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Abstract

Background: Estimating the depth of anaesthesia (DoA) is critical in modern anaesthetic practice. Multiple DoA
monitors based on electroencephalograms (EEGs) have been widely used for DoA monitoring; however, these
monitors may be inaccurate under certain conditions. In this work, we hypothesize that heart rate variability (HRV)-
derived features based on a deep neural network can distinguish different anaesthesia states, providing a secondary
tool for DoA assessment.

Methods: A novel method of distinguishing different anaesthesia states was developed based on four HRV-derived
features in the time and frequency domain combined with a deep neural network. Four features were extracted
from an electrocardiogram, including the HRV high-frequency power, low-frequency power, high-to-low-frequency
power ratio, and sample entropy. Next, these features were used as inputs for the deep neural network, which
utilized the expert assessment of consciousness level as the reference output. Finally, the deep neural network was
compared with the logistic regression, support vector machine, and decision tree models. The datasets of 23
anaesthesia patients were used to assess the proposed method.

Results: The accuracies of the four models, in distinguishing the anaesthesia states, were 86.2% (logistic regression),
87.5% (support vector machine), 87.2% (decision tree), and 90.1% (deep neural network). The accuracy of deep
neural network was higher than those of the logistic regression (p < 0.05), support vector machine (p < 0.05), and
decision tree (p < 0.05) approaches. Our method outperformed the logistic regression, support vector machine, and
decision tree methods.

Conclusions: The incorporation of four HRV-derived features in the time and frequency domain and a deep neural
network could accurately distinguish between different anaesthesia states; however, this study is a pilot feasibility
study. The proposed method—with other evaluation methods, such as EEG—is expected to assist
anaesthesiologists in the accurate evaluation of the DoA.
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Background
Both the central nervous and autonomic systems are re-
lated to the depth of anaesthesia (DoA) [1]. A DoA that
is too shallow increases the risk of intraoperative aware-
ness [2], and a DoA that is too deep can cause delayed
recovery [3], cognitive dysfunction, and may increase the
risk of death [4]. Therefore, accurate DoA monitoring is
crucial to reducing the complications associated with
overdose or insufficiency of anaesthetics and guarantying
the safety and quality of anaesthesia.
However, the mechanisms of action of general anaes-

thetics are still not completely understood [5, 6], and
there is currently no ‘gold standard’ for evaluating DoA
[7]. DoA monitors based on electroencephalograms
(EEGs) signals, such as bispectral index (BIS), Narco-
trend, and entropy, have been widely used during sur-
gery [8–10]. However, EEG signals only show the
functions of the central nervous system and the indices
based on these signals are not sufficiently accurate to as-
sess DoA under certain conditions [11–15]. Therefore, it
is essential to seek new methods of DoA monitoring to
overcome the drawbacks of mainstream methods based
on EEG signals [16] and improve the DoA monitoring
accuracy. Electrocardiograms (ECGs) are internationally
used in standard monitoring during general anaesthesia
[17]. In addition, the heart rate variability (HRV) derived
from an ECG is regulated by the central nervous and
autonomic systems, and closely related to the DoA dur-
ing surgery [18–20]. Therefore, HRV may be used as an
important supplementary method of EEG monitoring in
terms of DoA evaluation [21, 22].
Owing to the strong nonlinear characteristics of the

EEG and ECG, nonlinear analysis methods may be used
in studies of anaesthesia [23, 24]. Sample entropy (Sam-
pEn) is a typical nonlinear analysis method that was de-
veloped to study the time-domain features of HRV [25,
26] and provide an improved assessment of DoA during
surgery [27, 28]. In addition, three frequency domain
features of HRV, including the high-frequency power
(HF), low-frequency power (LF), and ratio of high-to-
low-frequency power (HF/LF), are related to the auto-
nomic nervous system and have been implemented in
anaesthesia research [29, 30].
Recently, several machine learning algorithms, includ-

ing logistic regression [31], support vector machine [32],
decision tree [33], artificial neural network [34], and
deep neural network [35], have been utilized to assess
DoA based on different time- and frequency-domain fea-
tures of an EEG signal. These results indicate that it is
necessary to combine multiple time and frequency do-
main features to improve DoA assessment methods.
Moreover, to our knowledge, there are currently few
studies combining HRV-derived features with machine
learning algorithms to identify different anaesthesia

states. Thus, we propose the hypothesis that multiple
time and frequency features of HRV based on a deep
neural network could be used to distinguish different
anaesthesia states and provide a key supplementary
method for EEG monitoring in the assessment of DoA.

