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Abstract
Background: The Hippo pathway is a developmental path-
way recently discovered in Drosophila melanogaster; in 
mammals it normally controls organ development and 
wound healing. Hippo signaling is deregulated in breast 
cancer (BC). MST1/2 and LATS1/2 kinases are the upstream 
molecular elements of Hippo signaling which phosphorylate 
and regulate the two effectors of Hippo signaling, YAP1 and 
TAZ cotranscriptional activators. The two molecular effec-
tors of the Hippo pathway facilitate their activity through 
TEAD transcription factors. Several molecular pathways with 
known oncogenic functions cross-talk with the Hippo path-
way. Methods: A systematic review studying the correlation 
of the Hippo pathway with BC tumorigenesis, prognosis, and 
treatment was performed. Results: Recent literature high-
lights the critical role of Hippo signaling in a wide spectrum 
of biological mechanisms in BC. Discussion: The Hippo path-

way has a crucial position in BC molecular biology, cellular 
behavior, and response to treatment. Targeting the Hippo 
pathway could potentially improve the prognosis and out-
come of BC patients. © 2020 S. Karger AG, Basel

Introduction

The Hippo pathway is a developmental pathway dis-
covered recently in Drosophila melanogaster. In mam-
mals’ development the Hippo pathway controls organ 
size, tissue regeneration, wound healing, and mainte-
nance of tissue-specific stem cells [1, 2]. In human breast 
cells, the Hippo pathway has been linked with estrogen 
receptor alpha to regulate breast cell fate [3]. The molecu-
lar elements of the Hippo pathway include MST1/2 and 
LATS1/2, two kinases which phosphorylate the YAP1 
and TAZ cotranscription factors. SAV1 is a mediator 
which facilitates the proximity of MST1/2 and LATS1/2, 
thus promoting phosphorylation. MOB1A and MOB1B 
are additional adapter molecules that promote LATS1/2 
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kinase activity. The active hippo kinase cascade results in 
LATS1/2-mediated phosphorylation at S127 and S381 for 
YAP1 and S89 and S311 for TAZ. The phosphorylated 
forms of YAP1 and TAZ cause cytoplasmic retention via 
their binding to 14-3-3. Ultimately, pYAP and pTAZ un-
dergo proteasomal degradation via the function of SCF 
complex. In contrast, the unphosphorylated forms of 
YAP1 and TAZ remain in the nuclei and regulate their 
function through TEAD transcription factors [4, 5].

The Hippo pathway is regulated through several mech-
anisms (Fig. 1). Plasma membrane proteins like G pro-
tein-coupled receptor ligands have been identified as 
regulators of Hippo signaling [6], with GPER mediat- 
ing estrogen effects in breast cancer (BC) development 
[7]. Upstream intracellular adaptor proteins like NF2, 
RASSFs, and KIBRA interact with MST1/2 and LATS1/2, 
altering their function and subsequently YAP1 and TAZ 
localization [8–10]. Mechanical influences cause cyto-
skeletal remodeling, and YAP1 and TAZ emerge as im-
portant factors linking extracellular matrix signals to 
transcriptional outputs that regulate cell behavior [11, 
12]. Furthermore, cross-talk of the Hippo pathway with 
other pathways such as Wnt/β-catenin, TGF-β, PI3K/
AKT, MAPK, and Jak/Stat is well documented [13–19]. 
Activation of the Wnt/β-catenin pathway leads to Hippo 
pathway activation via dissociation of YAP1 and TAZ 
from proteasomal degradation complex [15, 20]. The 
Hippo pathway is linked with the JNK pathway (Janus 
kinase). AP1 (dimmer of JUN and FOS proteins) co-oc-
cupies with YAP1 and TAZ in TEAD transcription fac-

tors [16, 21]. Furthermore, Ajuba proteins regulate JNK 
Hippo pathway activation by inhibiting LATS1/2 func-
tion [22]. More significantly, PI3K activation leads to 
Hippo pathway inhibition, conferring antagonism be-
tween contact inhibition and growth promotion [23].

Materials and Methods

Eligible articles were identified by a search of the MEDLINE bib-
liographical database for the last 5 years, i.e., the period of January 
1, 2014 up to December 31, 2018. The search strategy included the 
following keywords: breast cancer [ti] AND (neoplasm [ti] OR can-
cer [ti] OR breast [ti]) AND (Hippo pathway [ti] OR YAP1 [ti] OR 
TAZ [ti]) AND (follow up [ti] OR prognosis [ti] OR treatment [ti]).

