nature of the host–microbe interactions [16]. One approach to construct co-abundance
network modules is to apply weighted gene co-expression network analysis (WGCNA) to
quantify the co-abundance of operational taxonomic units (OTUs) across multiple samples.
Developed by Horvath and colleagues, WGCNA was initially used to construct gene
networks based on their similar biological functions and identify the hub gene that may
associated with phenotypic traits [17]. We used WGCNA in this study to analyse the asso-
ciation between gut microbiome and disease phenotype by forming the complex microbial
communities into different co-abundance network modules in order to identify hub taxa,
the centralities of these co-abundance modules. Through this, we expect that WGCNA will
identify potential target microbes, which may play a key role in regulating/influencing the
microbe–microbe interactions, leading to the onset of food allergy.

2. Results
2.1. Gut Microbial Alpha Diversity

A total of 60 samples were included in our final analysis (33 food-allergic children
and 27 non-food allergic children). Thirty-nine percent of the subjects were boys, with
the median age for non-food allergic children and food-allergic children of 5.9 years and
5.0 years, respectively. The groups did not significantly differ from each other with regard
to age (p = 0.200) and gender (p = 0.525). The food allergies noted in the food-allergic
children included nuts (n = 23), egg (n = 4) and mixed allergies (n = 6).

To determine the average species diversity in a habitat or specific area, alpha diversity
was evaluated using Chao1, Shannon index and observed OTUs matrices. Chao1 showed
that non-food allergic children had lower species richness compared to food-allergic chil-
dren, while Shannon index and observed OTUs showed that non-food allergic children
and food-allergic children had similar gut microbial community richness and evenness
(Table 1).

Table 1. Comparison of gut microbial alpha diversity between food-allergic children and non-food
allergic children. Values represent mean ± SD.

Alpha Diversity Non-Food Allergic
Children Food-Allergic Children p

Chao1 565.7 ± 91.7 622.3 ± 87.4 0.02
Observed OTUs 458.9 ± 86.0 502.8 ± 83.9 0.058

Shannon diversity index 5.3 ± 0.7 5.5 ± 0.7 0.395
Bold value indicates a statistically significant difference with a p-value less than 0.05.

2.2. Gut Microbial Beta Diversity

To determine the degree of inter-group dissimilarity, beta diversity was evaluated
using unweighted and weighted UniFrac distance matrices. Beta diversity did not show
a significant difference between food-allergic children and non-food allergic children
(Supplementary Figure S1).

2.3. Gut Microbial Composition

OTU dataset for food-allergic children and non-food allergic children consisted of
7 phyla, 14 classes, 16 orders, 28 families and 105 genera. At the phyla level, the gut
microbiota was dominated by Firmicutes and Bacteroidetes, with lower abundance of
Proteobacteria, Verrucomicrobia, Actinobacteria, Tenericutes and Cyanobacteria (Supple-
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mentary Figure S2) in children with and without food allergy. There was no significant
difference in the phylum level between food-allergic children and non-food allergic children
(Supplementary Table S1, Online Supplemental Notes).

One hundred and five genera were identified, and only 18 genera were accounted for
more than 1% across all samples (Supplementary Table S2, Online Supplemental Notes).
There was no significant difference in the genera level between food-allergic children and
non-food allergic children.

2.4. Microbial Co-Abundance Network Modules

To better characterize gut microbial taxa in food-allergic children, we applied WGCNA
to identify clusters of microbial taxa whose differential representation was correlated with
food allergy. Each cluster was represented as a colour module.

Through WGCNA, we were able to identify 14 modules of co-abundant taxa and the
number of taxa within modules ranged from 32 to 167 (Table 2). Among all the taxa, only
167 taxa (17%) were not included in any colour module, and these taxa were grouped into
the grey module as per default.

Table 2. The number of taxa in the 14 modules.

Module Colours Frequency

Black 54
Blue 88

Brown 88
Green 67

green-yellow 34
Grey 167

Magenta 48
Pink 51

Purple 47
Red 66

Salmon 32
Tan 33

Turquoise 114
Yellow 82

2.5. Hub Taxa Associated with Food Allergy

The module eigengenes between children with and without food allergy were fur-
ther compared with using module trait association analysis to identify the food allergy-
associated modules.