Methods
This study protocol was approved by the Institutional
Ethics Committee of the Second Affiliated Hospital of
the Army Medical University on March 25, 2020
(Chongqing, China, approval number: 2020–078-01). Pa-
tients were recruited from March 27, 2020 to April 29,
2020. Written informed consent was obtained from each
patient. Twenty-three American Society of Anaesthesi-
ology (ASA) physical status I or II adult patients, aged
from 20 to 70 years old, scheduled to undergo elective
laparoscopic abdominal surgery were recruited. Exclu-
sion criteria included patients with neurological and
cardiovascular diseases or a known allergy history of
anaesthetics.
All patients underwent preoperative fasting for at least

8 h. The placement of the chest electrodes was the same
for all participants. The five-leads were located at five
different positions on the chest. The upper left position
was at the junction of the midclavicular line on the left
edge of the sternum and the first intercostal space. The
lower left position was at the junction of the left midline
of the clavicle and the level of the xiphoid process. The
upper right position was at the junction between the
midclavicular line on the right edge of the sternum and
the first intercostal space. The lower right position was
at the horizontal junction of the right clavicle midline
and the xiphoid process, and the middle position was at
the fourth intercostal space on the left edge of the ster-
num. After the electrodes were placed on the patient
chest wall, anaesthesia was usually induced with intra-
venous midazolam, propofol, sufentanil, and cisatracur-
ium. Loss of consciousness (LOC) was defined as no
response to verbal commands and was tested every
thirty seconds during anaesthesia induction [36]. Sevo-
flurane together with propofol and remifentanil were
used to maintain anaesthesia. Recovery of consciousness
(ROC) was defined as opening eyes following commands
and was tested every one minute during anaesthesia re-
covery [36]. Table 1 summarises this information.
Physiological signals (such as ECG, BP, HR, and SpO2)
were measured to guarantee the safety of the patients
under different anaesthesia states. The attending anaes-
thetist adjusted the DoA accordingly based on the ob-
served signals and personal experience. From the various
monitoring feedback information observed, attending
anaesthetists need to analyse, synthesize, and judge the
vital function indicators of patients according to their
own experience and to make timely adjustments and
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interventions as needed to keep the vital signs as normal
or close to the normal physiological state as possible, to
adjust the DoA and maintain it at an appropriate level.
In this study, ECG signals were recorded from twenty-

three adult patients under general anaesthesia. The
signals were recorded using a Philips MP60 monitor
(Intellivue; Philips, Foster City, CA, USA). The operation
time was 1—3 h. Raw ECG data were sampled at a 500-
Hz sampling frequency.

Expert assessment of consciousness level
The expert assessment of consciousness level (EACL) is
the average value of the DoA assessment score deter-
mined by five experienced anaesthesiologists (i.e., attend-
ing physicians) based on clinical recordings and their
own experience [27]. An experienced anaesthesiologist
trained for many years with rich clinical experience can
be familiar with health risks evaluation and accurately
assess the DoA through clinical signs, surgical stimula-
tions, the dose of the anaesthetic agent, etc. combined
with his or her own clinical experience. Thus, such an
expert can perform anaesthesia-related operations profi-
ciently and correctly handle various problems in anaes-
thesia even if he or she is not in the operating room
during surgery. The states of general anaesthesia are
classified as anaesthesia induction, anaesthesia mainten-
ance, and anaesthesia recovery, which refer to the grad-
ual increase, stability, and gradual decrease of the
anaesthesia depth, respectively. The obtained EACL

value is a single number from 0 to 100, similar to the
BIS (with 100 denoting ‘fully awake’ and 0 denoting ‘iso-
electricity’). During surgery, the clinical information re-
corded included: (1) vital signs (e.g., HR, BP, SpO2), (2)
anaesthetic events, including induction, LOC, intubation,
maintenance, ROC and extubation of anaesthesia,
addition of muscle relaxant drugs, and airway manage-
ment, (3) surgical events, including the start and end of
the surgical procedure and the occurrence of noxious
stimulus, (4) other clinical signs, including unusual re-
sponses, movement, and arousability under induction
and recovery, and (5) any other related events, such as
lacrimation, sweating, and patient demography.

ECG preprocessing
Body movements and medical device frequency noise
are the main artifacts in ECG recordings. These artifacts
seriously affect the analysis results of the ECG signals.
Therefore, data preprocessing is essential for distinguish-
ing different anaesthesia states and can normalize and
facilitate subsequent analysis. The specific process is de-
tailed in additional file 1(1).