Language restrictions were applied (only articles in English, 
French, and German were considered eligible). Two investigators 
(F.Z. and A.K.), working independently, searched the literature 
and extracted data from each eligible study. Reviews, experts’ opin-
ions, as well as prospective and retrospective studies were eligible, 
while case reports were excluded for this systematic review. Manu-
scripts that did not state the name of the authors were excluded. 
Additional articles were identified from the reference lists of re-
trieved articles.

Articles with preclinical and clinical data were included. Lit-
erature referring to the biological role of the Hippo pathway in BC 
oncogenesis enriched our analysis. It must be highlighted that 
there was no limitation regarding the BC tumor subtype (ER, PR, 
Her2 status) of the reported articles. Publications reporting data 
from BC cell lines, animal models, patients’ clinical samples, and 
in silico experiments are discussed. Especially, studies revealing 
prognostic relevance of Hippo pathway components in BC and 
studies therapeutically targeting Hippo signaling were considered 
eligible for this systematic review.

Fig. 1. Schematic presentation of the Hippo pathway and its molecular elements in the cell.
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Results

Our research strategy revealed 71 articles, from 
which 23 were excluded. The remaining 48 articles in-
cluded 6 reviews, 12 articles that described patient-de-
rived data, 24 publications reporting data coming from 
cell lines, 5 papers discussing data derived both from 
patients and cell lines or xenografts or animals, and 1 
paper which published data derived from animals. The 
MEDLINE research retrieved 25 relevant articles, while 
13 papers were included being references of relevant 
articles (Fig. 2).

Both clinical and basic research articles were included. 
Studies regarding molecular mechanism associated with 
prognosis were performed on female cell lines or tumor 
samples (n = 21) [3, 7, 14, 19, 20, 24–45] and male patient 
tumor samples (n = 3) [46–48]. More specifically, Hippo 
pathway implication in epithelial-mesenchymal transi-
tion (EMT), stem cell generation, and therapeutic resis-
tance of BC cells were discussed. Furthermore, studies of 
the involvement of Hippo signaling elements in BC me-

tastasis were included. Genetic variants data were extract-
ed from patient samples (n = 2) [49, 50].

New treatment options were studied on cell lines de-
rived from BC patients and/or xenografts and genetically 
engineered animals (n = 13) [35, 51–62]. Verteporfin, 
apigenin, scutellarin, and bortezomib targeting Hippo 
signaling in BC are discussed. Additionally, Hippo path-
way involvement in resistance to taxol and lapatinib and 
correlation to immunotherapy and CDK inhibition are 
reported.

Furthermore, computational analyses and bioinfor-
matics data were also included [63]. Network signaling 
studies highlighting the Hippo pathway as an important 
cellular pathway are presented herein. Cross-talk of the 
Hippo pathway with several cell signalings, already 
known for their involvement in BC, are highlighted, de-
picting the core position of the Hippo pathway in the on-
cogenic signal transduction of BC cells. The in silico data 
were completed by in vitro and in vivo experiments in 
order to functionally reevaluate the involvement of the 
Hippo pathway in BC tumorigenesis.

Fig. 2. Schematic chart with the study de-
sign and the selection of articles included.
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Discussion

The Hippo Pathway in BC Tumorigenesis and 
Prognosis
Recent data showed that the Hippo pathway is fre-

quently altered in several solid tumors, indicating a pos-
sible implication in their pathogenesis [1, 2]. The cross-
talk of the Hippo pathway via its several elements with 
other cellular signaling pathways makes it a promising 
drugable target [64]. The Hippo pathway is also engaged 
in BC, promoting several functions such as EMT, stem 
cell generation, and therapeutic resistance [65, 66]. Hippo 
signaling promotes BC metastasis [32], and its core ele-
ments play an important role in the molecular mecha-
nism of colonization of BC cells either in or outside of 
breast tissue [41, 67].

