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Abstract: With the arrival of new technologies in modern smart factories, automated predictive
maintenance is also related to production robotisation. Intelligent sensors make it possible to
obtain an ever-increasing amount of data, which must be analysed efficiently and effectively to
support increasingly complex systems” decision-making and management. The paper aims to review
the current literature concerning predictive maintenance and intelligent sensors in smart factories.
We focused on contemporary trends to provide an overview of future research challenges and
classification. The paper used burst analysis, systematic review methodology, co-occurrence analysis
of keywords, and cluster analysis. The results show the increasing number of papers related to key
researched concepts. The importance of predictive maintenance is growing over time in relation
to Industry 4.0 technologies. We proposed Smart and Intelligent Predictive Maintenance (SIPM)
based on the full-text analysis of relevant papers. The paper’s main contribution is the summary and

overview of current trends in intelligent sensors used for predictive maintenance in smart factories.

Keywords: intelligent sensors; maintenance; smart factory; Industry 4.0

1. Introduction

Industry sets the direction for the world economy, accounting for more than 70% of
the world’s total material production [1], depending on the regional economy’s develop-
ment. The continuous introduction of new technologies in developed countries has an
impact on its relatively low level of employment of the population at the level of 20% [2].
Simultaneously, the share of products and semifinished products in international trade
is continuously growing, despite the declining share of national Gross Domestic Product
(GDP) in developed countries [3]. All these facts are caused by introducing new technolo-
gies, which in the current industrial era of Industry 4.0 are summarised by many authors
under the name Smart Factory.

This review aims to give the reader a comprehensive view of maintenance and in-
telligent sensors in Smart Factory. As can be seen from the following, current literature
reviews [4-10] have shown that the literature is focusing on specific topics only separately.
The literature specializes in different types of sensors but does not consider them in relation
to those technologies, and industry 4.0. Professional texts lack a summary of literature and
texts that would bring the usability and potential of sensors closer to common practice,
so that these findings can be clearly used for business management in the implementation
of maintenance system planning. This would be beneficial for operational managers and
engineers for the design of new maintenance systems. This article provides a comprehen-
sive overview of current trends to help structure and guide future research. At the same
time, it answers key questions related to contemporary trends in maintenance processes in
smart factories. We define which Industry 4.0 technologies and intelligent sensors usually
provide maintenance in smart factories. Moreover, it helps to find new trends in smart and
intelligent predictive maintenance.
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The article is organised into six sections (Figure 1). After the Introduction (Section 1),
the Theoretical Background (Section 2) discusses the relevant literature about intelligent
sensors, smart factory, and predictive maintenance and defines key terms. In Materials
and Methods (Section 3), we explain the qualitative and quantitative methods used for the
review. Section 4 is focused on the main results of the article, followed by a discussion
(Section 5). The last part presents the conclusion (Section 6), contributions, limitations,
and future research.

Introduction (Section 1) Theoretical Background (Section 2)
Problem definition, article focus benetfits * Key terms definition: intelligent sensors,
and description. smart factory, and predictive maintenance.

-

Material and Methods (Section 3)
Methods and research design, search strategy and, data extraction and eligibility criteria

excluded studies proposition.

- -

Results (Section 4)

This section summarises the findings and contributions.

4.1 Main Topics and 4.2 Smart and Intelligent 4.3 Industry 4.0 Technologies

Trends Overview Predictive Maintenance and Sensors for Smart Factory

Discussion (Section 5)

This discussion of the results is the subject of this section.

1
d 5.1 Sensors-based Smart Factory 5.2 Insights and Future Research Issues
1
1

Conclusion (Section 6)

Summary of the contribution, future research and limitations.

Figure 1. Organisation of the article.

2. Theoretical Background

A literature review discussing intelligent sensors for maintenance in smart factories
has not been carried out. The literature currently offers reviews dealing with these areas
separately. Song at al. [4] pays attention to smart sensors in monitoring the condition and
integrity of rock bolts concerning economic and personnel losses. In the field of engineering,
Jin [5] describes multifunctional sensors suitable for industrial production, Feng [11]
describes sensors for intelligent gas sensing in the literature review, and Paidi [6] describes
intelligent parking sensors replacing ultrasonic sensors in combination with machine
learning. Sony and Talal [7,12] then characterise sensors for health monitoring. In literature
reviews, we relatively often find a combination of smart sensors and smart factories, a key
part of the 4.0 industry concept [13]. Lee [9] describes smart sensors’ use to evaluate
and diagnose individual devices in a smart factory. Strozzi [10] expands the literature
review emphasising the actual transition and implementation of large, intelligent factories.
Pereira and Alvarez [14,15] also focus on implementing the principles of a smart factory
and emphasise that effective value creation depends on the method of implementation.
The implementation process about managing technological and organisational changes
and desirable competencies is further addressed by Sousa [16], as well as Lee et al. [17].
They pay attention to the gap between recent researches on the actual level of deployment.
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In the field of maintenance of intelligent factories, we find several literature reviews
with the resonant notion of predictive maintenance. In their overview, Carvalho [18]
focuses on machine learning methods, which they consider a promising tool for predictive
maintenance. Sakib [19] observes the shift from service activities to proactive, predictive
maintenance and places [20] in the context of Industry 4.0. Olesen and Shaker [21] deals
with practical use in thermal power plants, and Fei [22] in the field of aircraft systems.

2.1. Intelligent Sensors

We find a critical area in the concept of smart factories, and that is intelligent logistics—
transport and warehousing. These operations include identification and detection of the
location of resources across the company. We understand sensors as a technical reproduc-
tion of natural processes because human nerves transform external stimuli into electrical
signals transmitted to the central nervous system—the brain. Smart sensors process ag-
gregated data from production processes in real-time and enable self-determination of
machines and other smart devices [23,24]. Data on production resources are used to mon-
itor, collect, and evaluate the data obtained. The most common type of wireless sensors
work on radio frequency identification (RFID), ZigBee, and Bluetooth technology [25].
Eifert [26] defines intelligent sensors as a multi-component measuring device that is self-
calibrating, self-optimised, and easy to integrate into the environment for high connectivity.
Besides, intelligent sensors also have process intelligence and can generate multidimen-
sional data information. The literature of the most inflected RFID technology is also one of
the key technologies for implementing the Internet of Things (IoT). In RFID technology,
it is an active and passive tag, where the active sensor sends information for hundreds
of meters, and the passive tag receives it. The integrated sensor in production enables
a flexible and targeted strategy of predictive maintenance and control [27]. Sensors that
are part of the IoT can proactively monitor the device and issue alerts when the device
deviates from the specified parameters, we speak of so-called facility management [28].
Karabegovic [29] adds that the sensors convert physical parameters (temperature, speed,
humidity) into signals that can be measured electronically. The use of smart sensors in
Industry 4.0 is characterised by Schmitt [30]. The key element is knowledge of the current
state of the system. Sensor data with other parameters of the given process in the sense
of self-diagnostics and machine learning can be evaluated in real-time. The traceability of
individual components is also essential—from screws to the uniformity of seals, this knowl-
edge enables the measurement of tolerance and comprehensive monitoring of the condition
of machines and other equipment.

2.2. Predictive Maintenance

Predictive maintenance (PdM) is the latest maintenance policy adopted by many
industries. Above all, these are areas that require absolute reliability, such as power
plants, public services, transport systems, and emergency services. Forecasted information
is usually necessary for the long term and for planning various operational activities
(maintenance, production, inventory, etc.). In addition, due to technological and logistical
limitations, maintenance cannot always be performed everywhere [31]. Maintenance is
a critical activity that takes place in production. Machine failures during production
can lead to adverse effects on the production schedule, delivery delays, or employee
overtime to compensate for the loss. PAM predicts system failures to optimize maintenance
efforts [32,33]. According to Carvalho [18,34], PdM is a set of tools used to determine
when specific maintenance is required. The tool is based on continuous monitoring of
the machine or process, and this allows maintenance to be performed only when needed.
A secondary, no less important function of PdM is the possibility of early detection of
faults, thanks to tools based on historical data—machine learning—as well as visual aspects
of faults—colour and wear. As a possible part of the Industry 4.0 concept, PAM aims to
minimise maintenance costs, implement zero-waste production, and reduce the number of
major failures [35]. Despite PAM’s benefits, Herrmann [36] highlights the potential risks
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of remote access to maintenance processes and cites Distributed Denial-of-Service (DDoS)
attacks, for example. According to Zonta [20], we distinguish three approaches to PdM,
namely: Based on a physical model, where the main feature is mathematical modelling
requiring the timeliness of the state and statistical methods of evaluation. The second
approach is the knowledge-based approach, which reduces the complexity of the physical
model, and the last approach is the data-driven approach, which we find most often
in the current development of PdM. This approach is based on artificial intelligence,
i.e., machine learning and statistical modelling, and is a satisfactory approach in the
conditions of Industry 4.0 [37]. Farooq et al. distinguish experience-driven and data-
driven maintenance [38]. Experience-driven preventive maintenance is based on gathering
knowledge about production equipment, which is then used to plan future maintenance.
On the contrary, data-driven preventive maintenance is based on analysing a large volume
of data (Figure 2).

- - - -»

DATA DATA MINING PREDICTION MAINTENANCE
COLLECTION MANIPULATION AND SCHEDULING
+ Algorithms MODELLING
+ Using sensors - Filtering, - Analysis * Planning
for data + Transforming - Prediction + Scheduling
collection + Pre-processing methods + Decision-making

* Modelling.

? Data-driven ? Data-driven ? Data-driven ? Data-driven ’

MONITORING, VISUALISATION AND DATA SHARING

& Experience-driven & Experience-driven ‘

EXPERIENCE

PERIODICAL
INSPECTION

MAINTENANCE

AND LANNIN
KNOWLEDGE I c

Figure 2. Experience- and data-driven predictive maintenance [38].