Frequency-domain algorithm
Wavelet transform is a typical nonlinear analysis tech-
nique and one of the most useful methods for biological
signal analysis, especially for continuous signals with
various frequency features [37]. Therefore, in this study,
discrete wavelet transform was used for the frequency

Table 1 Patients demographics and clinical characteristics

Parameters means (SD)

Age (year) 50.2 (7.0)

Height (cm) 160.6 (6.9)

Weight (kg) 61.1 (9.4)

BMI (kg m− 2) 23.7 (3.2)

Duration of surgery (min) 132.9 (48.4)

Anaesthetic management /

Midazolam induction (mg) 3.0 (0.8)

Propofol induction (mg) 62.0 (10.3)

Sufentanil induction (μg) 20.2 (2.7)

Cis-atracurium (mg) 13.1 (1.9)

Maintenance drugs infusion rate /

Sevoflurane maintenance (Vol%) 1.7 (0.4)

Propofol maintenance (mg•kg−1 h−1) 2.1 (0.3)

Remifentanil (μg•kg−1 h− 1) 0.1 (0.04)

Additional drugs administrated when approaching the end of surgery /

Sufentanil (μg) 7.1 (3.2)

Atropine (mg) 0.3 (0.1)

Neostigmine (mg) 0.7 (0.2)

Values are means (SD). BMI body mass index
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domain analysis of the HRV power. The calculation
formula for the HRV power is detailed in additional
file 1(2). Entropy, as a nonlinear dynamic parameter
measuring the incidence of new information in a time
series, can be described as a regularity or degree of
randomness indicator. SampEn is an improved algo-
rithm based on approximate entropy. The calculation
formula for the SampEn is detailed in additional file
1(3).

Machine learning algorithms
Logistic regression is a classification algorithm used
to predict the probability of classifying dependent var-
iables. A support vector machine is a supervised
learning algorithm that can be applied to classification
problems. The calculation formula for the support
vector machine approach is detailed in additional file
1(4). A decision tree is a multi-classification super-
vised learning algorithm. The calculation formula for
the decision tree method is detailed in additional file
1(5). An artificial neural network is a nonparametric
parallel computing model, which is similar to the
neural structure of the human brain [38]. It usually
consists of an input layer, a hidden layer, an output
layer, and numerous interconnected nodes in multiple
layers. The deep neural network developed from the
artificial neural network was used in this study. The
flowchart of the deep neural network construction is
shown in Fig. 1. The deep neural network is detailed
in additional file 1(6).

Performance analysis
The performance of four models was quantified based
on the results of cross-validation using the precision, re-
call, and classification accuracy. Precision is defined as
the ratio of the number of correct classifications of an
anaesthesia state to the total number of classifications of
the same type of anaesthesia state. Recall is defined as
the ratio of the number of correct classifications of an
anaesthesia state to the number of actual occurrences of
this anaesthesia state. Classification accuracy is defined
as the ratio of the total number of correctly identified
anaesthesia states to the sum of all anaesthesia states.
The calculation formulas for the precision, recall, and
classification accuracy are detailed in additional file 1(7).

Statistical analysis
There are no standardized methods for sample size cal-
culation based on machine learning algorithms. Thus,
the sample size calculations in this pilot feasibility study
were based on previous reports [32, 34]. Herein, the
sample size was 23 cases, corresponding to a total of 46,
000 datasets with an average of 2000 datasets per pa-
tient. 80% of the datasets, i.e., 36,800 datasets, were used
to train the model. 20% of the datasets, i.e., 9200 data-
sets, were used to test the model. Statistical analyses
were performed using SPSS 22.0 (SPSS Inc., Chicago, IL)
and Python (version 3.6.5) software. Data were expressed
as mean (SD) or percentage, where appropriate. Ternary
classification outcome parameters were expressed as
events (percentages). The data are presented in the form
of tables, box-and-whisker diagrams, and correlation

Fig. 1 Flowchart depicting the proposed deep neural network model. DWT: discrete wavelet transform; DNN: deep neural network; EACL: expert
assessment of consciousness level
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graphs. In addition, we calculated the distribution of the
four features in the three anaesthesia states. The Pear-
son’s correlation coefficient between the EACL and the
four features of the deep neural network model was also
calculated to estimate the efficacy of the proposed
method. The performances of four classification
methods were compared: the logistic regression, support
vector machine, decision tree, and proposed deep neural
network methods. Owing to the small sample size in this
study, the sample does not satisfy a normal distribution.
Therefore, the four classification methods were com-
pared using the Chi-square test. p < 0.05 was considered
statistically significant.