YAP1 and TAZ expression is deregulated in BC [30, 
31]. Elevated levels of YAP1 and TAZ cotranscription 
factors are reported in luminal A and luminal B, Her2+, 
and triple-negative BC (TNBC) [65]. TAZ nuclear local-
ization is associated with TNBC [24]. YAP1 and TAZ are 
also linked to metastasis in BC [68]. TAZ interacts with 
HIF-1α and is associated with bone metastasis in BC, as 
is shown from co-immunoprecipitation experiments 
[69]. Immunohistochemistry of HIF-1α and TAZ in bone 
metastasis cells derived from BC parental cells revealed 
increased expression for both TAZ and HIF-1α [69]. 
Chromatin immunoprecipitation assays in MCF7 cells 
proved that TAZ acts as a coactivator of HIF-1α down-
stream targets and similarly HIF-1α acts as a coactivator 
of TAZ target genes in human BC cells [27]. Furthermore, 
analysis of the human BC database revealed that increased 
patient mortality is associated with increased expression 
of both TAZ and HIF-1 target genes [70]. Decreased ex-
pression of upstream Hippo kinases LATS1/2 due to hy-
permethylation of LATS1/2 promoters has been reported 
in BC tumors with increased tumor size and lymph node 
metastases [71]. LATS1 expression was associated with 
disease outcome [72]. Low YAP1 expression has been re-
ported as an independent prognostic factor of recurrence 
for luminal A BC patients [73]. More specifically, YAP1 
protein intensity in 644 BC tumor samples and YAP1 
mRNA expression levels tested with microarrays from 
1,104 BC patients showed that in estrogen receptor-pos-
itive (ER+) patients YAP1 is negatively correlated with 
proliferation and histological grade. On the other hand, 
in estrogen receptor-negative (ER–) patients YAP1 ex-
pression was correlated with proliferation measured by 
Ki67 [73]. Studies of ER– BC tumor samples showed that 
IL-6 increases YAP1 dephosphorylation, nuclear local-
ization, and transcriptional activity, resulting in migra-
tion and invasion of BC cells [40]. This finding highlights 
the different roles that YAP1 plays among ER+ and ER– 
BC subtypes. Furthermore, it depicts the complexity of 

the molecular mechanisms underlying YAP1’s position 
and function in each case [40, 73].

In TNBC the MYC oncogene is overexpressed. In both 
BC cells and mouse models, MYC repressed YAP1 and 
TAZ. Further experiments showed that MYC deregula-
tion suppressed TEAD transcription factor activity. YAP1 
and TAZ are cotranscription factors mainly recruiting 
TEAD transcription factors to DNA. MYC, YAP1/TAZ, 
and TEAD circuitry may represent a critical pathway in 
the evolution of specific BC subtypes [28]. In mouse mod-
els MYC has been shown to suppress YAP1/TAZ activity 
in mammary tumors [26].

Furthermore, YAP1 is aberrantly expressed in TNBC. 
YAP1 and its upstream regulator Aurora kinase A localize 
predominantly in the nucleus of TNBC cells, implying a 
crucial role of the Hippo pathway in this BC subtype [74]. 
Co-immunoprecipitation studies, mass spectrometry, 
and expression analyses of both samples of TNBC pa-
tients and cell lines confirmed the interaction of Aurora 
kinase A with YAP1 and suggested that YAP1 is an im-
portant driver of malignant development in TNBC [74].

EMT is a cellular dedifferentiation program which 
gives an aggressive phenotype to cells through several 
ways. It confers cells with stem cell-like characteristics, 
promotes metastasis and tumor invasion, and makes ma-
lignant cells resistant to chemotherapy. In BC cells, EMT 
activation via Twist overexpression suppresses the Hippo 
pathway. In detail, Twist-overexpressing luminal BC cells 
show significant increase in Par1 activity – an upstream 
regulator of Hippo – which in turn interacts with TAZ by 
increasing its expression and deregulating the normal 
Hippo pathway [33]. Elevated expression of CTGF, a 
downstream target of the Hippo pathway, accompanies 
Twist-mediated EMT. Wound healing and invasiveness 
experiments confirmed that Twist-mediated EMT via 
Hippo inhibition promoted invasiveness and increased 
the migratory ability of BC cells [33]. Furthermore, Notch3 
inhibits EMT through the Hippo pathway by activating 
Kibra. Chromatin immunoprecipitation experiments re-
vealed that Notch3 interacts directly with Kibra by bind-
ing to the RBP-Jκ-binding site of the latter, thus activating 
Kibra protein. Knockdown of Kibra in BC epithelial cells 
reversed EMT [34]. These mechanisms are important for 
BC evolution and reveal new therapeutic targets and strat-
egies regarding BC invasion and metastasis.