2.3. Smart Factory

One of the key components of Industry 4.0 is a smart factory, otherwise also a smart or
digital factory. A smart factory represents the future state of fully interconnected produc-
tion systems, without a significant amount of manpower [13]. According to Chen [25], a
smart factory is a manufacturing solution that provides adaptive and flexible manufactur-
ing processes that reflect the rapidly and dynamically changing conditions in the world. On
the one hand, this solution can be understood as a combination of software and hardware,
which should lead to the optimisation of production and the reduction of waste of scarce
resources. On the other hand, the concept can be perceived as a space for perspective
cooperation with business partners based on the formation of a dynamic organisation. The
smart factory architecture itself includes a physical resource layer, a data and network
layer, as well as an end layer. All elements of the intelligent factory are interconnected,
exchanging information, and recognising and evaluating situations. Thus, physical and
cyber technology is integrated, which results in improved controllability, control, trans-
parency of production processes, maximises value for the customer, and in addition, there is
communication between the factory and the market itself [39,40]. The core technologies of
Industry 4.0 include IoT, cloud computing, and high-volume data analysis. IoT represents
the integration of sensors and computer technology in the field of wireless communication,
and cloud services allow access to the network respectively, as a shared pool of computing
resources. The combination of these technologies allows the involvement of all devices
in the concept of a smart factory, but the collection of huge amounts of data requires
another technology, which is the analysis of high-volume data. With the help of analytical
tools—data mining or machine learning—this technology is one of the most important
elements of the entire concept of Industry 4.0 [41]. Other technologies related to the vision
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of a smart factory include autonomous robots, additive manufacturing, augmented reality,
and cybersecurity. Drastic changes in technology are changing the concept of production.
In the modern concept, traditional centrally controlled processes are replaced by decen-
tralised control, which builds on the ability of individual elements of a smart factory to
communicate with each other. In self-regulatory production, people, machines, equipment,
and products communicate with each other [42].

3. Materials and Methods

The paper is based on a review of the literature focusing on intelligent sensors, main-
tenance, and smart factories. As part of this review, we analysed, evaluated, and discussed
scientific publications from prestigious databases. This review focuses on combining three
concepts and creating a comprehensive overview of studies to find possible research gaps.
The literature review has shown that the current literature contains many reviews focusing
on particular topics only separately. This paper provides an overview of the contemporary
trends that will help structure and guide future research to fill this gap.

The scope of the paper is to review intelligent sensors and maintenance processes in
smart factories. As part of the research, we formulated the following research questions:

1. What are contemporary trends in maintenance processes in smart factories?

2. How are Smart and Intelligent Predictive Maintenance characterised?

3. Which Industry 4.0 technologies and intelligent sensors provide maintenance in smart
factories?

3.1. Research Design

The research procedure and strategy phases are described in Figure 3. First, we
defined research questions that helped with keyword selection. Then, we analysed these
keywords separately through burst detection analysis to reveal current research trends.
Data was collected from database sources, filtered, and extracted based on predefined
criteria. Further, we performed a content analysis and review of individual publications in
our research team. Based on the analyses, we presented results of the synthesis.

Research Keywords Burst Detection Collection of
Questions Selection Analysis publications

Filtering and

Extraction

Synthesis

Figure 3. Research design and procedure.

3.2. Keywords Selection

We used the modified Eligibility methodology [43] to prepare the research questions
and achieve the review’s scientific quality. The four parts of this methodology (Prob-
lem/context, Intervention, Comparison, Outcomes) create the PICO logic grid [44]. We do
not use the comparative part, and we have expanded the method into three main questions.
The question “how” is related to the context smart factory. The question “which” refers to
interventions via sensors that are drivers for bringing a change from the traditional concept
of maintenance. Finally, the question “what” focus on outcomes for maintenance. We used
software VOSviewer [45] for constructing keywords in the PICO logic grid (Table 1).
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Table 1. PICO (Problem/context, Intervention, Comparison, Outcomes) logic grid.

Context (How?) In:%ﬁ?ﬁ;‘;ns Outcomes (What?)
. . Predictive
Topic Smart Factory Intelligent sensors Maintenance
Intelligent Factory .
Synonyms Smart manufacturing Smart sensors Smart maintenance
Smart production In.telhgent
maintenance
System Internet of things Optimisation
Intelligent control Internet Management
Automation Wireless networks System
Neural networks Security Reliability
Simulation Network Diagnosis
Multi-agent systems Big Data Condition monitoring
Robotics Machine Learning Prognostics
Scheduling Management Machine learning
Sensors Cloud Computing Big Data
Keywords Artificial intelligence Energy Industry 4.0
P . Smart City (home, Preventive
attern recognition . .
grid) maintenance
Fuzzy control Cloud Performance
Internet Monitoring Prediction
Optimisation Privacy Classification
Software Activity recognition Risk
Expert systems Classification Fault diagnosis
Learning Cybgr-Physmal Identification
ystem
Mechatronics Blockchain Internet of Things
Data mining Deep Learning Facility management

3.3. Burst Detection Analysis

We examined research topics (smart factory, intelligent sensors, predictive mainte-

nance) separately in this phase. We collected the required data from the Web of Science
(WoS) and Scopus databases. Furthermore, we analysed the obtained publications concern-
ing their trend over time, keywords, and burst detection. Only the most relevant research
publications from the WoS database are analysed. The search strategy is shown in Table 2.

Table 2. Search strategy for burst detection analysis (1 December 2020).

Terms/Thesaurus

(“factory” OR “factories” OR “production” OR
“manufacture*”’) AND (“smart” OR “intelligent”)
(“sensor” OR “sensors”) AND (“smart” OR “intelligent”)
(“maintenance”) AND (“smart” OR “intelligent” OR
“predictive”)

Query TOPIC (1), TOPIC (2), TOPIC (3)

Searches

1. Smart factory/production
2. Intelligent sensors

3. Predictive maintenance

Burst detection analysis is based on the analysis of keywords in a certain period of
time [46]. Density of the frequency changes of keywords are determined for each monitored
period. This analysis helps to identify the main research trends and helps to predict the
future evolution of the literature. Burst analysis can be performed in the Sci2 Tool [47],
which offers a display of the results of temporal bar graph promotions. The number of
publications for burst analysis are presented in Table 3.
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Table 3. Results of topics searched for burst detection analysis (1 December 2020).
Topic Smart Intelligent/Smart Predictive/Smart
P Factory/Production Sensors Maintenance
Web of Science 26,764 53,368 13,994
Scopus 65,350 103,480 28,803

3.4. Collection of Publications for Review

The systematic search strategy (Table 4) combines various keywords and their syn-
onyms to find out quality peer-reviewed journals. In this phase, we searched the publica-
tion’s databases Web of Science and Scopus to combine all three main terms. Our goal was
to obtain publications that connect topics, smart factories, intelligent sensors, and mainte-
nance.

Table 4. Search strategy in the second phase (1 December 2020).

Searches Terms/Thesaurus

(“factory” OR “factories” OR “production” OR
“manufacture*”)

1. Smart factory/production

2. Intelligent sensors (“sensor” OR “sensors”)

3. Predictive maintenance (“maintenance”)

4. Smart/intelligent (“smart” OR “intelligent”)
Query 1 AND 2 AND 3 AND 4

We present the total number of publications found in Table 5. The result of the search
was 890 publications, which we further filtered based on the selected criteria.

Table 5. The number of papers from Web of Science (WoS) and Scopus bibliographic databases.

Article Other Total
WoS 102 148 250
Scopus 186 454 640

3.5. Data Extraction and Eligibility Criteria

Data extraction is based on the filtering criteria determining the selected publications
in more in-depth research. We filtered search results based on the criteria:

1. Not duplicated,

2. Published from January 2010 to December 2020,

3. Written in English,

4. Type of publication: journal paper (not review, white paper, book, short survey,
proceedings, conference paper, etc.) for higher quality of data,

5. Publications with completed information (authors, year, journal name, etc.).

Furthermore, an objective screening was performed based on the title and keywords.
To evaluate the eligibility, we analysed the title, keywords, and abstracts of publications.
For this purpose, we have defined criteria for exclusion. We evaluated the publications
at meetings of the research team. In case of discrepancies in the assessment of suitability
in the title, keywords, or abstract, we compared the opinions of team members and,
if necessary, performed a full-text analysis. To document the extraction process, we used
the flow diagram in Figure 4, which captures the entire review flow based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology [48]
and Quality of Reporting of Meta-Analyses (QUORUM) methodology [49] from search to
final selection. The PRISMA checklist is available in supplementary materials (Table S1).
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WoS (n=250) Scopus (n=640)
Articles (n = 102) Articles (n =186)
E Others (n = 148)Others (n = 454)
5 Records identified through
% database searching (n = 890)
&
&
=
Filtered records excluded (n=710)
e Duplicates (n=207)
e  Other language (n=23)
e Publication year (n=5)
Y e Publication type (n =428)
‘o) _
Records after filtering *  Not complete (n =47)
(n=180)
3
g
=
oo
Y Records excluded based
x on title, keywords (n = 82)
E ¢ Review or survey (n=18)
¥ —
[;“- Records screened based on ¢ Notarea(n=64)
title, keywords (n =98)
Records excluded, with abstract
criteria reasons (n = 38)
e Not review (n =6)
= Y o Not predictive (n =24)
E Records assessed for abstract e Not factory focus (n =4)
& eligibility (n = 60) i * Notarea(n=1)
0 ¢  Not maintenance (n=3)
—
v
Full-text articles included in »| Articles ex_ch}ded, with reason
qualitative synthesis (n = 50) * Missing full text (n=10)
~
~ »| Articles excluded, with reason
£l e .
= e  qualitative synthesis
= reasons (n = 24)
Studies included in synthesis
(meta-analysis) (n=26)

Figure 4. Flow diagram based on PRISMA [48] and QUORUM [49] flowchart.

The exclusion criteria are:

The paper is a review (paper is focused only on challenges or future perspectives).
The paper focused on maintenance, but not on “predictive” maintenance.

The paper does not discuss Industry 4.0 technologies.

The paper does not have a production/factory focus (for example, we eliminated
papers related to smart cities and smart homes, agriculture, logistics, etc.).

The paper has unavailable full text.

6.  The paper does not have a scientific structure (abstract, introduction, literature back-
ground, methodology, results, discussion, conclusion, references).

=L

o

3.6. Content Analysis and Synthesis

The results of search query publications were further subject to analysis and synthesis.
We performed the analysis in the Endnote software database and Microsoft Excel software,
which were used to evaluate various aspects of the monitored topics. Our research team
consisted of three members who participated in the evaluation and analysis of search
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results. This phase included evaluating the full texts of individual publications based on
the set research goals.
We focused mainly on:

The research method (case study, experiment, simulation)
Objectives of the articles

Used intelligent sensors and data

Industry 4.0 technologies for smart factories

Predictive maintenance processes characteristics

Smart and intelligent keywords domain

We used the clustering method during the analysis, which is part of the VOSviewer
software [45] and allows classification using keywords. Using VOSviewer, we performed a
co-occurrence analysis of keywords, which is based on clustering methods. Cluster analysis
enabled to find a number of paired keywords cited in the same publications. The results
of the cluster analysis clearly capture the knowledge structure of the research frontiers.
We evaluated the quality of publications included for the synthesis (final selection) thorough
review of individual team members. In particular, the ranking of journals, citations of
publications, and their possible biases were considered.