Our results showed that a co-abundance network module (turquoise) was positively
correlated with food allergy (r = 0.27 p = 0.04) (Figure 1). Particularly, Ruminococcaceae
UCG-002 was identified as the hub taxon (TaxaSignificance > 0.2 and Module Membership
> 0.8) (Figure 2) for this module. In addition, 10 dominant taxa (>1% relative abundance
across all samples) were also identified in the module. The majority of the dominant
taxa came from Firmicutes phylum, including the genera of Ruminococcaceae UCG-002,
Eubacterium oxidoreducens group, Eubacterium coprostanoligenes group and Lachnospiraceae
(NK4A136 and UCG-008). Other than this, the dominant taxa also included genera taxa
from the phyla of Bacteroidetes (Bacteroides, Alistipes, Parabacteroides and Prevotella 2) as
well as Proteobacteria (Rhodospirillaceae).
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Figure 1. Module-trait associations. Each row corresponds to a module eigengene (ME) while each column corresponds 
to either phenotype (FA: Food allergy) or demographic traits such as age and gender. Each cell contains the correspond-
ing correlation coefficient (display at the top of the cell) and corresponding p-values for each module (display at the 
bottom of the cells within parentheses). Blue and red colours of the spectrum on the right denote low and high correla-
tion, respectively. 

 

Figure 1. Module-trait associations. Each row corresponds to a module eigengene (ME) while each
column corresponds to either phenotype (FA: Food allergy) or demographic traits such as age and
gender. Each cell contains the corresponding correlation coefficient (display at the top of the cell) and
corresponding p-values for each module (display at the bottom of the cells within parentheses). Blue
and red colours of the spectrum on the right denote low and high correlation, respectively.
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Figure 2. Network analysis identifies a distinct module of co-associated taxa. The highly correlated
taxa in the comparisons of food allergic children and non-food allergic children are indicated and
colour coded according to the phylum. Green colour represents Bacteroidetes phylum, pink colour
represents Firmicutes phylum while orange colour represents Proteobacteria phylum. Hub taxon
(yellow triangle) exhibits greatest intramodular connectivity, whereas connector taxa (circles) exhibit
a higher frequency of intramodular connectivity.
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2.6. Predicted Functional Pathway of Gut Microbial Taxa Associated with Food Allergy

In order to have a better understanding of the functional pathway of gut microbial taxa
that are associated with food allergy, linear discriminant analysis effect size (LEfSe) was
performed by using the Tax4fun output. Using the threshold values (LDA > 2.0, p < 0.05),
LEfSe revealed distinct KEGG pathway differences between gut microbiota of food-allergic
children and non-food allergic children (Figure 3). Specifically, methane metabolism and
glycerolipid metabolism were found to be enriched in food-allergic children. In contrast,
ubiquinone and other terpenoid-quinone biosynthesis, as well as Vibrio cholerae pathogenic
cycle were found to be enriched in non-food allergic children.
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3. Discussion

There is increasing evidence that alterations in the gut microbiome are related to the
development of food allergy [13–15,18], although the specific microbe associated with the
pathogenesis of food allergy remains elusive. Our objective for this study was to perform
16S rRNA gene sequencing in integration with network analysis to characterize the gut
microbiome and identify individual gut microbes or network modules of them that differ
between food-allergic children and non-food allergic children. To our knowledge, this is
the first study to characterize the gut microbiome of food-allergic children by applying
network analysis.

Through network analysis, we identified a co-abundance network module (turquoise)
to be positively correlated with food allergy and this module was characterized by a
hub taxon, Ruminococcaceae UCG-002 (Firmicutes phylum). It is suggested that a high
relative abundance of Ruminococcaceae is associated with both food allergies [15], and a
high fat diet in murine models [19–21], a factor which is known for its association with
the development of food allergy. Taken together, these findings suggest that the high
relative abundance of Ruminococcaceae, induced by a high fat diet, may produce acetic
and propionic acid that possibly promote the synthesis of lipogenesis and cholesterol [22],
which in turn dysregulated intestinal effector mast cell responses, as well as increased
intestinal permeability and gut dysbiosis [23], leading to exacerbations of allergic responses.