Results
Primary outcome
The clinical data of twenty-three adult patients were
analysed in this study. The details of the selection pro-
cedure are shown in Fig. 2. Patient demographics and
clinical characteristics are shown in Table 1. LOC was
determined as no response to the command ‘name,
name, open your eyes’. When LOC appeared during an-
aesthesia induction, the anaesthesiologist marked ‘LOC’
on the anaesthetic recording sheets immediately. The
years of experience of five experienced anaesthesiologists
are shown in Table 2. The deep neural network struc-
ture used in this study consisted of four layers: an input

layer with four nodes, a hidden layer with ten nodes, a
second hidden layer with seventeen nodes, and an out-
put layer with one node. There were no cases of intraop-
erative awareness in this study.
The precision and recall values of the anaesthesia in-

duction, maintenance, and recovery states of the datasets
for 23 cases are listed in Table 3. In addition, the classifi-
cation accuracies of the three different anaesthesia states
were obtained through the calculation of the recall and
precision. The deep neural network model yielded a
classification accuracy of 90.1%, whereas the logistic re-
gression, support vector machine, and decision tree ap-
proaches yielded classification accuracies of 86.2, 87.5,
and 87.2%, respectively. The accuracy of the deep neural
network was higher than those of the logistic regression
(p < 0.05), support vector machine (p < 0.05), and deci-
sion tree (p < 0.05) approaches. A comparison of the lo-
gistic regression, support vector machine, decision tree,
and deep neural network methods is presented in Table
3. In addition, the precision and recall of the four
models during the anaesthesia induction and recovery
states were lower than those during the maintenance
state.

Secondary outcomes
In this study, four features of the HRV were selected as
the input of the deep neural network model. Specifically,

Fig. 2 Study protocol
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these were the HF, LF, HF/LF ratio, and SampEn of the
RR interval. The EACL was used as the reference output.
Figure 3 shows a clear correlation between the HF, LF,
HF/LF, RR interval SampEn, and EACL. There are posi-
tive correlations between the HF (r = 0.221, p < 0.05), LF
(r = 0.238, p < 0.05), and HF/LF (r = 0.106, p < 0.05) and
the EACL. There is a negative correlation between the
RR interval SampEn and the EACL (r = − 0.053, p <
0.05). Therefore, these features can be used for the
construction of the deep neural network model. Interest-
ingly, the four features are mainly distributed in the
EACL value range of 40_80. In addition, Fig. 4 shows the
original ECG signal, filtered ECG signal, filtered RR
interval, HF, LF, HF/LF ratio, and EACL in the same
time period. The voltage of the filtered ECG signal
mainly varied between 0 and 2.5 mV. During the sam-
pling period, the voltage of the ECG was relatively stable.
The filtered RR interval, HF, LF, and HF/LF ratio were
significantly reduced before reaching a relatively stable
level. The trend of change in the three frequency fea-
tures was similar to that of the EACL.

Exploratory outcomes
Figure 5 depicts the distribution characteristics of the
four features under three different anaesthesia states.
The HF during the anaesthesia induction state is
significantly higher than that of the anaesthesia main-
tenance state (p < 0.001). The HF during the recovery
state is significantly higher than those of the anaes-
thesia maintenance (p < 0.001) and anaesthesia induc-
tion states (p < 0.001). Moreover, the LF gradually
decreases during the three anaesthesia states. The
HF/LF ratio during the anaesthesia recovery state is
significantly higher than those of the anaesthesia in-
duction and maintenance states (p < 0.001). Finally,
the SampEn of the RR interval gradually increases
under the three anaesthesia states.

Discussion
This study proposed a novel method for distinguishing
different anaesthesia states based on four HRV-derived
features in the time and frequency domains, combined
with a deep neural network. In addition, this study com-
pared the proposed deep neural network model with lo-
gistic regression, support vector machine, and decision
tree in terms of the accurate classification of three an-
aesthesia states. The datasets of 23 patients who under-
went general anaesthesia were used for assessing the
proposed method. We used the precision, recall, and ac-
curacy for model performance assessment. Each of the
four models provided high accuracy in classifying the
three anaesthesia states. However, the accuracy of the
proposed method outperformed the three conventional
methods. This suggests that, by testing the datasets ob-
tained from multiple HRV-derived features, it is possible
to reliably predict the anaesthesia states based on ma-
chine learning algorithms.
Most research has assessed the DoA based on EEG

features and machine learning algorithms; however, few
studies have distinguished different anaesthesia states
using HRV-derived features based on machine learning
algorithms. Several studies were developed to predict the
DoA using combinations of multiple EEG features and
logistic regression [31], support vector machine [32], de-
cision tree [33], and artificial neural network [34]. We
adopted a multidimensional approach using logistic re-
gression, support vector machine, decision tree, and
deep neural network methods and four HRV-derived
features to distinguish different anaesthesia states. One
of the major findings in this study is that, like EEG fea-
tures, HRV-derived features based on machine learning
algorithms can also distinguish different anaesthesia
states. Moreover, Liu et al. used only the similarity and
distribution index of HRV based on an artificial neural
network to assess the DoA [21]. The similarity index of
HRV can distinguish between the waking and isoflurane