3.7. Excluded Studies

To avoid possible effects of bias, it is necessary to mention the most important publica-
tions, which were eliminated from the sample for qualitative synthesis reasons. Aheleroff
et al. [50] examined the application of smart IoT sensors in the fridge (smart homes focus).
Several publications are mainly focused on the logistic area [51], i.e., from the automotive in-
dustry [52-54] or the aviation industry [55,56]. We excluded from the analysis publications
focused on agriculture, which do not deal with smart factories” production processes. These
are publications using intelligent sensors in milling [57] and aquaponics [58]. The review
papers were eliminated from the final selection.

4. Results

The results are divided into three parts according to the research question: an overview
of the main topics, smart and intelligent predictive maintenance, and Industry 4.0 Tech-
nologies and Sensors for Smart Factory.

4.1. Main Topics and Trends Overview

7

First, we identified occurrences of the primary topics “smart factory/production,’
“intelligent/smart sensors,” and “predictive/smart maintenance” in the Web of Science
and Scopus databases. This part of the research related to the research question 1. All three
concepts are connected in the research area by engineering, supplemented by telecommuni-
cations and predictive maintenance by medicine, or intelligent sensors in computer science.
The total number of publications in the databases is shown in Figure 4.

The results shown in Figure 5 show an increase in the number of publications over time.
This increase has been apparent for smart factory publications since 2015 and intelligent
sensors since 2012. Further, we performed burst detection analysis in the researched areas
for Web of Science publications.
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0
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SN S DD =
[l oo O HOEO O H O OO s halshsl=hshashashashshal=hahalahahalhashalha)
Lo B B B B T R o T oL I o o o o Y o A S o I o B o B o I S o I o I S o B o
—#—Smart factory/production (WoS) —#—Smart factory/production (Scopus)
== Intelligent/smart sensors (WoS) —#—Intelligent/smart sensors (Scopus)
——Predictive/smart maintenance (WoS) —o—DPredictive/smart maintenance (Scopus)

Figure 5. The development of the total number of Scopus and Web of Science publications. Note: square on the line (Web of
Science), circle on the bold line (Scopus).

The burst detection analysis presents key terms for topics of intelligent sensors, smart
factory, and predictive maintenance (see Figures S1-S3 in Supplementary Materials). For a
better overview, we compare the results in three time periods (Figure 6), and then according
to the individual importance of key concepts (Figure 7). The importance of the terms was
expressed using the obtained burst weights. Based on these findings and analysis, we tried
to answer research question 1 responsibly.

( Main Topics w

Sensors Factory

INDUSTRY 4.0, 10T, GRID,
LEARNING, DEEP,
DIGITALIZATION,

BLOCKCHAIN, TWIN,
CYBER, SUSTAIN

IOT, LEARNING, DEEP,

THING, INTERNET, CITIES,

GRID, EDGE, BLOCKCHAIN,
WEARABLE

STRUCTURE, OPTIC, AGENT, MANUFACTURING,
CONTROL, FIBER, CONTROL, EXPERT,
o )N (o] Wee] Y, 1o I 11 = CONCURRENT,PROCESS,
PIEZOELECTRIC, ROBOT, WEB, HOLON, RFID,
VIBRATION, BEAM STRUCTURE

1990-2010

SENSOR, INTELLIGENT, INTELLIGENT, SYSTEM,
MATERIAL, PROCESS, KNOWLEDGE, PLAN,
NEURAL, ARRAY, SMART, SCHEDULE, CARD,
FUSION, CHEMICAL, FLEXIBLE, AUTOMATED,
COMPATIBILITY INTEGRATED, FACTORY

( Period of Time w

Figure 6. The summary of burst detection analysis for main topics. The results are divided into three
periods of time (1970-1990, 1990-2010, and 2010-2020). The terms in each period are sorted according
to the burst weights.
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SENSORS

beam, wearable, fog, grate
graphene, laminate, strenchable, element

composite, cities, piezoelectric,
robot, material, vibration

sensor, actuator
structure, optic, fiber

Internet control

edge
process

IoT
deep learning

blockchain

diagnostics, remain

analytics cyber, sustain, plan,

Big Data hysic, expert
Intelligent - !

Grid

MAINTENANCE

system

Industry 4.0
maintenance, predict, | digitalization, agent
program, machine manufacturing FACTORY

knowledge
driven
twin

factory, agriculture,
concurrent, climate,
convolutional, scheduling

acute, reliever, base, anomalies,
database, cardioversion,
features, formoterol

Figure 7. The top terms in analysed areas based on the burst detection. Note: The top ten used terms
are highlighted “bold” and top twenty terms are depicted “italic”.

Top cited papers from smart factory/production areas focus on using ion batteries
for smart grids [59,60] and nanomaterials” intelligent design [61]. The results show that
the most used terms in the paper titles are intelligent, Industry 4.0, and agent. Based on
Figure 5, we conclude that the oldest wave in smart factories is associated with classical
studies dealing with intelligent, flexible, and automation planning and scheduling of
manufacturing systems. This wave is the period 1970-1990, characterised by the burst
terms intelligent, system, knowledge, plan, and schedule. The second wave in 1990-2010
with the primary burst terms: agent, manufacturing, control, expert, and process, refers to
papers using holon, RFID, or web technologies in factories. Publications on manufacturing
control systems [62,63] were highly cited in this period. The current trend in smart factory
is related to implementing intelligent manufacturing [64]. In this contemporary wave,
burst terms Industry 4.0, digital twin, IoT, deep learning, digitalisation, smart grid, cyber,
and sustain dominate. These terms are well-known Industry 4.0 technologies and processes.
Top cited papers focused on operational planning of a smart grid [65], deep learning
in agriculture [66], and big data for the self-organised multiagent system in the smart
factory [67].

Top cited papers from smart/intelligent sensors were in areas related to the Internet of
Things [68], wireless sensor networks [69], and nanotechnology applications [70]. We found
that the important paper title terms are IoT, structure, and sensor in the burst analysis.
Figure 5 shows that the early history of intelligent sensors, 1970-1990, emphasised the
first application of sensors (burst terms sensor, intelligent, process). Later, in 1990-2010
came articles focused on the structure [71], optic, and control of sensors, and their usage
for robots. Some essential publications in this period focused on structural health monitor-
ing [72], piezoelectric laminate beam [73], and free vibration behaviour of the beam [74].
The most contemporary period from 2010 to 2020, similar to the smart factory/production,
covered the area of Industry 4.0 new technologies. In addition to the mentioned Internet
of Things [75], there is a significant representation of publications focused on wearable
sensor-based systems [76], deep learning [77], edge technology [78], graphene-based smart
materials, blockchain, smart city, and grid.

The last area focused on smart/predictive maintenance. After omitting medical and
ecological articles, the most cited publications focused on proportional-integral-derivative
(PID) control [79], monitoring, and fault diagnosis in production [80]. Based on the burst
analysis results, we found that the most important terms are maintenance, learning, and pre-
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dict. We identified three trend waves in area maintenance (Figure 5). In the first wave from
1970 to 1990, the publications dealt with predictive maintenance. In engineering and pro-
duction, maintenance is associated with predicting machines’ status [81] or deterioration
of processes [82]. In the second wave in 1990 to 2010, we found that the publications dealt
with burst terms program, diagnostics, intelligence, knowledge, and database. These pub-
lications focus, for example, on diagnostics, monitoring, or maintenance of intelligent
computer numerical control (CNC) machine tools [83] or power transformers [84]. The cur-
rent trend wave is characterised by Industry 4.0 technologies such as digital twins, deep
machine learning, IoT, big data analytics, blockchain, and digitisation for maintenance.
The most significant publications of this period focused on big data analytics in logistics
and supply chain management [85], maintenance strategy selection [86], vibration analy-
sis of rotating machinery, or cloud-enabled prognosis [87] for predictive maintenance in
production.

Based on the burst analysis detection, we conclude that in all three areas in the
last 10 years, the focus has been on the concept of Industry 4.0 and related technologies.
We arranged the keywords with the highest burst weights into three research areas in
Figure 7. The results show that the terms Internet of Things and deep learning have the
highest weight for all topics. The terms Big Data, grid, and intelligent are also common to
the area. From this finding, we can conclude that the current trend in the monitored areas
is related to the collecting of big data through intelligent sensors on IoT devices and their
evaluation using learning algorithms.

The internet, smart grid, and blockchain technology are important for sensors used
in maintenance. The use of sensors in smart factories lies mainly in the area of control,
with a focus on processes. The sensors, together with actuators, are used to collect data to
control and optimise conditions. Piezoelectric, optics, wearable, beam, graphene, and other
sensors’ features are used. A special area of sensors lies in robotics, which has experienced
rapid development in recent years. In the world’s most industrialised countries, such
as South Korea, Japan, Germany, and Sweden, there is the largest share of robots per
10,000 employees in factories [88]. Automation in smart factories requires new types
of sensors that have the ability to automatically calibrate and improve the functions of
IoT devices. The IoT is not aiming only at connect two machines with pre-programmed
functions. For IoT communication, it is important to connect embedded devices to the
Internet and communicate with each other [89]. It is an intelligent connection of various
products, devices, and facilities that provide a wide range of functions that evaluate certain
conditions. The interaction between systems brings new possibilities. The key elements are
miniature intelligent sensors [90]. Even though devices and systems were not originally
designed to share data, the Internet of Things can. Connecting smart sensors and gateways
to existing devices leads to data collection and analysis, understanding, and better decision
making [91].

Publications about smart factory/production are related to cyber-physical systems,
planning, scheduling, and sustaining them. Maintenance in smart factories relies on
Industry 4.0 technologies, digitisation, data-driven manufacturing, agent-based systems,
and digital twins. Predictive maintenance consists of programs for predicting, diagnosing,
and analysing future maintenance needs. Based on the rules, features, and conditions,
there are machines and devices controlled and repaired to maintain their life and future
sustainability. Information and data are collected and shared through databases.

4.2. Smart and Intelligent Predictive Maintenance

We performed a co-occurrence analysis based on original papers” keywords using
VOSviewer. This part of the analysis related to research question 2. The results show that
the keywords maintenance, optimisation, predictive maintenance, system, and big data
were most often used in publications. Publications were grouped based on keywords into
four clusters (Figure 8).
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Figure 8. Keywords of co-occurrence analysis.

e I4: Industry 4.0 for predictive maintenance in general (keywords: Industry 4.0,
Big Data, prognostics, optimisation, performance, predictive maintenance, system).

e  CbM: Smart manufacturing for condition-based maintenance (keywords: smart manu-
facturing, manufacture, condition-based maintenance).

e  SFD: Condition, state, and fault diagnosis for maintenance (keywords: maintenance,
condition monitoring, fault diagnosis).

e  RUL: Prognostics and health management for RUL (keywords: prognostics and health
management, signal processing, remaining useful lives).