We also identified a number of dominant taxa in this co-abundance network module
that were highly related with food allergy, with the majority of them coming from phylum
Firmicutes. Firmicutes has been suggested to play a role in modulating the immune
system and subsequent development of allergic diseases [14,24]. A case-control study was
conducted to investigate the association of gut microbiome and food allergy by comparing
the gut microbiota composition between 34 infants with food allergy and 45 healthy
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controls [14]. The data revealed that the relative abundance of Firmicutes in food-allergic
subjects was higher than that of the control subjects. Another study conducted by Chen
et al. [24] also showed that Firmicutes was enriched in food-sensitized children.

The enrichment of pathways related to methane metabolism and glycerolipid
metabolism (a subcategory of lipid metabolism) in the gut microbiome of food-allergic
children was observed. However, KEGG pathways related to metabolism of cofactors
and vitamins (ubiquinone and other terpenoid-quinone biosynthesis) was significantly
enriched in the gut microbiome of non-food allergic children. Methane is the anaerobic
fermentation product of endogenous and exogenous carbohydrates through intestinal
microbiota [25]. The increase production of methane caused by high fat diet [26] may
cause gastrointestinal disorders [25,27]. Our finding of enriched glycerolipid metabolism
in food-allergic children was consistent with recognized roles of dietary lipid in regulating
inflammation and food allergy [23,28]. A high-fat diet has been previously shown to
change gut microbiota composition, leading to inflammation and food-allergic reactions.
In contrast, the key role of ubiquinone in protecting against food allergy has been gaining
attention lately. The deficiency of coenzyme Q10, which is a kind of ubiquinone, may
develop and worsen the progress of food allergy in children [29].

Our finding of increased gut microbiota diversity in food-allergic children when
compared with non-food allergic children appears contrary to several other food allergy
studies, in which gut microbiota diversity was higher in healthy controls than food-allergic
subjects. However, a study conducted by Fazlollahi et al. [15] has also shown that gut
microbiota diversity could be higher in children with egg allergy compared to controls.
Some other studies reported no association between gut microbiota diversity and food
allergy [14,30]. This has indicated a subtle relationship between gut microbiota diversity
and food allergy. Hence, the role of microbiome in food allergy was suggested to be
considered along with the interplay between different taxa and their metabolic effects
rather than only examining a single dimension, bacterial diversity.

Taken together, we speculate that increased abundance of Ruminococcaceae along
with other dominant microbial taxa, may remodel the normal gut microbial ecosystem
into a state of dysbiosis through the pathways of methane metabolism and glycerolipid
metabolism, which in turn elicit a host IgE-mediated allergic response. Our findings high-
light the usefulness of network analysis in disentangling the hub taxon, Ruminococcaceae
that play determinant roles in gut microbial community structure and functions leading to
IgE-mediated food allergy. The differences in the co-abundance patterns of gut microbiome
between children with and without food allergy can help us understand the complex inter-
relationships between gut microbiome and pathogenesis of food allergies. This information
potentially aids targeted dietary or probiotic strategies for clinical practice to improve food
allergy outcomes. Although our study revealed there was an association between gut
microbiome network and development of food allergy, there were several limitations in the
study. Firstly, the sample size was small. However, the application of network analysis
in our study has deciphered key microbial populations that may be associated with food
allergy, including those with low relative abundance but highly relevant to the onset of
food allergy through characterizing the interactions of microbes at the community scale.
Secondly, 16S rRNA gene sequencing is only sensitive to the genus level, but not species
and strains. Thirdly, as this was a cross-sectional study, our results could not indicate a
causal relationship between the gut microbiome and food allergy. Finally, as our study
aimed to construct a microbial network through 16S rRNA gene sequencing and weighted
correlation network analysis, the actual roles of these taxa predicted to be related to food
allergy have not yet been evaluated. Therefore, further studies utilizing metagenomic
analysis or real-time PCR in larger cohorts are required to confirm our results.
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4. Materials and Methods
4.1. Study Subjects

From January 2018 to March 2019, children with immunologist-diagnosed food allergy,
were recruited from Immunology Outpatient Clinic, Perth Children’s Hospital. Children
from 1 year old to 7 years of age with immunologist-diagnosed food allergy were eligible
for participation. Non-food allergic children, with age and gender matched were recruited
from the local community.