Table 2 The years of experience of five experienced anaesthesiologists

Anaesthesiologist A Anaesthesiologist B Anaesthesiologist C Anaesthesiologist D Anaesthesiologist E

years of experience 11 15 16 16 20

Table 3 Comparison of logistic regression, support vector machine, decision tree, and deep neural network

Precision of
anaesthesia
induction

Recall of
anaesthesia
induction

Precision of
anaesthesia
maintenance

Recall of
anaesthesia
maintenance

Precision of
anaesthesia
recovery

Recall of
anaesthesia
recovery

Classification
accuracy

LR 55.1% 81.2% 94.6% 94.1% 46.3% 47.5% 86.2%

SVM 55.7% 80.1% 95.1% 94.6% 47.1% 46.8% 87.5%

DT 56.1% 80.9% 95.6% 94.8% 47.3% 47.1% 87.2%

DNN 58.1% 88.1% 96.0% 94.7% 56.6% 57.8% 90.1%

LR logistic regression. SVM support vector machine. DT decision tree. DNN deep neural network
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anaesthesia states [39]. Our findings are consistent with
these results in that HRV-derived features selected can
also be used to distinguish different anaesthesia states.
However, our study differs from previous ones as we
used multiple HRV-derived features and machine learn-
ing algorithms.
To assess the accuracy of these machine learning algo-

rithms, we selected the EACL as the evaluation criterion
for distinguishing different anaesthesia states. The EACL

adopted in this study is a method of clinical evaluation
performed by five experienced anaesthesiologists for
evaluating the DoA. As current DoA monitors such as
the BIS are based on probabilistic approaches, clinical
assessment of the level of consciousness remains the
golden standard [40]. In addition, current DoA monitors
based on EEG features have accuracy limitations [11,
13–15]. To improve the accuracy of DoA estimation,
previous studies used the EACL as the evaluation

Fig. 3 Correlations between the four features and EACL. a_d Correlations of HF, LF, ratio of HF/LF, and RR interval SampEn with the EACL,
respectively. I, II, and III represent anaesthesia induction, anaesthesia maintenance, and anaesthesia recovery, respectively. EACL: expert assessment
of consciousness level; HF: high-frequency; LF: low-frequency; HF/LF: high-to-low-frequency ratio

Zhan et al. BMC Anesthesiology           (2021) 21:66 Page 7 of 11



criterion for DoA assessment. Liu et al. employed the
EACL as the reference standard for the output of an
artificial neural network to assess the DoA [21]. Mean-
while, Jiang et al. used SampEn analysis of EEG signals
based on an artificial neural network and EACL to
model patient consciousness levels [27]. However, our
study shows that HRV-derived features based on a deep
neural network and EACL can be used to distinguish
different anaesthesia states. Thus, in addition to current
DoA monitors, the EACL is also a reliable method of
identifying anaesthesia states.
Our findings show a clear correlation between the four

HRV-derived features and EACL. These HRV-derived
features are also closely related to different anaesthesia
states. As the HRV is controlled by the central nervous
system, the DoA should be considered to assess the ef-
fects of anaesthetics on HRV [20]. To date, it is consid-
ered that the LF reflects the parasympathetic and
sympathetic systems, whereas the HF and entropy are
mediated primarily by the parasympathetic system [41,
42]. In addition, some previous studies have shown that
HRV-derived features, including the entropy, HF, LF,
and HF/LF, could reflect changes in the DoA. Propofol
decreases the entropy and HF in a BIS-dependent man-
ner [20], and it is related to the relative decrease in the
HF, increase in the LF, and significant decrease in HF/
LF during the anaesthesia induction state [43]. However,
abrupt increases in the LF and HF are related to mo-
ment patients become responsive to verbal commands
during the anaesthesia recovery state [44], whereas our

study shows that the HF increased and LF decreased. In
addition, the results in this study indicate that the
changes in the four HRV-derived features could reflect
the change of anaesthesia states. Therefore, these HRV-
derived features are reliable features of distinguishing
anaesthesia states. However, the correlation between a
single feature and the EACL was not strong, and the
synergy between the four features can be improved to
classify the different anaesthesia states. Thus, to imple-
ment the proposed method in clinical settings, different
features need to be selected for subsequent research and
the accuracy of the prediction method must be
improved.
The optimal DoA prediction method should have high

accuracy and should not be influenced by interference
from irrelevant signals. Our findings show that, with the
help of multiple HRV-derived features and machine
learning algorithms, distinguishing different anaesthesia
states is feasible. In addition, the proposed method has
several advantages. First, ECG signals are more stable
and less susceptible to noise than EEG signals. Further,
the electrode sensors used for ECG signal acquisition
are cheaper than those for EEG signal acquisition, ren-
dering ECG a more cost-effective method. More import-
antly, our method may be a useful adjunct in monitoring
DoA based on EEG features and is expected to assist
anaesthesiologists in the accurate evaluation of the DoA.
Although promising, there are several limitations and

a need for further improvement. First, we did not distin-
guish nociceptive effects and other physiological