The first cluster consists of publications that focus on intelligent sensors in smart
maintenance factories without preferring specific methods. This cluster is represented, for
example, by publications focused on data-driven simulation [92], big data in an Industry 4.0
environment [93], or performing predictive maintenance in a bottling plant [94]. The sec-
ond cluster consists mainly of publications that emphasise the use of condition-based
maintenance. The intelligent condition-based maintenance uses data fusion [95] and the
Internet of Things in connection to learning techniques [96]. The third cluster related to
publications mainly emphasised fault diagnosis’ importance for monitoring and mainte-
nance. The fault diagnosis is used for prognosis in signal processing [97] and maintenance
management systems [98]. The last cluster is characterised by a focus on determining the
current health and the remaining life of devices and machines. This concept is described
concerning edge-cloud platforms [99].

While the concept of condition monitoring has been around for some time, the market
for more sophisticated predictive maintenance products is still very young. There are four
types of maintenance classified in the literature: corrective, scheduled, condition-based,
and statistical-based maintenance [100,101]. Predictive maintenance has evolved from
corrective maintenance using new technologies and procedures for predicting and prevent-
ing failure. Corrective maintenance is based on the reactive strategy to the maintenance
process—however, with a proactive strategy related to the preventive or opportunistic
approach. Preventive maintenance is then seen as condition-based, dynamic predictive,
or scheduled (periodic) maintenance. The corrective maintenance is based on the repair or
replacement of assets ex-post. Condition-based maintenance means the decision-making
process, usually in real-time, based on selected indicators computed from the gathered
data.
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Table 6 depicts maintenance process characteristics from analysed papers. The condition-
based preventive maintenance is discussed in Farooq et al. [38], Kumar et al. [102], Li et al. [96],
Lin et al. [103], Musselman and Djurdjanovic [104], Yan et al. [93], and Sadiki et al. [105].
Preventive maintenance is regular maintenance of machines, devices, and equipment to
prevent their downtime concerning failure state. The preventive maintenance actions were
classified by Doostparast et al. [106] as inspection, low-level repair, and replacement. These
actions are based on fault prediction time statistically, upon failure accident, time-based (at the
age for old machines), or cycle-based (periodically).

4.3. Industry 4.0 Technologies and Sensors for Smart Factory

Furthermore, full texts of articles concerning Industry 4.0 technologies were analysed.
We performed a cluster analysis of the obtained keywords of Industry 4.0 technologies. The
results of the analysis are shown in Figure 9. The most common keywords in the articles
were sensor, big data, Internet of Things, machine learning, and cloud. Through cluster
analysis, we found three clusters:

A: Intelligent sensors (keywords: sensor, actuator, intelligence, automation).
B: Cloud-related technologies (keywords: cloud, cloud computing, Big Data, RFID,
edge, PLC (programmable logic controller), 3D printer).

e C:Internet of Things technologies (keywords: Internet of Things, SCADA (Supervi-
sory Control and Data Acquisition), CPS (cyber-physical system), machine learning,
artificial intelligence, management, challenge).

management
challenges

artifical imtelligence
machinglearning

industrial intggnet of things
cps system

intelligence

@ interne@@f things S%OI’

automation

actuator

bi g&ata

ple clgud fid

cloud c@pUting 34 pinter
edge

Figure 9. Analysis of keywords related to Industry 4.0 technologies.
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Table 6. Maintenance process characteristics *.

Authors

Maintenance Characteristics

Type

Al-Jlibawi et al. [107]

The estimation of octane number in the gasoline formed by
refineries is presented. This type of virtual instrument was
designed with the aim of replacing measuring hardware during
maintenance tasks. The results of proposed soft sensor
mathematical model will compare with laboratory results for
product quality purposes and the errors between predictive results
and actual results will be feedback to improve the control system
performance in particular and manufacturing systems in general.

14

Barbieri et al. [99]

Manufacturers can take advantage of this methodology to
integrate autonomous maintenance policies as features in their
machines, keeping their expertise with standard automation
platforms.

RUL

Bekar et al. [108]

The analysis resulted in dimension reduction of feature space and
also clustering of data points for understanding of the outliers in
anomaly clusters by incorporating maintenance domain
knowledge. These knowledge discovery methods using
unsupervised ML should be the first step within predictive
maintenance implementations.

14

Farooq et al. [38]

We established a genetic algorithm (GA) based on multi-sensor
performance assessment and prediction procedure for the
spinning system. We have successfully adopted a GA-based
prediction process for our spinning system, which worked as an
intelligent maintenance and scheduling system for health
assessment.

CbM

Goodall et al. [92]

The adaptive remanufacturing simulation is based upon a generic
view of material flow in remanufacturing operations where a core
can be in one of two states: waiting or processing.

14
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Table 6. Cont.

Authors

Maintenance Characteristics

Type

Chien and Chen [109]

This study developed an effective approach that integrated
partial least square and exponentially weighted moving
averages approaches for tool health status monitoring and
prediction to effectively derive the optimal maintenance
strategies via transforming and analysing big data collected
from the sensors, including the SVID data and FDC (fault
detection and classification) parameters.

RUL

Kiangala and Wang [94]

An effective predictive maintenance strategy for a conveyor
motor based on Industry 4.0 concepts was proposed. In the
proposed strategy, we have rigorously analysed real-time
vibration speed data collected from a vibration sensor
mounted on the conveyor motor and connected to a Siemens
57-1200 PLC.

SFD

Kozlowski et al. [110]

The proposed method has been verified using data from a
CNC machine monitoring system. The objective of RUL
(Remaining Useful Life) classification and prediction was to
prevent the manufacturing of details that fall short of quality
requirements when the process is performed with the use of a
blunt tool.

RUL

Kumar et al. [102]

In the context of condition-based maintenance, the proposed
framework allows us to overcome the tedious and often
impossible task of “labelling” dataset health-states, and hence,
improves autonomy of techniques for diagnostics.

RUL

Lao etal. [111]

In this work, handling scheduled preventive sensor
maintenance via the Lyapunov-based economic model
predictive control(EMPC) system design is considered. A
robust moving horizon estimation (RMHE) scheme is
developed that accommodates a varying number of sensors to
continuously supply accurate state estimates to an EMPC
(economic model predictive control) system.

SFD
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Table 6. Cont.

Authors

Maintenance Characteristics

Type

Li et al. [96]

The proposed DAMSID (Deep Adaboost Machine Learning
assisted Sampling Design) offers a team training technique
based on classifiers offline to tackle by CBM with floats of
ideas and information on irregularities, which represents the
specific segments (linear four rates and classifier of nominal
and continuous) to be strengthened by modifying the
following conditions.

CbM

Lin et al. [103]

This work proposes an ensemble learning algorithm using
DAMSID that supports the use of classifiers to cope with
three-stage CBM with concept drifts and imbalance data.

CbM

Musselman and Djurdjanovic [104]

Experiments were run to establish the tension estimation
variance when a human completely executed the manual
technique (standard approach) and the tension estimation
variance when the newly designed contact-based device was
used for belt excitation and signal collection.

CbM

Park et al. [112]

In this study, the lifespan of the servo motor was estimated
through accelerated degradation testing methods based on a
new system degradation assessment method, which estimates
the fault of the system using observer-based residuals with
encoder data obtained from internal instrumentation, and the
importance of the maintenance for machineries within
manufacturing sites.

SFD

Peng et al. [113]

As a result, in the pursuit of the so-called smart factory and the
enhancement of the production process, as well as attenuation
of numerous human maintenance efforts, a graphical
histogram algorithm (GHA) health condition diagnosis and
monitoring strategy is proposed.

SFD

Peng and Tsan [98]

With these applications, unscheduled shut down for
inspection can be avoided, and preventive maintenance can be
deployed when the online sensor is identified as faulty.

SFD
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Table 6. Cont.

Authors

Maintenance Characteristics

Type

Sadiki et al. [105]

We evaluated our developed wireless sensor network
application in the context of maintenance monitoring on
realistic networks using the Instant Contiki operational system
environment. We used Cooja simulator to investigate the
robustness of our system in a scenario where nodes (sensors)
will collect data on a real-time basis and transmit to the central
node.

CbM

Shan et al. [114]

Preventive maintenance of intelligent manufacturing
equipment is carried out to reduce the failure rate of intelligent
manufacturing equipment and promote the development of
the new generation of intelligent manufacturing systems.

14

Tarashioon et al. [115]

System checks if it is capable of doing self-maintenance,
otherwise it will request maintenance from operators (human
maintenance instead of system self-maintenance).

RUL

Tsao et al. [116]

This study incorporates Industry 4.0, which considers
predictive maintenance, into the imperfect production systems
into economic production quantity (EPQ) models. The
predictive maintenances could be implemented by using
sensors and data analysis, which maintain production systems
before they become ‘out of control’.

SFD

Uhlmann et al. [117]

This presented solution can be used to monitor production
systems and their wear-susceptible and critical components
such as ball screw and bearings. This solution is to realise, due
to decentral data processing on the sensor nodes, the
concentration of data and services in the cloud. Mobile
provision of data and merging varied distributed sensors into
a sensor network.

14

Villalobos et al. [118]

Alarms can allow the operators in the plant to conduct
proactive management of the different controls in the machine
for predictive maintenance of the equipment.

CbM
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Authors

Maintenance Characteristics

Type

Vlasov et al. [119]

Model for optimising predictive maintenance of equipment
using wireless sensor networks based on minimising the costs
of maintenance, diagnostics, and deployment of the
equipment.

Monitoring system is proposed. The presented concept of a
system of predictive maintenance based on sensor networks
allows real-time analysis of the state of equipment.

SFD

Yan et al. [120]

The findings of this paper indicated that multisource
heterogeneous data can provide new solutions for predictive
maintenance, scheduling, and machining process optimisation
for energy saving.

RUL

Zhang et al. [121]

As a key component of mechanical systems, rotatory machine
has significant influence upon the whole system, and the
degradation of rotatory machine may lead to deadly industrial
accidents. Therefore, prognostics and health management
(PHM) technology is highly desired to reduce maintenance
costs and improve system reliability and safety.

RUL

Zhang et al. [122]

Based on the prediction of energy consumption, it is possible
to provide proactive maintenance on equipment with
malfunction and potential failure.

14

* Acronyms: 14 (Industry 4.0 for predictive maintenance in general), CbM (Smart manufacturing for condition-based maintenance), SFD (Condition, state, and fault diagnosis for maintenance, RUL (Prognostics

and health management for remaining useful life).
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Table 7 presents the results of classification of researched papers according to belong-
ing to the clusters. The intelligent cluster sensors mainly focused on sensors in general.
Kumar et al. [102] analysed remaining useful life (RUL) of cutting machines by a poly-
nomial regression method. Musselman and Djurdjanovic [104] analysed production belt
for automation of material handling in the semiconductor industry. The second cluster is
focused on Cloud-related technologies. It means that sensors based on RFID [92] and pro-
grammable logic controller [107] are used for cloud or edge computing [99] and analysis of
big data [109]. The third cluster concerned the IoT technologies based on CPS systems [38],
SCADA [94], and data for deep and machine learning.

