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Ma and Wang (1) tested our recently reported severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) main protease (Mpro) noncovalent inhibitors (2) us-
ing their in vitro assays, and they obtained negligible
or much lower inhibitory activities compared to ours.
Knowing the discrepancy, we first carefully rechecked
our original experimental records, and we did not find
any potential concern with our data that had been re-
peated by multiple coauthors. Notably, the fluorescence
resonance energy transfer (FRET)-based enzymatic assay
used by Ma and Wang (1) is different from our FRET-
based enzymatic assay in the Mpro protein (discussed
below) and the FRET substrate [longer than the more
popularly used substrate (3, 4) utilized in our assay].

Particularly for Mpro, Ma and Wang (1) incorrectly
state that a GST-tagged Mpro was used in our assay.
Actually, as described in our paper (2), the GST tag
was cleaved with thrombin; the GST tag was used only
for conveniently isolating Mpro from the culture me-
dium. So, the Mpro protein used in our assay is the true
wild-type Mpro with native N and C termini. In compar-
ison, the FRET-based enzymatic assay described by
Ma et al. (5) used a C-terminal His-taggedMpro protein.
As noted correctly by Ma and Wang (1), Mpro requires a
native N terminus to form the enzymatically active dimer.
In fact, both the N and C termini of Mpro are very close
to the active-site cavity in the dimer according to avail-
able X-ray crystal structures (Protein Data Bank [PDB]
ID code 7BUY) (6), including one (PDB ID code 6WTT)
shown byMa et al. (5). Thus, an additional tag on the N
or C terminus could interfere with Mpro binding with a
ligand (substrate or inhibitor). So, a given ligand could
have a lower binding affinity with the His-tagged Mpro.

In fact, we obtained Michaelis constant (Km) = 1.41 μM
(Fig. 1) for the Mpro protein without any tag, and our
reported catalytic efficiency (2) is close to the previ-
ously reported value (catalytic constant kcat/Km =
28,500 M−1·s−1) (4). However, Km = 28.2 μM for the
His-tagged Mpro (5). So, the His-tagged Mpro has a
∼20-fold lower binding affinity with the substrate com-
pared to the tag-free Mpro. In other words, the activity
determined by using the assay with a His-tagged Mpro

might not reflect the actual activity with native Mpro.
Ma and Wang (1) also used native mass spectrom-

etry (MS) and thermal shift assays (TSA) to detect the
protein–ligand binding. For binding driven by hydro-
phobic interaction the protein–ligand complex will
most likely dissociate inMS (7). For TSA, false negatives
are also known to occur (8, 9). Both assays might not be
suitable for analyzing noncovalent inhibitors of Mpro.

Finally, GC-376, a covalent inhibitor identified in
their earlier reports, was used as a positive control to
validate their assays by Ma and Wang (1). However, it
is difficult to understand why their results show half-
maximum inhibitory concentration (IC50) = 28 or
33 nM when the enzyme concentration was 100 nM.
Their data, if validated, would imply that each GC-376
molecule inactivated multiple Mpro protein molecules
through an unusual mechanism.
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Fig. 1. Michaelis–Menten kinetics of SARS-CoV-2 Mpro (100 nM) against substrate MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2 at various concentrations.
(A) Original data obtained. (B) Lineweaver–Burk plot used to determine the catalytic parameters.

2 of 2 | PNAS Li et al.
https://doi.org/10.1073/pnas.2024937118 Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2

main protease inhibitors

https://doi.org/10.1073/pnas.2024937118