Fig. 4 ECG data for the proposed method. a–c Raw ECG with visible artifacts, filtered ECG with tiny artifacts, and filtered RR intervals. d–e HF, LF,
and ratio of HF/LF. f EACL within the sampling period. HF: high-frequency; LF: low-frequency; HF/LF: high-to-low-frequency ratio; EACL: expert
assessment of consciousness level
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parameters, such as hemodynamic and respiratory vari-
ables, on HRV. However, our findings provide important
references to guide future investigations. Second, we
only explored four HRV-derived features as the inputs of
the deep neural network in this feasibility study. We lim-
ited these features as they contain both time- and
frequency-domain characteristics of HRV. In addition,
cross-validation was used to train and test the model to
avoid over-fitting, ensure model generalization, and im-
prove the performance of the deep neural network.

Additionally, we considered the impact of inter-clinician
variability on the performance of the deep neural net-
work model. To minimize personal error, the mean
values of the DoA assessment score determined by five
experienced anaesthesiologists were used as the refer-
ence standard for the output of the deep neural network.
Third, the DoA in this study was classified into the three
anaesthesia states in the deep neural network model. It
is necessary to explore new methods of DoA evaluation
with higher precision, better performance, and more

Fig. 5 Comparison between anaesthesia states. The Y-axis is logarithmically transformed. (A)–(D) Distributions of (a) HF, (b) LF, (c) the ratio of HF/
LF, and (d) the RR interval SampEn values. I, II, and III represent anaesthesia induction, anaesthesia maintenance, and anaesthesia recovery,
respectively. Vertical coordinates represent the four feature values. HF: high-frequency; LF: low-frequency; HF/LF: high-to-low-frequency ratio;
EACL: expert assessment of consciousness level
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classifications (e.g., four or more states) in subsequent
work. Fourth, the number of patients used in this study
was limited. Increasing the number of patients could im-
prove the performance of our proposed method. Besides,
owing to the emergence of agitation during the recovery
period, the electrodes on the chest walls of eight patients
fell off, and the ECG data collection was interrupted,
causing technical failure.

Conclusions
In conclusion, this study combined multiple HRV-
derived features, including three frequency-domain fea-
tures and one time-domain feature, with four machine
learning algorithms to identify the three anaesthesia
states. The proposed method could accurately distin-
guish between different anaesthesia states and outper-
formed three traditional machine learning algorithms.
Our method provides a useful reference for supplement-
ing DoA assessment based on EEG features and is ex-
pected to assist anaesthesiologists in the accurate
evaluation of the DoA. Other physiological signals, such
as EEG, could be incorporated into the proposed
method to further improve the accuracy of DoA
estimation.
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BMI: Body mass index

Acknowledgements
The authors would like to thank Editage (www.editage.cn) for English
language editing and senior engineer Qin-yuan Yu and engineer Yi-wei Chen
for providing guidance and help in machine learning algorithms, Chongqing
Abacus Software Co., Ltd.

Authors’ contributions
ZJ: study design, data analysis, writing paper. WZX: data analysis, writing
paper. DZX: data collection. YGY: data collection, data analysis, manuscript
revision. DZY and BXH: study design, manuscript revision. LH: study design,
data analysis, writing paper, manuscript revision. All authors read and
approved the final manuscript.

Funding
This study was supported by National Key Research and Development
Project (2018YFC0117200) and Clinical Research Project of Army Medical
University (No.CX2019LC114 and 2018JSLC0015). The funders afforded part of
the research fee, but they were not involved in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets are not publicly available, but available from the corresponding
author on reasonable request.

Ethics approval and consent to participate
Ethical approval for Institutional Ethics Committee of the Second Affiliated
Hospital of Army Medical University prior to patient enrolment. Written
informed consent was obtained from the patients.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1Department of Anaesthesiology, The Second Affiliated Hospital of Army
Medical University, Chongqing 400037, China. 2Department of
Anaesthesiology, The Affiliated Hospital of Southwest Medical University,
Luzhou 646000, Sichuan, China.

Received: 11 July 2020 Accepted: 17 February 2021

References
1. Lan JY, Abbod MF, Yeh RG, Fan SZ, Shieh JS. Intelligent modeling and

control in anesthesia. J Med Biol Eng. 2012;32(5):293–308.
2. Avidan MS, Jacobsohn E, Glick D, Burnside BA, Zhang L, Villafranca A, et al.