Table 7. Classification of Industry 4.0 technologies based on obtained keywords’ co-occurrences.

A: Intelligent Sensors

Kumar et al. [102], Lao et al. [111], Park et al. [112],

Sensor/Actuator Peng et al. [113], Peng and Tsan [98], Tarashioon
etal. [115], Tsao et al. [116]
Automation Musselman and Djurdjanovic [104]

B: Cloud-related Technologies
Kiangala and Wang [94], Uhlmann et al. [117],

Cloud Vlasov et al. [119]
Cloud/edge computing Barbieri et al. [99], Yan et al. [120], Zhang et al. [122]
Barbieri et al. [99], Kozlowski et al. [110], Chien and
Big Data Chen [109], Villalobos et al. [118], Yan et al. [120],
Zhang et al. [122]
RFID Goodall et al. [92], Sadiki et al. [105], Vlasov et al.
[119], Zhang et al. [122]
PLC Al-Jlibawi et al. [107], Barbieri et al. [99], Kiangala
and Wang [94]
C: Internet of Things Technologies
Farooq et al. [38], Li et al. [96], Lin et al. [103], Sadiki
Internet of Things et al. [105], Shan et al. [114], Uhlmann et al. [117],
Vlasov et al. [119]
CPS system Farooq et al. [38]
Farooq et al. [38], Al-Jlibawi et al. [107], Kiangala
SCADA and Wang [94]
Machine learning Zhang et al. [121]
Artificial Intelligence Bekar et al. [108]

The different sensors’ data are used for prediction and diagnostics of devices, ma-
chines, facilities, and equipment. The results in Table 8 show that data are usually collected
from SCADA systems, PLCs, CNC machine sensors, IoT devices, or other special sensors.
Analysed papers mostly used case study and experimental research methods.
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Table 8. Methods and sensors’ data.

Authors Method Data Source
. . . . DCS (distributed control systems), PLC,
Al-Jlibawi et al. [107] simulation or SCADA in refinery
. Alternating current (AC) motor
Barbieri et al. [99] case study (machinery), Pronistia dataset
Bekar et al. [108] case study Machine motor
SCADA in spinning factory, spinning
Farooq et al. [38] case study frame JWF1562
Goodall et al. [92] simulation RFID in remanufacturing facility
health status of plasma enhanced
chemical vapor deposition (PECVD)
Chien and Chen [109] case study chamber tool in TFT(thin film
transistor) and LCD (liquid crystal
display) company
Kiangala and Wang [94] experiment SCADA, conveyor motors
CNC cutter machine sensors for milling
Kozlowski et al. [110] case study of thin-walled aircraft engine
components
Kumar et al. [102] case study CNC machine sensors
Laoetal. [111] simulation chemical product concen.tratlon and
temperature profiles
Li et al. [96] experiment test data from IoT devices and detectors
Lin et al. [103] experiment test data from IoT in smart factory
automated storage/retrieval systems
Musselman and . . . - .
A . experiment (belt-driven material handling device)
Djurdjanovic [104] . . .
in semiconductor industry
Park et al. [112] experiment servo motor testing data in smart
factory
NI-PXI (PCI extensions for
Peng et al. [113] experiment mstrur;ngr}tatlon) and NI_C.O mpact d.ata
acquisition from production lines in
China Steel Corporation
Peng and Tsan [98] experiment production line machines
Sadiki et al. [105] case study industrial machine behaviour
Shan et al. [114] simulation welding robot in automotive
production line
Tarashioon et al. [115] experiment LED (light-emitting led.e) lighting
system technologies
Tsao et al. [116] simulation production sys’;?;r;sand production
Uhlmann et al. [117] experiment ball and screw rrlcgr(l)lltsormg of machine
melting and extruder machines in
Villalobos et al. [118] case study plastic bottles production plant (Capital
Equipment Manufacturer)
the supporting bearing of electric
Vlasov et al. [119] case study machines (AC motors)
vibration signal from the cutter (CNC
machine), images captured by a 3D
Yan et al. [120] case study laser scanner, acoustical signal collected
by sound sensors, and power data
obtained from power meters
. vibration data were collected by the
Zhang etal. [121] experiment bearing testbed (rotatory machine)
Zhang et al. [122] case study LED epoxy moulding compound

production line

If we focus closely on individual types of sensors used for predictive maintenance,
we will find a number of them, and we can categorize them according to the method of
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detection of the desired variable. The types and descriptions of sensors used in publications
are shown in Table 9. Furthermore, the sensors are elaborated in more details. Vibration
and temperature sensors were most often used for predictive maintenance.

Table 9. Sensors’ characteristics.

Authors Sensor Type Sensor Description
Al-Jlibawi et al. [107] virtual software sensor
Barbieri et al. [99] vibration B&R X20CM4800X, Beckhoff

Bekar et al. [108]
Farooq et al. [38]
Goodall et al. [92]

Chien and Chen [109]

Kiangala and Wang [94]

Kozlowski et al. [110]

Kumar et al. [102]

Laoetal. [111]

Liet al. [96]
Lin et al. [103]
Musselman and
Djurdjanovic [104]

Park et al. [112]

Peng et al. [113]
Peng and Tsan [98]

Sadiki et al. [105]

Shan et al. [114]
Tarashioon et al. [115]
Tsao et al. [116]

Uhlmann et al. [117]

Villalobos et al. [118]
Vlasov et al. [119]
Yan et al. [120]

Zhang et al. [121]
Zhang et al. [122]

temperature, vibration
speed, vibration
position tracking

multiple (temperature,
pressure, flow, position,
power)

vibration

torque

torque, force

multiple (flow,
temperature, volatility,
energy, volume, gas,
chemical)
not available
not available
multiple (location, acoustic,
tension)
multiple (torque,
temperature, position)

accelerometer

accelerometer

multiple (temperature,
vibration)

movement
light, temperature
not available

vibration, temperature

temperature, pressure,
speed
vibration
multiple (vibration, optical,
acoustical, power)
vibration
energy

EL3632
not available
not available
RFID for traceability
Silane (SiH4) flow sensor, radio
frequency plasma generation
sensor, peak-to-peak voltage radio
frequency sensors
SiemensS7-1200 PLC, vibration
sensor (4-20 mA analogue input,
www.ifm.com/gb/octavis, accessed
on 19 February 2021.)
three-axis sensor for torque signals,
chuck-mounted sensor
Kistler 9257B piezodynamometer
(sampled at 250 Hz)

sensors and actuators in chemical
process

not available
not available

not available

not available

Integrated Electronics Piezo-Electric
(IEPE) sensor
IEPE sensor
Tmote sky (wireless sensors
module) and Z1 mote (ADXL345
accelerometer and TMP102
temperature sensor)
not available
LED sensors architecture
not available
Micro-Electro-Mechanical System
(MEMS) of vibration sensors
(LIS3DH)

not available

vibration sensors network
3D scanner (Microscope OLS3000),
power meters type CW240
bearing testbed
smart meter (Schneider PM5350)

4.3.1. Motion, Position, Proximity, and Speed Sensors

The first type of sensors are motion-based probes. Position and movement sensors
are mounted for monitoring the machine or product position on the production lines.
Inductive, photoelectric, potentiometric (resistance-based), capacitive, optical, magnetic,
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and other sensing methods are used for detection of position. Sensors based on motion
detection must meet the requirements in the areas of durability, weight, energy consump-
tion, and at the same time, suitability for mass production regarding to the end user—
customer [123,124]. Shoabid [125] describes motion-based sensors as a combination of
an accelerometer, gyroscope, magnetometer, and linear acceleration. The application of
these sensors can be found primarily in the field of healthcare systems, with various com-
binations of the above-mentioned sensors. A gyroscope is used mainly for gait analysis,
fall detection, or gesture recognition, or in combination with an accelerometer. Proximity
sensors detect the presence of an object without contact. These sensors are based on the
optical, ultrasonic, inductive, and capacitive nature. Wearable sensors are able to monitor,
for example, physiological parameters in real time.

Speed sensors have an opportunity for detecting object speed (usually for wheels,
motor, or rotating particles). Enterprises use speedometers, accelerometers, light detec-
tion and ranging (LIDAR) sensors, tachometers, Doppler radars, etc. Farooq et al. [38]
discussed genetic-algorithm-based prediction process for intelligent maintenance of textile
spinning systems. They used vibration and speed data in a multiagent system for tracking
discrepancies and error distribution of machine processing. Integrated Electronics Piezo-
Electric accelerometers have been frequently used for machine vibration measurement.
Peng et al. [113] use them for an automatic health condition diagnosis without field worker
maintenance effort. The results show that dynamic response signals from the accelerometer
increased the completeness and performance of the vibration diagnosis function. Further,
Peng and Tsan [98] developed a sensor diagnosis and monitoring system to classify the
health condition of the online integrated IEPE accelerometer. The solution was integrated
into a production line.

Goodall et al. [92] developed, based on the RFID, a data-driven simulation for con-
trolling work-in-process parts in a remanufacturing process and determining the time for
operators to process them [104]. Park et al. [112] performed experiments on servo motor
lifespan using an accelerated degradation testing method based on thermal stresses. The ex-
perimental data are used sensors for monitoring the torque, position, electrical resistance,
and moment of inertia of rotor. Shan et al. [114] presented the system architecture and
hardware for the welding line, which provides the real-time fine-grained visualisation of
the welding robot operation status. The electrocardiogram of intelligent manufacturing
equipment technology provides the maintenance of intelligent manufacturing equipment.

4.3.2. Vibration and Torque Sensors

Vibration sensors are used for monitoring the acceleration machine vibration, indicat-
ing a potential machine issue. Some sensors have modern fast Fourier transform signal
processing to detect failures in machine components. Vibration sensors are the core of
preventive maintenance and provide the condition of the device determination.

Barbieri et al. [99] proposed autonomous health management prognostics for smart
manufacturing via on-board sensors. Kiangala and Wang [94] integrated a practical use of
intelligent sensors in a small bottling plant. Predictive maintenance is used for detecting
early faults and failures in conveyor motors. Uhlmann et al. [117] developed a smart sensor
network for condition monitoring in factories. Collected data from MEMS sensors are
processed in the cloud services and visualised on the mobile platform.