The involvement of the Hippo pathway in BC stem 
cells (BCSCs) was first described by Cordenonsi et al. in 
2011 [63], and today this involvement is very well docu-
mented [75, 76]. Microarray test and computational anal-
ysis of 993 primary tumors revealed a YAP1/TAZ signa-
ture to be enriched in poorly differentiated BC tumors 
[63]. TAZ is highly expressed in grade 3 compared to 
grade 1 tumors arising in immunocompromised mice in-
jected with isogenic derivative cells of the MFC10A cell 



Kyriazoglou et al.Breast Care 2021;16:6–1510
DOI: 10.1159/000507538

line, depicting that TAZ is required for self-renewal and 
tumor initiation of BC cells [63]. Further studies in hu-
man primary BC confirmed that TAZ-positive tumors 
are associated with grade 3 disease [63]. Several publica-
tions report that TAZ activation enhances the metastatic 
potential of BCSCs and TNBC through different mecha-
nisms [25, 77, 78]. In basal-like BC cells, TAZ-dependent 
molecular signals were identified [45]. Expression analy-
sis of 99 tumor samples from BC patients with immuno-
histochemistry for TAZ revealed that high expression of 
TAZ was an independent negative marker for disease-
free survival [77]. Expression studies in 59 primary tu-
mors with their paired metachronous metastases, com-
bined with further studies in BCSC xenografts paired 
with their tumor metastases, showed a clear increase in 
TAZ expression in the metastatic sites [77]. Suppression 
of TAZ is facilitated by Ski with several biological mecha-
nisms. Ski activates LATS2 kinase, which phosphorylates 
TAZ and subsequently leads to TAZ degradation [25]. 
Additionally, Ski binds to TEAD and inhibits TAZ tran-
scriptional activity by recruiting cotranscription repres-
sor NCoR1 [25]. Therefore, Ski antagonizes TAZ-in-
duced EMT in BC cell lines [25].

In TNBC cell lines, apigenin is shown to decrease 
YAP1/TAZ activity and therefore reduces the expression 
of Hippo pathway downstream target genes, such as 
Cyr61 and CTGF. Apigenin disrupts the YAP1/TAZ-
TEAD interaction and thus downregulates the expression 
of Hippo downstream targets. Targeting the Hippo path-
way with apigenin is a promising way to potentially over-
come resistance to chemotherapy and metastasis [79]. 
Here, it should be noted that although apigenin has anti-
tumor activity, experiments in erythroleukemia cell lines 
have shown that it blocks cell cycle and induction of au-
tophagy, which resulted in lower levels of response to vin-
cristine [80].

Further studies on TNBC patient tumor samples and 
xenografts have shown that synaptopodin-2 inhibits 
YAP1 and TAZ activity and inhibits invasion and metas-
tasis [42]. In TNBC cells, knocking down TAZ results in 
increased sensitivity to EGFR inhibitors, thus providing 
evidence for the potential explanation of the low effec-
tiveness of anti-EGFR therapy [29].

On the other hand, YAP1 appears to have both tumor-
suppressing and tumor-promoting properties [81, 82]. 
Array CGH data from mice and mammary tumors re-
vealed an amplicon on 11q22 pointing to the YAP1 gene. 
YAP1-overexpressing cells showed EMT, proliferative 
advantage, and inhibition of apoptosis showing an onco-
genic function in mammalian cells [81]. Tumor suppres-
sor properties have been described for YAP1 in BC cells 
[83]. Inhibition of YAP1 expression with microRNA-
200a in BC cells promoted anoikis resistance and metas-
tasis [84]. Loss of DLG5 promotes BC cell proliferation 

by increasing the nuclear levels of YAP1 [37]. Kim and 
Lim [85] reported that serum response factor binds YAP1 
and recruits it to target genes sharing mammary stem 
cell-like characteristics. Serum response factor, YAP1, 
and IL-6 are overexpressed in basal-like and TNBC cells 
and are correlated with BCSC generation and poor re-
lapse-free survival, specifically in basal-like BC [85].

Drug tests in TNBC cell lines revealed that synthetic 
glucocorticoids were the compounds with the strongest 
effect on increasing YAP1 protein levels. Treatment of 
TNBC cells with glucocorticoids also increased YAP’s 
downstream targets, such as CTGF and Cyr61. Moreover, 
the glucocorticoid receptor activated YAP1 via fibronec-
tin 1, as was shown from chromatin immunoprecipita-
tion studies, proposing a cytoskeleton remodeling-de-
pendent manner of activation of the Hippo pathway [38]. 
Studies in patient-derived samples, including primary tu-
mors and metastatic lymph nodes, revealed a YAP1/
THBS1/FAK axis that regulates tumor invasiveness and 
focal adhesion [43]. All these together highlight the im-
portant cross-talk of the Hippo pathway with cytoskeletal 
regulation and mechanical influence.