Prevention of intraoperative awareness in a high-risk surgical population. N
Engl J Med. 2011;365(7):591–600.

3. Misal US, Joshi SA, Shaikh MM. Delayed recovery from anesthesia: a
postgraduate educational review. Anesth Essays Res. 2016;10(2):164–72.

4. Harris M, Chung F. Complications of general anesthesia. Clin Plast Surg.
2013;40(4):503–13.

5. Hemmings HC Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison
NL. Emerging molecular mechanisms of general anesthetic action. Trends
Pharmacol Sci. 2005;26(10):503–10.

6. Chau PL. New insights into the molecular mechanisms of general
anaesthetics. Br J Pharmacol. 2010;161(2):288–307.

7. Awareness ASoATFoI. Practice advisory for intraoperative awareness and
brain function monitoring: a report by the american society of
anaesthesiologists task force on intraoperative awareness. Anesthesiology.
2006;104(4):847–64.

8. Bruhn J, Röpcke H, Hoeft A. Approximate entropy as an
electroencephalographic measure of anesthetic drug effect during
desflurane. Anesthesiology. 2000;92(3):715–26.

9. Chan MT, Cheng BC, Lee TM, Gin T. CODA Trial Group. BIS-guided
anesthesia decreases postoperative delirium and cognitive decline. J
Neurosurg Anesthesiol. 2013;25(1):33–42.

10. Kreuer S, Biedler A, Larsen R, Altmann S, Wilhelm W. Narcotrend monitoring
allows faster emergence and a reduction of drug consumption in propofol–
remifentanil. Anesthesiology. 2003;99(1):34–41.

11. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring:
what's available, what's validated and what's next? Br J Anaesth. 2006;97(1):
85–94.

12. Ye S, Park J, Kim J, Jung J, Jeon A, Kim I, et al. Development for the
evaluation index of an anaesthesia depth using the bispectrum analysis. Int
J Biol & Med Sci. 2007;2:66.

13. Voss L, Sleigh J. Monitoring consciousness: the current status of EEG-based
depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol. 2007;21(3):
313–25.

14. Wu L, Zhao H, Weng H, Ma D. Lasting effects of general anesthetics on the
brain in the young and elderly: "mixed picture" of neurotoxicity,
neuroprotection and cognitive impairment. J Anesth. 2019;33(2):321–35.

15. Dahaba AA. Different conditions that could result in the bispectral index
indicating an incorrect hypnotic state. Anesth Analg. 2005;101(3):765–73.

16. Ahmed MU, Li L, Cao J, Mandic DP. Multivariate multiscale entropy for brain
consciousness analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:
810–3.

Zhan et al. BMC Anesthesiology           (2021) 21:66 Page 10 of 11

https://doi.org/10.1186/s12871-021-01285-x
https://doi.org/10.1186/s12871-021-01285-x
http://www.editage.cn


17. Merry AF, Cooper JB, Soyannwo O, Wilson IH, Eichhorn JH. International
standards for a safe practice of anesthesia 2010. Can J Anaesth. 2010;57(11):
1027–34.

18. Hsu CH, Tsai MY, Huang GS, Lin TC, Chen KP, Ho ST, et al. Poincaré plot
indexes of heart rate variability detect dynamic autonomic modulation
during general anesthesia induction. Acta Anaesthesiol Taiwanica. 2012;
50(1):12–8.

19. Huhle R, Burghardt M, Zaunseder S, Wessel N, Koch T, Malberg H, et al.
Effects of awareness and nociception on heart rate variability during
general anaesthesia. Physiol Meas. 2012;33(2):207–17.

20. Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A. Differential effects
of propofol and sevoflurane on heart rate variability. Anesthesiology. 2003;
98(1):34–40.

21. Liu Q, Ma L, Chiu RC, Fan SZ, Abbod MF, Shieh JS. HRV-derived data
similarity and distribution index based on ensemble neural network for
measuring depth of anaesthesia. Peer J. 2017;5:e4067.

22. Lee BR, Won DO, Seo KS, Kim HJ, Lee SW. Classification of wakefulness and
anesthetic sedation using combination feature of EEG and ECG. 2017 5th
international winter conference on brain-computer Interface (BCI). IEEE;
2017. p. 88–90.

23. Akbarian B, Erfanian A. Automatic seizure detection based on nonlinear
dynamical analysis of EEG signals and mutual information. Basic Clin
Neurosci. 2018;9(4):227–40.

24. Wei Q, Liu Q, Fan SZ, Lu CW, Lin TY, Abbod MF, et al. Analysis of EEG via
multivariate empirical mode decomposition for depth of anesthesia based
on sample entropy. Entropy. 2013;15(9):3458–70.