Torsion (torque, rotational) sensors convert a torque reaction and rotary into electrical
signal. These sensors measure stationary or dynamic variables, usually in motors, turbines,
or generators. Kozlowski et al. [110] used a torque sensor for designing a classifier for
cutting tool condition assessment in RUL prediction. Kumar et al. [102] evaluated and
estimated RUL for particular failures in distinct health states and faults. Vlasov et al. [119]
used wireless vibration sensor networks that allow real-time analysis of the state of the
electronic equipment (motor). The purpose of their approach is to minimize the cost of
maintenance and develop a system of predictive maintenance for optimisation predictive
repair. Zhang et al. [121] used vibration sensors for accurate prediction of the remaining
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useful life of the rotatory machines. Deep learning model combined a long short-term
memory neural network with an attention mechanism for maintenance in mechanical
manufacturing.

4.3.3. Acoustical, Sound, and Ultrasonic Sensors

Another group of sensors are sensors focused on sound detection, usually via mi-
crophone devices. When a signal is detected by a sound sensor, the level of voltage is
translated to the appropriate sound level. Kaptan [126] describes the location of city buses
using sound sensors and an accelerometer instead of the standard global positioning system
(GPS) location. In such a scenario, the accelerometers detect the movement of the vehicle
and the microphone sensing distinguishes the sound level inside and outside the vehicle.
Compared to GPS location, energy savings of up to 46% occur. Another possible usage of
acoustic sensors is described by Ryu [127] in the field of material detection. Using machine
learning techniques, sound sensors are able to estimate relevant information such as the
character of an object and its location. Ultrasonic sensors are non-contact devices using
the flight of the sound wave greater than that of the human audible range. Similarly, as
with sonar, the measurement is based on the Doppler Shift principle. Yan et al. [120] con-
ducted fusion data mining to predict the remaining life of a key component of machining
equipment by multisource sensors (acoustical, vibration, optical, or power).

4.3.4. Pressure, Force, Touch, and Tension Sensors

Pressure sensors identify the pressure deviations in the measurement objects or envi-
ronment. The change detection is usually based on barometric, piezoelectric, capacitive,
optical, or resonant sensing principles. Examples of these types of sensors are Bourdon
tubes, diaphragms, pressure gauge, or manometers. Tension sensors help with the defor-
mation and movement of the belt automated material handling system monitoring for
intelligent condition-based maintenance [104].

Force sensors monitor tensile compressive force signal and translate it into an output
electric signal. Their application includes lead cells, strain gauges, or sensing resistors.
Very popular are piezoelectric and magnetostrictive technologies. Another way of sensing
is based on induction, pneumatic, and hydraulic forces.

4.3.5. Optical, Light, and Machine Vision Sensors

Another type of sensors are sensors with a machine vision function. Machine vision
technology has grown significantly in recent years and is becoming part of autonomous
vehicles, intelligent systems, and robotics. Optical sensor input into the systems makes
these systems intelligent. Visual data are captured in the form of a series of images and
after the digitisation process are processed using a machine learning algorithm [128,129].
In the field of material wear detection, three-dimensional (3D) sensors are also used, which
represent new technical means for obtaining information. Three-dimensional data provides
more information and at the same time, reduces the deviation of the measured data [130].
A large group of sensors consists of chemical character sensors. Advances in chemical,
sensing, and wireless technologies have accelerated the development of wireless chemical
sensors. These devices allow the collection and distribution of biochemical information.
The use of these types of sensors can be found in the areas of environmental or health
monitoring [131,132].

Tarashioon et al. [115] described the design of solid-state lighting products based
on the reliability system diagnostics (self-maintenance). The light sensor design using
light-emitting diode technology is used to monitor system ambient light.

4.3.6. Temperature Sensors

Temperature sensors usually detect changes in machine condition or critical state
in the factory (especially in hazardous environments.). The sensors obtain temperature
information directly (resistive temperature detectors, thermistors, and thermocouples) or
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indirectly (infrared sensors). Some of these sensors have a temperature display. Infrared
(IR) sensors work on the basis of the optical principle using light. We distinguish reflective
and transmissive IR sensors. Reflective IR sensors’ transmitter and detector are positioned
adjacent to each other facing the object. Transmissive sensors use LED and photo diodes to
detect the object passing between them.

Another group of sensors consists of probes measuring temperature and humidity.
Advances in biomaterials offer opportunities to design electronics with unique mechanical
stability capabilities, i.e., sensors whose material composition offers the possibility of
application in medical implants and disposable wearable devices. Suitable applications
can be found in the accurate scanning of biological tissues, internal organs, but also in the
textile and food industry [133].

Bekar et al. [108] analysed the real-world industrial data to implement the PdM
strategy for the manufacturing enterprise. They evaluated the quality of the process,
vibration and temperature data by understanding outliers, and developed maintenance
solutions. Sadiki et al. [105] show the advantages of condition-based maintenance for real-
time intelligent monitoring for the industrial machine. Tmote sky sensors network and Z1
mote operate through the edge router and enhance the maintenance simulation’s purpose.
Villalobos et al. [118] introduced a flexible forecaster analyser system for anticipation of
alarms’ activation based on the temperature sensor data. The deep learning techniques
based on the short-term memory recurrent neural network contribute to the predictive
maintenance approach.

4.3.7. Liquid, Flow, Gas, and Chemical Sensors

Flow sensors enable the possibility to analyse the cooling water and lubrication flow
rate. These sensors use magnetic, ultrasonic, or thermal detectors to monitor the current
intensity in the pipeline. Chien and Chen [109] used mass flow controllers for monitoring
mode and position of silane reactant flow. Their research is related to a data-driven
framework for monitoring equipment’s health condition (RUL).

Oil particle sensors enable the possibility of monitoring contamination levels in lu-
brication systems (for example, gear boxes). These sensors target to change the level of
pollution based on the presence of the number of substances processed. They analysed the
light intensity via a laser beam and photo detector.

Humidity (moisture) sensors focused diagnostics on water content in oils to prevent
corrosion of machines. These sensors are usually installed in a lubrication or hydraulic tank.
Humidity sensors play an essential role in the selected automated manufacturing processes.
To achieve the desired atmosphere, it is necessary to detect, monitor, and regulate humidity
in conditions of low and high temperatures. The use of sensors for moisture detection can
be found, for example, in monitoring systems and networks, as a monitoring device in
agriculture, and as a tool for determining soil moisture during irrigation. Furthermore,
also in the field of corrosion diagnostics in the areas of infrastructure and construction.
The key element in this type of sensor is the materials used and the associated availability
of suitable production technologies [134].

4.3.8. Electronic, Current, Energy, and Magnetic Sensors

Energy and current measurement sensors ensure the density of electrical cable isola-
tion. Their purpose is to measure the current draw of machines. These sensors have been
used in many industrial areas but have had shortcomings regarding demands in the areas
of miniaturisation, energy consumption, and insufficient stability. At present, optical fibres
and magnetic fluids are widely used, due to their versatility of application [135]. In the case
of electronic sensors, these can be, for example, gas sensors that are capable of performing
sensitive analysis in real time, thanks to their flexibility and the possibility of integration
with intelligent electronics and mechanical resistance in relation to energy consumption,
and respectively, the performance of electronic components. However, balancing these
variables offers applications not only in the above areas, but also in aviation, aerospace,
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and nuclear industry [136] display devices, and there is considerable potential in the area
of environmental monitoring [137]. Zhang et al. [122] described a data-driven smart pro-
duction line with installed energy consumption sensors for forecast and fault diagnosis of
maintenance.

4.3.9. Virtual Sensors

Virtual sensors are advanced applications in the software layer of the machine that
enhance the knowledge of the devices. These state-of-the-art sensors obtained data not
only from physical machines (for example robots), but also the knowledge bases [138].
Al-Jlibawi et al. [107] call them adaptive soft sensors due to their low cost, parallel work,
robust characteristics, easy implementation, and real-time estimation features. They used
PLC and SCADA for collecting data in the refinery via a distribution control system.

4.3.10. Nuclear, Chemical, Microparticles, and Nanoparticles Sensors

The last category consists of sensors that are based on modern technologies using
chemical processes. These are sensors based on nanoparticles and microparticles, which
enable monitoring directly inside the monitored object. Lao et al. [111] present a robust
moving horizon estimation of sensor maintenance based on the observation and monitoring
of chemical processes. Comparison of four simulations demonstrates the economic perfor-
mance advantages of sensor-predictive maintenance. Jia et al. [139] described the design
of the nanosensors for detection of antibiotics to prevent the production of resistance to
antibiotics. Nanomaterial chemistry is used for developing current arsenic detection nanos-
tructures [140]. The main advantages of nanomaterials are the high flexibility, sensitivity,
compatibility, and stretchability of sensors in electronics devices [141].

5. Discussion

The discussion is divided into two parts. First, we discuss the sensor-based smart
factory to imagine the factories of the future. Then, in the second part, we focus on insights
and future research issues related to intelligent sensors.

5.1. Sensor-Based Smart Factory Discussion

The essence of the use of intelligent sensors based on IoT lies in smart factories,
which have modern sensor technology, intelligent analytical programs, and networking
components of production (machines, supplies, components, final products, equipment,
etc.). Smart factories are a new way of organizing production. Their goal is to better serve
customers through greater production flexibility and resource optimisation. The factories of
the future combine the efficiency of mass production with custom production and optimize
the supply chain in real-time thanks to the Internet connection [142]. These factories handle
fluctuations in demand, which are fully automated and fault-durable. The smart factory
is connected to the Internet, however it has advanced security against cyberattacks that
would jeopardize production.

We summarised the intelligent sensor advantages in Figure 10 based on Reference [143].
Sensitivity is defined as the relation unit change between output and input. Smart sensors
such as IoT devices are wireless, using the internet and usually cloud. Intelligent sensors
have low power consumption, automatic diagnostics, calibration, and the ability to process
and share data in real-time. Robust means good durable material, solid welds, seals, pot-
ting, chemical compatibility, secured wires, and other situational protection. Automatic
diagnostics are related to the possibility for making decisions or proceeding action-based
actions for control. Some authors emphasise low cost as a feature for smart sensors, but we
think that it depends on user experience and sensor value added.
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Figure 10. Main characteristics of intelligent sensors.

The transformation of a traditional factory into a smart one brings with it a higher
integration of physical production with digital technologies. Sensors and actuators bring
factory communication capabilities and data collection and analysis capabilities [144].
The intelligent factory brings a change from traditional automation to a fully connected
and flexible system that can use a continuous flow of data from connecting operations and
production systems to learn and adapt to new requirements. The production system in
smart factory is different—with more resources for small-lot products, dynamic routing
of production line, comprehensive connections with high-speed network infrastructure,
deep convergence of physical and digital world (digital twins), self-organisation control
system, and big data analytics [64]. A flexible conveying system of the production lines
is designed for the main production loops (cycles), with storage loops on the production
line and branch loops for customizing products. The smart factory can integrate data
from corporate assets to manage production, maintenance, inventory tracking, digitize
operations through the digital twin, and other technologies. In the enterprise infrastructure,
smart logistics, smart grids, smart buildings, and smart distribution are interconnected.
Project management is important for the successful implementation and sustainability of
these systems in smart factories [145].