RASSF6 in BC regulates the Hippo pathway. More 
specifically, immunohistochemical studies of RASSF6 in 
95 BC tumor samples revealed low expression of RASSF6 
in 42 cases. Especially in TNBC, RASSF6 downregulation 
was stronger [39]. RASSF6 downregulates YAP1 by up-
regulating MST1/2 and LATS1 phosphorylation, depict-
ing a direct association of RASSF6 with Hippo signaling 
during BC tumorigenesis [39]. Epigenetic regulation of 
RASSF1A through promoter regulation reduces pYAP 
and prevents invasion in BC tumors [86]. Furthermore, 
RASSF1A through TGF-β regulates YAP1 transcription-
al activity [87]. All these data highlight the important role 
of RASSF proteins as master regulators of the Hippo 
pathway, although the potential prognostic significance 
of these molecular mechanisms in selecting the patients 
that might benefit from therapeutic approaches targeting 
the Hippo pathway still remains unclear.

MARK4 can bind to MST1/2-SAV and inhibits the 
complex formation between LATS1/2, MST1/2, and SAV 
and therefore negatively regulates YAP1 and TAZ [36]. 
Further studies in BC cells showed that MARK4 deple-
tion facilitated proliferation and migration [36]. Addi-
tionally, MAC30 was found to be upregulated in BC cells. 
Increased levels of phosphorylated YAP1, MST1, and 
LATS1 were discovered after MAC30 knockout with 
siRNA in BC cells, revealing that MAC30 knockdown re-
sults in Hippo pathway activation [44].

Another biological process which interacts with the 
Hippo pathway was recently reported [88]. Geranylgera-
nylation is a lipidation process conjugating geranylgera-
nyl to the carboxyl terminal CAAX motif of proteins for 
anchoring to membranes. Inhibition of geranylgeranyl 
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pyrophosphate with atorvastatin or of geranylgeranyl-
ation with inhibitor GGTI-298 in BC cells resulted in an 
increase of MST1/2 and LATS1 phosphorylation, thus 
upregulating the Hippo pathway [88]. Moreover, BC cell 
proliferation and migration were dependent on geranyl-
geranylation-mediated activation of the Hippo pathway 
[88, 89].

Male BC is a rare disease, with our understanding on 
its biology still being vague [46]. The Hippo pathway reg-
ulators YAP1 and TAZ and their downstream target 
CTGF were studied in 129 patients. Patients sharing the 
YAP1/CTGF and TAZ/CTGF phenotypes had a shorter 
overall survival. Statistical analysis indicated that these 
phenotypes are independent predictors of survival [47]. 
Further studies of 116 male BC samples revealed that 
AXL expression is associated with overall survival. More 
significantly, phenotypes YAP1/CTGF/AXL and TAZ/
CTGF/AXL had an inferior survival compared to non-
triple-positive phenotypes [48].

Genetic variances of Hippo pathway genes have been 
tested in African American and African populations. It 
was shown that the Hippo pathway was associated with 
risk of ER– BC in the genetic variation analysis of 3,663 
cases (1,983 ER+ and 1,098 ER–) paired with 4,687 con-
trols. The CDH1 gene variant was connected to ER– BC 
in African American women [49]. On the other hand, the 
Hippo pathway was associated with risk of ER+ BC in a 
female population of African ancestry. The WWC1 
(KIBRA) gene was the most statistically significant single 
nucleotide polymorphism in an African-oriented popu-
lation including 403 ER+ and 374 ER– women out of 
1,657 cases examined for 7,086 single nucleotide poly-
morphisms [50].

The Hippo Pathway and Systemic Treatment
Hippo pathway deregulation has been implicated in 

resistance to chemotherapeutic drugs [63]. The Hippo 
pathway can be used as a target for therapeutic interven-
tion [61]. Small molecules like verteporfin, statins, and 
bisphosphonates are being evaluated as putative treat-
ment options [52, 55, 57]. Bortezomib, a proteasome in-
hibitor, is being evaluated in phase III trials including B-
cell non-Hodgkin lymphoma, acute myelogenous leuke-
mia, multiple myeloma, prostate cancer, and advanced 
soft tissue sarcomas [57]. The molecular mechanism by 
which bortezomib interacts with the Hippo pathway in-
volves FOXM1 [90]. FOXM1 is amplified in BC and is 
highly enriched in basal-type BCs. FOXM1 upregulates 
Aurora kinase and activates the Hippo pathway. Further-
more, FOXM1 is upregulated by YAP1-TEAD transcrip-
tion [90]. Bortezomib suppresses FOXM1 and induces 
apoptosis [91].