25. Udhayakumar RK, Karmakar C, Palaniswami M. Understanding irregularity
characteristics of short-term HRV signals using sample entropy profile. IEEE
Trans Biomed Eng. 2018;65(11):2569–79.

26. Al-angari HM, Sahakian AV. Use of sample entropy approach to study heart
rate variability in obstructive sleep apnea syndrome. IEEE Trans Biomed Eng.
2007;54(10):1900–4.

27. Jiang GJ, Fan SZ, Abbod MF, Huang HH, Lan JY, Tsai FF, et al. Sample
entropy analysis of EEG signals via artificial neural networks to model
patients’ consciousness level based on anesthesiologists experience. Biomed
Res Int. 2015;2015:343478.

28. Huang JR, Fan SZ, Abbod MF, Jen KK, Wu JF, Shieh JS. Application of
multivariate empirical mode decomposition and sample entropy in EEG
signals via artificial neural networks for interpreting depth of anesthesia.
Entropy. 2013;15(9):3325–39.

29. Komatsu T, Kimura T, Sanchala V, Shibutani K, Shimada Y. Effects of fentanyl-
diazepam-pancuronium anesthesia on heart rate variability: a spectral
analysis. J Cardiothorac Vasc Anesth. 1992;6(4):444–8.

30. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, et al.
Supine low-frequency power of heart rate variability reflects baroreflex
function, not cardiac sympathetic innervation. Heart Rhythm. 2007;4(12):
1523–9.

31. Ferreira AL, Nunes CS, Mendes JG, Amorim P. Usefulness of the blink reflex
to assess the effect of Propofol during induction of anesthesia in surgical
patients. XV Mediterranean Conference Med Biol Eng Comput MEDICON.
2019;2020:1057–63.

32. Shalbaf A, Shalbaf R, Saffar M, Sleigh J. Monitoring the level of hypnosis
using a hierarchical SVM system. J Clin Monit Comput. 2020;34(2):331–8.

33. Lee HC, Ryu HG, Park Y, Yoon SB, Yang SM, Oh HW, et al. Data driven
investigation of bispectral index algorithm. Sci Rep. 2019;9(1):13769.

34. Gu Y, Liang Z, Hagihira S. Use of multiple EEG features and artificial neural
network to monitor the depth of anesthesia. Sensors (Basel). 2019;19(11):
2499.

35. Park Y, Han SH, Byun W, Kim JH, Lee HC, Kim SJ. A Real-Time Depth of
Anesthesia Monitoring System Based on Deep Neural Network With Large
EDO Tolerant EEG Analog Front-End. IEEE Trans Biomed Circuits Syst. 2020;
14(4):825–37.

36. Fu Y, Xu T, Xie K, Wei W, Gao P, Nie H, et al. Comparative evaluation of a
new depth of anesthesia index in ConView® system and the Bispectral
index during Total intravenous anesthesia: a multicenter clinical trial.
Biomed Res Int. 2019;2019:1014825.

37. Güler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification
of EEG signals using wavelet coefficients. J Neurosci Methods. 2005;148(2):
113–21.

38. Bose NK, Liang P. Neural network fundamentals with graphs, algorithms,
and applications. Mcgraw-Hill, Inc. 1996.

39. Huang HH, Lee YH, Chan HL, Wang YP, Huang CH, Fan SZ. Using a short-
term parameter of heart rate variability to distinguish awake from isoflurane
anesthetic states. Med Biol Eng Comput. 2008;46(10):977–84.

40. Pilge S, Schneider G. BIS and state entropy of the EEG - comparing apples
and oranges. Br J Anaesth. 2015;115(2):164–6.

41. Kunze DL. Reflex discharge patterns of cardiac vagal efferent fibres. J
Physiol. 1972;222(1):1–15.

42. Palazzolo JA, Estafanous FG, Murray PA. Entropy measures of heart rate
variation in conscious dogs. Am J Phys. 1998;274(4):H1099–105.

43. Win NN, Kohase H, Yoshikawa F, Wakita R, Takahashi M, Kondo N, et al.
Haemodynamic changes and heart rate variability during midazolam-
propofol co-induction. Anaesthesia. 2007;62(6):561–8.

44. Ireland N, Meagher J, Sleigh JW, Henderson JD. Heart rate variability in
patients recovering from general anaesthesia. Br J Anaesth. 1996;76(5):657–
62.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zhan et al. BMC Anesthesiology           (2021) 21:66 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Expert assessment of consciousness level
	ECG preprocessing
	Frequency-domain algorithm
	Machine learning algorithms
	Performance analysis
	Statistical analysis

	Results
	Primary outcome
	Secondary outcomes
	Exploratory outcomes

	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