All parents of the subjects gave their informed consent for inclusion before they
participated in the study. The study was conducted in accordance with the National Health
and Medical Research Council National Statement on Ethical Conduct in Human Research,
and the protocol was approved by the Human Research Ethics Committee (HREC), Perth
Children’s Hospital (RGS151/HREC 2017060EP) and Curtin University (HRE2017-0712).

4.2. Faecal Sample Collection and Processing

Parents/guardians of the participants were provided a faecal collection kit, which
included a protocol of faecal collection, a screw cap faecal container (Sarstedt, Germany),
an underpad sheet, a pair of disposable gloves, a white paper bag and a sealed plastic
bag with labels. Once collected, the faecal sample would then be transported on ice by a
researcher within 2 hours of collection to the laboratory −80 ◦C freezers for storage.

DNA was then extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Germany)
in accordance with the manufacturer’s instructions. The PCR amplication and sequencing
of sixty stool samples were performed by Novogene Bioinformatics Technology Co., Ltd.
(Beijing, China). Briefly, PCR was carried out using Phusion® High-Fidelity PCR Master
Mix and GC Buffer (New England Biolabs, Beijing, China) in accordance with the manufac-
turer’s instruction. PCR thermal cycling was set as follows: initial denaturation at 98 ◦C
for 1min, followed by 35 cycles at 98 ◦C for 10 s, 50 ◦C for 30 s and 72 ◦C for 90 s, and
a final extension at 72 ◦C for 5 min. The samples were then subjected to electrophoresis
on a 2% agarose gel for detection. Samples with a bright main strip between 400 and
450 bp were chosen for further analysis. The PCR products were purified using the Gene
JET Gel Extraction kit (Thermo Scientific), and the sequencing libraries were constructed
using Ion Plus Fragment Library Kit (Thermo Fisher Scientific, USA) in accordance with
the manufacturer’s instruction. The library quality was monitored using a Qubit 2.0 Flu-
orometer (Thermo Fisher Scientific, St. Louis, MO, USA) and a Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, USA). Lastly, the library, which targeted the V3–V4
region of the 16S rRNA gene was sequenced on the Ion S5 XL platform (Thermo Fisher).
A total of 4,858,507 sequences reads that passed the quality check (>Q20, error rate < 1%)
were generated.

4.3. Quantitative Insights into Microbial Ecology (QIIME)

The raw sequences were then demultiplexed and quality filtered using QIIME [31]
by removing those raw sequences with read-quality score less than 19, setting length
fall below 3bp and consecutive quality base below 75%. The filtered sequences were
then screened for chimeras using the usearch61 algorithm [32] and putative chimeric
sequences were removed from the dataset. Sequences were clustered into operational
taxonomic units (OTUs) at a 97% similarity level against the SILVA reference database
(release 128) [33]. The OTUs with low relative abundance (less than 0.005%) were removed.
All further analyses were performed at a rarefied depth of 22,178 sequences per sample to
correct for differences in the read depth across samples. Alpha diversity and beta diversity
of microbial communities were analysed using QIIME. Alpha diversity was estimated
using two different indices: (1) Chao1, which takes into accounts only the abundance;
(2) observed OTUs, which takes into accounts only the observed species; (3) the Shannon
index, which takes into accounts the abundance and evenness of OTUs. Beta diversity
was measured using the weighted and unweighted UniFrac distance matrices. Principal
Coordinate Analysis (PCoA) was obtained to visualise unweighted and weighted Unifrac
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distances in a two-dimensional structure. The Adonis permutational multivariate analysis
(Adonis/PERMANOVA) was performed to compare beta diversity dissimilarity matrices.
A comparison of the relative abundance of OTUs between groups was computed using the
Mann–Whitney test. A probability value of p < 0.05 was considered statistically significant.