Due to the frequent occurrence of extraordinary situations caused mainly by external
elements, there is a need to deploy more demanding control systems. Management in
smart factories is decentralised. Decentralisations can offer the ability to make decisions
at process locations, independent of any central entity [146]. The complexity of these
environments with many simultaneous processes, most of which follow each other, as well
as the enormous amount of data that sensors generate in production, can no longer be
served by existing control systems based on the simple technology of recording or pro-
cessing transactions. Therefore, multi-agent systems come to the light, where intelligent
information agents form a network of decentralised and distributed intelligence [147,148].
Beside the existing solutions, these systems are not based on centralised control but are
capable of collective self-configuration. These systems interconnect individual autonomous
agents (or their digital twins) to communicate, coordinate, and cooperate to achieve a set
common goal. Individual communication elements collect data as needed, which they later
use to improve and optimize production.

In smart factories, thanks to intelligent sensors, each product actively participates in
the production process. The components to be processed contain digital information on
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how to process them. They, therefore, communicate directly with robots and production
machines. With the help of a chip with radio frequency identification or other sensor
technology, it can control its production flow. A smart product has access to knowledge
related to its structure, composition, or purpose [149]. On the other hand, thanks to this
connection, the customer uses the user interface and intervenes in production in real-time.
The sensors allow the customer to obtain information for creating the product specification,
and its adjustment according to needs and requirements [150]. Autonomous vehicles
powered by electricity are also connected to the system, ensuring the transport of stock and
final products around the factory. Vehicle control is provided by a sophisticated system of
sensors. Parts, materials, and components needed for production are transported to the
factory when they are really needed for production (Just-in-Time system). Sensors and
possibly drones constantly check stock in a smart factory [151].

We performed profound words’ analysis of full-text papers to find phrases containing
the terms “smart” or “intelligent”. Figure 11 shows that the obtained keywords form vari-
ous clusters and subclusters related to the predictive maintenance process. We identified
four main components of the Smart and Intelligent Predictive Maintenance (SIPM) system
for smart factories based on cluster analysis. These are the production system, the moni-
toring system, the factory planning system, and the maintenance system. The production
system of SIPM is based on energy saving control, transportation, and economics costs,
with use of controllers for predictive maintenance based on data analysis, and equipment
diagnostics. The monitoring system uses condition-based diagnostics, sensors network
linking management, and production—the factory planning system concerning different
components of objects and agents by using algorithms and meters. The maintenance
system is related to using analysis and diagnostics sensor data for predictive maintenance.
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Figure 11. Analysis of keywords “smart” and “intelligent”.

From the point of view of preventive maintenance, the machines and robots perform-
ing production communicate with each other continuously and inform each other about
non-standard situations. The machines report themselves to the maintenance staff (in this
sense it is a robot), besides, they precisely define the problem. The sensors in production
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are thus connected to other factory systems based on SCADA. All elements can minimize
energy losses or use alternative energy sources for their activities [152]. Zero error rate is
ensured in production using smart sensors. Smart sensors and testers monitor the quality
of the final products.

We discussed the results and interpreted them in the perspective of previous studies
and research. Predictive maintenances in Cavalieri-Salafia’s model [153] includes data
acquisition from sensors, data manipulation (filtering, transforming, removing noise),
aggregation, prediction, decision-making, scheduling, and further monitoring of status and
configuration. Similarly, it describes the process of data acquisition, data processing, and
machine decision-making [154]. Possible application of artificial intelligence (Al) for pre-
ventive maintenance is discussed by Carlson and Sakao [155]. Modern systems are based
on the Internet of Things that enable real-time prediction and data sharing [96]. Uhlmann
et al. [117] described the solution of sensor network enhanced by cloud. The edge technolo-
gies [156] allow integration between PLC and cloud for modern sensors. Miniaturisation
of current sensors and nanotechnology [157] provides higher flexibility of maintenance
systems. Fernandes et al. [158] emphasise the role of data visualisation, data mining, and
data storage. These models have a standard data flow process which is a part of the possible
prediction preparation. It is necessary to set a reliability model to analyse the dataset [159].
Ruhi and Karim [160] show that a suitable statistical model can be applied to estimate the
optimum maintenance period at a minimum cost. Stodola and Stodola [161] pointed out
that a useful model needs to consider human factors and related issues such as labour
intensity, administrative, and human errors.

5.2. Discussion on Insights and Future Research Issues

We discussed practical considerations and potential avenues for future research.
The following directions have been identified for potential further work.

5.2.1. Wireless Network of Sensors

One of the current trends is the use of a wireless network of sensors (WSN), which
according to Vlasov et al. [119] consists of intelligent sensors for sensing physical parame-
ters. The individual sensors act as network elements (nodes) that can read, process, and
transmit wireless data in smart factories. They consist of processing, communication,
and the sensor unit. WSN is a network of Micro-Electro-Mechanical systems (MEMS) of
sensor devices [162]. MEMS offers a high potential for condition monitoring applications.
These sensors are, in comparison to industrial sensors, cost-effective, wireless, and highly
integrable and configurable [117]. Part of these networks could be process controllers (ac-
tuators) that communicate data and operate some units [163]. The cyber-physical systems
integrate these sensors and actuator networks into a coherent form. Vlasov et al. [119] show
that the use of wireless communication channels in the monitoring system is driven by the
sensor network in the shortest possible time. Uhlmann et al. [117] pointed out their main
advantage—low cost. Sadiki et al. [105] recommend to check the viability of these network
applications before their implementation in factories to save operation costs and improve
real-time monitoring performance. Main advantages of industrial WSN, summarising
Kumar et al. [163], are: minimal cost and compactness, interoperability, resistance to noise
(and co-existence), self-organizing, robustness (fault-tolerance), link-reliability, energy con-
sumption, low-delay, service differentiation and quality, scalability, predictable behaviour,
multiple sources, data aggregation, and specific protocols. However, the limitations of
wireless sensors are the spatial arrangement in the environment, deployment time, mainte-
nance cost of communication channels [119], scalability, and lack of protocols. Flammini
et al. [164] emphasised that fault assumption and transmission errors are more frequent
in wired communication than on wired links. Thus, data quality (in terms of validity,
integrity, accuracy, and reliability) is an important factor of wired networks connected to
the internet [165].
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5.2.2. Dominance of Vibration and Temperature Sensors for Maintenance

The analysis of the types of sensors used for predictive maintenance in Section 4.3 showed
that vibration and temperature sensors are most often used. According to Uhlmann [117],
the number of powerful MEMS sensors such as vibration and temperature sensors has in-
creased. Vibration can identify problems before other symptoms, such as temperature, sound,
power consumption, and contaminated lubricants. When the first signs of a malfunction
appear, there is usually only a few months left until a complete machine downtime. Vibration
monitoring enables to determine which phase of the fault curve the machine is currently in.
Excessive vibration is usually the first symptom of internal problems, such as defective bear-
ings, imbalances, misalignments, and loose components, that shorten the life of the equipment.
Only after detectable changes in vibration is it possible to detect possible errors using power,
particle, or infrared sensors. Finally, errors also appear on the temperature sensors. According
to Barbieri et al. [99], vibrational signals are a starting point of the component degradation
model. Crucial decision lies in the selection of adequate signals for failure estimation and main-
tenance prediction. The further research challenge in infrared thermography is the signal and
image processing to enhance the detection and simplify the interpretation of the results [166].
Akerberg et al. [167] pointed out that the requirements for vibration sensors, battery lifetime,
update frequency, and security are lower than for flow, torque, or proximity sensors. The
main benefits of vibration sensors are predictability of impending failures, machine safety, cost,
extended maintenance intervals, machine reliability, and confidence in scheduled maintenance.
In the future, these advantages resulting from the use of vibration sensors can be obtained by
using new types of sensors, for example, virtual sensors or nanosensors, etc. For this reason,
current research is focused on minimizing the costs and flexibility of vibration and temperature
sensor solutions.

5.2.3. Challenges of the Deep Learning and Big Data Analytics

Components connected to the network generate a large amount of heterogeneous
data that smart industry systems must process. Large industrial data is collected from
multiple sources, such as devices, products, and customers, in heterogeneous forms [108].
Their analysis is crucial for companies in almost all market sectors. Advanced analysis of
big data is a way to get to know customers and devices (machine state) in detail. Companies
that use it will be able to provide customers with literally “tailor-made” services, lower
moods, and increase efficiency in production, including maintenance. Thanks to the current
capacity of computer technology, even large volumes of data can be processed faster, which
allows smart industry systems to move information in real-time. Farooq et al. [38] consider
industrial prognosis and applying predictive analytics using machine learning techniques
as new challenges to identify failure modes and reduce downtime. The application of the
simulation enhances more possibilities for after-market services, such as maintenance [92].
Learning and intelligent techniques such as deep learning to analyse industrial big data
are proposed as future directions in maintenance [103,120]. We consider the main problem
in the field of data analysis to be the inability to translate and create a business case for
analysts with a comprehensive view. This means that there is no concept of how to evaluate
the analytical results and translate them into actions (for example, maintenance schedules).
Companies often make the mistake of supplementing random findings instead of a selective
and targeted approach such as predictive maintenance. Results of the analysis must lead to
conclusions, which requires a properly chosen tool for data visualisation. Other possible
research directions are related to virtual metrology [109].

5.2.4. Challenge of Interoperability

Interconnectivity is a prerequisite for the existence of a smart industry. It is not just
a peripheral connection of one device to another or a centralised connection of the ma-
chine to the control system, but a complex network. In a corporate environment, this
means connecting machines, people, materials, products, information and communica-
tion technologies and systems, and, finally, data in the form of documents. Scalability
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enables possible network size enhancing or reduction based on the industrial require-
ments. This needs appropriate protocols, standards, and robust integration of hundreds
of network nodes. Interoperability is linked to their compatibility, i.e., all elements of the
industrial Internet of Things should be able to communicate with each other (exchange
data) and interact. Through standardisation, disparate systems that work together can be
soldered into a single process. Today’s factories already use sensor systems for various
measurements and operations. The use of new solutions must work with these old systems.
This problem is caused by a lack of robustness, time constraints, and service-differentiated
protocols. One of the future solutions is, for example, the oneM2M [168] or OPC Unified
Architecture [169] industry communication standards, which are platform-independent
and support semantic interoperability [170]. On these platforms, data objects and each
device have well-defined behaviour on the network, and the capability of horizontal com-
munication between individual devices processing in real-time. There is a possibility to
connect other components (such as plug and produce), which then have their image in the
cloud.