4.4. Construction of Microbial Co-Abundance Network

In order to have a better understanding of the co-abundance network of the microbial
taxa, Weighted Gene Correlation Network Analysis (WGCNA) package of R [17] was
then performed to conduct network analysis by using OTU count data (with 97% identity
threshold), which has undergone Hellinger transformation, by transforming OTU count
data from absolute to relative abundance that gives low weights to variables with low
counts and many zeros [34].

Taking into account that the use of correlation analysis in analysing the microbiome
data can lead to a spurious association, WGCNA applied few steps to reduce the number
of false positive connections introduced by spurious associations [17]. A soft thresholding
power β was determined based on scale-free topology index (R2) of 0.85. The most
appropriate soft thresholding power was then used to construct a weighted adjacency
matrix to which the co-abundance similarity has been raised. By raising the absolute
value of the correlation to a soft thresholding power (β ≥ 1), this step emphasized a
strong correlation coefficient. Then, to further minimize the effects of noise and spurious
associations, the adjacency matrix was transformed into a topological overlap matrix
and the corresponding dissimilarity was calculated. This topological overlap matrix was
particularly useful when the original adjacency matrix was sparse or susceptible to noise by
replacing the isolated connections with weighted neighbourhood overlaps, thus, reducing
the effects of spurious associations leading to a more robust network. The modules were
subsequently identified using a dynamic tree cut algorithm with a minimum cluster size of
30 and merge cut height of 0.25 and later assigned the clusters of highly co-occurred taxa
to different colours for visualization.

After that, module trait association analysis was used to calculate the correlation
coefficient between modules and food allergy as well as demographics traits such as
age and gender. Modules with p values < 0.05 were regarded significant food allergy-
related modules.

4.5. Hub Taxa Selection and Visualization

Next, an intramodular analysis was performed to determine the hub taxa by summing
the connection strengths with other module taxa. Moreover, the hub taxa have to meet the
absolute value of the TaxaSignificance > 0.2 and Module Membership > 0.8. Taxa of the
significant modules were then visualized using Cytoscape v3.8.0 [35].

4.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis

All OTUs table and OTUs taxonomy were mapped onto Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways using R package, Tax4Fun. Linear discriminant analysis
(LDA) effect size (LEfSe) analysis (http://huttenhower.sph.harvard.edu/lefse/ (accessed
on 18 February 2021)) was performed to detect biomarkers of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways that differed significantly between non-food
allergic children and food-allergic children. Default settings (alpha = 0.05, effect-size
threshold of 2) were applied.

5. Conclusions

Our study provides a better understanding of the gut microbiome with respect to the
presence of Ruminococcaceae UCG-002 interacting with other dominant taxa including Eu-
bacterium oxidoreducens group, Eubacterium coprostanoligenes group, Lachnospiraceae (NK4A136
and UCG-008), Bacteroides, Alistipes, Parabacteroides, Prevotella 2 as well as Rhodospirillaceae
in the pathogenesis of IgE-mediated food allergy and these microbial taxa were mainly

http://huttenhower.sph.harvard.edu/lefse/
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involved in methane metabolism and glycerolipid metabolism. Integrative view of gut
microbial ecology based on the microbial module in our study may help to understand the
microbial interactions associated with IgE-mediated food allergy.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/4/2079/s1, Supplementary Figure S1: PCoA plots of individual gut microbiota in food-
allergic children (red) and non-food allergic children (blue) derived from (a) unweighted and (b)
weighted UniFrac distances. Each symbol represents a sample. PCoA: Principal Coordinate Analysis,
Supplementary Figure S2: Relative abundance of gut microbial phyla, Supplementary Table S1: The
comparison of gut microbiota at the phyla level between food-allergic children and non-food allergic
children, Supplementary Table S2: Relative abundance of predominant genera in gut microbiota
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