5.2.5. Challenges of Control and Maintenance Systems Decentralisation

Many of the wireless sensor networks still have centralised control (so-called “network
manager”). Centralised server-client systems had one central database, which leads to data
consistency, easy administration, and a high level of security. However, centralisation can
result in the failure of a single point. High traffic can overload the bottleneck. A centralised
“network management” system can be slow and take a vest to lose data packets. It is
essential to use decentralised solutions within complex digital ecosystems, such as pro-
duction factories. The responsibility and need to make operational decisions is performed
at lower levels. A distributed architecture based on decentralisation is suitable for their
coordination and management [171]. Coordination between the individual nodes involved
in cyber-physical systems requires communication between the elements. The benefit of the
distributed architecture of components connected to the network and decentralised smart
industry systems is the expandability (scalability) of the network, as well as the increased
resistance to failures of the network itself, individual connected systems, as well as their
components. For example, Kiangala and Wang [94] proposed a decentralised monitoring
system with a cloud-based dashboard displaying real-time reports for every maintenance
schedule generated. Zhang et al. [122] consider as a future trend services in cyberspace
that control, plan, and schedule production line items in a timely way. Smart Industry
systems already use intelligent algorithms to monitor, control, manage, and plan complex
processes and operations throughout the production process and supply chain. Advanced
cognitive technologies will be gradually implemented in production systems to increase
the autonomy of individual components of the network. These systems use the principles
of collective intelligence in industrial processes, especially solutions based on multiagent
systems. The future of these systems lies in achieving a high level of artificial intelligence
that will use the collective knowledge of all parts of the network.

5.2.6. High Potential of Virtual- and Nano-Sensors

Sensor technology, the elements informing about the state and activity of the object, is
currently unprecedented and developed in various industries due to its reliability. Sensors
as sources of primary information about the real environment are the input element of
practically all control, measuring, and automation systems today, and together with mi-
crosystems, they accompany human activity (via biometric sensors) at almost every step.
An interesting trend can be traced in the development of electronics and microelectronics
in sensor systems, which include circuits for signal processing, analysis, and unification
in a single compact design with a sensor element. In optimizing this process, a tighter
system connection of electronics and microelectronics with related elements of optics or
fine mechanics within mechatronics is increasingly being applied. The intention of such an
interconnection is to achieve the development and production integration of entire systems
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on a single chip, from input sensors to various types of actuators. From another point of
view, it is possible to see the influence of miniaturisation and new sensor types such as
nanosensors. The higher resistance of the sensors to mechanical influences, acceleration,
and vibrations also leads to their placement directly in the parts of the system, which in
many cases gives the function of the sensor a wider range. Nanosensors have, due to
miniaturisation, good preconditions for massive use in smart factories. These trends are
currently aided by the search for ways to create wireless sensor networks with remote
data transmission. Al-Jlibawi et al. [107] described the properties of soft (virtual) sen-
sors and their function in parallel work with physical sensors and industrial processes.
Virtual sensors are used for damage detection [172], industrial robot interaction [173],
identification, and approximation tasks, or for digital twin applications. On-line evaluation
of input effects directly in the actuator can then lead to a “sensor-less” system, whose other
advantage, in addition to lower one-time investment costs, should be the greater reliability
of the system with protection against possible outages. Li et al. [165] described automatic
control systems without sensors based on wireless nodes, RIFID, and programmable logic
controller (PLC). Automated devices perform their tasks based on industrial wireless nodes
fully responsible for communication. Controllers have the automation control function
based on the received commands from other devices in the network.

5.2.7. Challenges of Availability and Reconfigurability of Sensors

The development of industry systems is progressing towards their maximum modular-
ity and capability of autonomous reconfiguration based on automatic situation recognition.
The self-organisation of production processes therefore also includes reconfigurability, char-
acterised as independent adaptability to internal and external conditions. Condition-based
systems are being developed in the field of maintenance. The main problem in the future
may be the use of old sensors (installed on older devices in production), which will lead
to unacceptably high manufacturing and maintenance costs in the long term. Kozlowski
et al. [110] mentioned the unavailability of devices (CNC machines) on the market to struc-
turally optimally distributed sensors on machine parts. Related to this issue is the problem
of today’s industrial practice—the lack of appropriate measurement signals. The result is
the need for additional installation of sensors on the device. A problem with the weak sig-
nal from the sensors can lead to injury, product losses, and production outages. Even small
and temporary communication errors can cause significant production interruptions [167].
This production issue can be caused by signal inference from devices that operate on the
same frequency. It means that at the same time, waves and signals coexist in a given
environment, which disrupt the function of the sensors. This problem can be described as
a real-time availability issue. Lao et al. [111] show that preventive maintenance of sensors
and actuators in real-time can significantly mitigate the damage from production losses,
process upsets, and downtime based on specific routine regulations.

5.2.8. Security and Safety Challenge

The severity of cyber security issues is growing, along with our growing dependence
on technology, both personally and socially. In production, important data is collected by
increasingly connecting production systems or even the robots themselves to computer
networks, sometimes with communication to the cloud, and new security risks arise. Ba-
sic cyber security principles can significantly improve the security of connected devices.
The contemporary challenge of safety is the security of the stored data from sensors. In ad-
dition to the sensors that collect data, which is a physical prerequisite for the Industry 4.0
concept, the sovereignty of the data is important [174], especially from a psychological
point of view. Only enterprises that trust the security of their networks are also willing
to store and share their data. Sensor security does not require high demands on battery
capacity. However, security is considered too complicated, especially for IoT, due to the
use of various techniques such as keying to protect authentication, cryptographic code
verification, security gateways [175], safety protocols, remote wireless security manage-
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ment [176], or security analysis to detect attacks. Almost all interconnected systems have
their weaknesses that their creators are unaware of. For this reason, prevention is particu-
larly important [167]. An important factor due to the number of interconnected devices is
the cost of security. Gungor and Hancke [177] point out that security is a crucial feature in
designing wireless sensor networks. Safe communication protects against external attacks
and intrusion.

6. Conclusions

The fourth industrial revolution is permeating the industry, enabling an increasing
number of enterprises to have an incomparably greater overview of their production
and maintenance activities than ever before. The deployment of highly reliable and
low-maintenance devices contributes to the precise planning of production capacity and
equipment’s associated maintenance.

The first research question relates to the contemporary trends in the maintenance
processes of smart factories. The number of papers discussing the key terms sensors,
smart factories, and preventive maintenance increased over time, mostly in the last years.
We found that the contemporary burst trend is related to Industry 4.0 technology. Predic-
tive maintenance, smart factories, and intelligent sensors publications, together concerned
topics mainly related to deep machine learning, Internet of Things, and big data analytics.
The maintenance process in smart factories is based on digitisation, data-driven manufac-
turing, agent-based systems, and digital twins. Intelligent sensors in such factories use
edge, fog, and deep learning methods for control of manufacturing processes. In the future,
Internet and blockchain will be important for predictive maintenance.

Smart and intelligent predictive maintenance is characterised to answer a second
research question. Here, the results show four different types of maintenance used in smart
factories—Industry 4.0 for predictive maintenance, smart manufacturing for condition-
based maintenance, fault diagnosis for maintenance and prognostics, and remaining useful
life analysis. The importance of predictive maintenance is also growing due to the growing
number of robots, digitisation, and artificial intelligence introduced into production lines
to automate routine activities.

Following the third question’s answer, we can state that the three types of sensors are
mainly used for predictive maintenance in smart factories. Firstly, intelligent sensors which
have the potential to connect to higher-level systems. Furthermore, there is a possibility to
connect these intelligent sensors to the internet—to build up the IoT devices. Finally, we can
use the gathered data in cloud-related technologies. The most prevalent methods used
for collecting and monitoring machines and devices are vibration analysis [120], SCADA
systems, CNC machine sensors, and PLCs. Based on the deep analysis, we conclude that
the current trend, insights, and future research issues are characterised by:

Usage of multisource wireless networks of sensors in predictive maintenance.
Dominance of vibration and temperature sensors for predictive maintenance.
Challenges of the big data analytics and deep learning techniques.
Challenges of interoperability of multiple sensors and maintenance systems.
Decentralisation of maintenance control systems.

High potential of virtual sensors and nanosensors for the future.

Challenge of availability and reconfigurability of sensors.

Security and safety of sensor data.

Based on the results synthesis, we proposed the Smart and Intelligent Predictive Main-
tenance (SIPM) system for smart factory concerning four major subsystems: production,
monitoring, planning, and maintenance. These subsystems communicate and collaborate
through modern IoT and cloud-based technologies. Their main advantage is real-time
management and planning to reduce the economic costs caused by production downtime.

From a managerial point of view, the predictive maintenance system in smart factories
is an early warning, especially in high-risk industries. The ability to detect weak signals
of potentially significant strategic impact is a welcome positive in a turbulent business
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environment. The system of predictive maintenance does not reduce the responsibility
or the possibility of personal development of employees, but it must be stimulated by
responsible managers. It offers the possibility to reduce the number of hierarchical levels
between managers and ordinary employees, so that you can bring about higher employee
autonomy and help other innovation processes to be implemented effectively. The challenge
for managers today is to select criteria based on which they will be able to select intelligent
sensors for smart factories. There is a wide range of sensors on the market and the
authors most often state the criteria of sensor sensitivity, sensor cost, flexibility, and size
(miniaturity).

Further research may comprise the advanced machine learning methods as deep
learning, data-driven algorithms. The new concept called “Machine as a Service” (MaaS)
takes over the software as a service (SaaS) model and is another trend suitable for future
research. An interesting direction of future research concerns building performance model
evaluation related to the reasonable cost. The cost/benefit analysis of using preventive
tools in contrast to sustainability requirements is challenging for research.

This work suffers from several limitations, notably related to publication collections,
filtering, and analysis. The search strategy is biased by the problematic synonym of the
term “factory”. Primarily, the term “plant” is not interchangeable in the same meaning.
The study is limited because we omitted highly cited publications related to medicine in
burst analysis. Our goal was to bring the reader closer manufacturing- and production-
related publications. Investigated trends in burst detection analysis have weights based on
occurrence in publication titles. Results do not show the quality of publication based on
the times cited. Thus, we instead present examples of highly cited publications of most
important burst terms. The lack of a comprehensive review due to a steadily increasing
number of related works is another notable limitation of this study.

Supplementary Materials: The PRISMA Checklist (Table S1) and burst analysis results (Figures S1-
S3) are available online at https://www.mdpi.com/1424-8220/21/4/1470/s1, Figure S1: The burst
detection in topic Smart Factory/production based on WoS data, Figure S2: The burst detection in
topic Smart Sensors based on WoS data, Figure S3: The burst detection in topic Smart/predictive
maintenance based on WoS data, Table S1: The PRISMA Checklist.
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