Cyr61 and CTGF, two downstream targets of TAZ/
TEAD, are associated with paclitaxel resistance in BC 

cells. Inhibition of Cyr61 and CTGF with shRNA tech-
nology reversed the response to paclitaxel [51]. TAZ has 
been shown to mediate resistance to paclitaxel in BC cells 
[51]. Further experiments with microarray in tissue sam-
ples from patients treated with chemotherapeutic regi-
mens such as taxol could examine the predictive value of 
TAZ as a biomarker in drug response [51]. Tamoxifen 
resistance via TAZ overexpression in BCSCs with low 
DLG5 levels indicates a molecular mechanism by which 
the Hippo pathway is involved in resistance and stemness 
[62]. Dasatinib has been shown to sensitize TNBC cells to 
paclitaxel and help overcome paclitaxel resistance [78]. 
This function is performed through downregulating Src 
kinase [92].

Neoadjuvant therapy responsiveness is also correlated 
with the Hippo pathway. Biopsies from Her2+ and TNBC 
patients who received neoadjuvant therapy were tested 
for the Hippo pathway elements’ localization and expres-
sion. Nuclear localization of kinases MST1/2 affects the 
efficacy of neoadjuvant therapy in BC and is associated 
with worse outcome. MST1/2 are incorporated to DNA 
damage response through cooperation with the ATR and 
ATM pathways and create molecular interactions of che-
moresistance [56, 58]. In luminal B and HER2-positive 
BC patients, the TAZ score predicts pathological com-
plete response to neoadjuvant chemotherapy and trastu-
zumab [53].

In TNBC cells, YAP1 has been shown to be upregu-
lated. mRNA levels of YAP1 in 4,000 BC patients failed to 
show association with relapse-free survival, but when the 
analysis was restricted to TNBC patients, YAP1 expres-
sion correlated with decreased relapse-free survival [35]. 
Inhibition of YAP1 in TNBC cells either genetically  
(siRNA and shRNA) or pharmacologically with vertepor-
fin resulted in radiosensitization. In detail, YAP mediates 
its radioresistance via PI3K/AKT and EGFR survival sig-
naling depicted in the MDA-MB-231 TNBC cell line. 
DNA-damaging modalities targeting the Hippo pathway 
may represent a new therapeutic approach for TNBC [35].

Progression in Her2+ tumors is a phenomenon not 
well understood, including changes in molecular path-
ways and tumor microenvironment. Lapatinib is a Her2 
kinase inhibitor. Resistance to lapatinib has been con-
nected to changes in the biophysical properties of tumor 
tissue due to extracellular matrix rigidity. The Hippo 
pathway is deregulated through mechanotransduction 
resulting in YAP1 and TAZ overexpression, relocation of 
YAP1 and TAZ in the nucleus, and lapatinib resistance. 
Inhibition of the Hippo pathway, either genetically or 
pharmacologically with verteporfin, reversed the re-
sponse to lapatinib in BC cells implanted in mice [54].

Experiments in BC cells showed a direct association of 
HMGA1, CCNE2, and YAP. More precisely, HMGA1 
and CCNE2 regulate YAP1 phosphorylation and subse-
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quent nuclear localization. Further studies with CDK in-
hibitors affected YAP1 nuclear localization. Additionally, 
YAP1’s downstream targets such as CTGF and Cyr61 
were downregulated when BC cells were treated with 
CDK inhibitors [57].

The Hippo pathway has also been connected with im-
mune evasion. In BC cell lines and mouse cell lines tested 
with Nanostring gene expression profiling, PD-L1 was 
found to be the target of YAP1 and TAZ cotranscription 
factors. TAZ/YAP1 via TEAD activate PD-L1 promoter, 
thus causing inhibition of T cells [60]. These data suggest 
the therapeutic potential for BC treatment in targeting 
the Hippo pathway either as a monotherapy or in combi-
nation with PD-L1-targeted immunotherapy [60].

Scutellarin is an effective component of the Scutellaria 
barbata herb, which has been shown to have antitumor 
activity in hepatocellular carcinoma, colon cancer, and 
tongue squamous cell carcinoma. Tests of scutellarin in 
MCF7 BC cells and xenografts showed that scutellarin-
treated cells presented with lower growth and increased 
apoptosis through regulation of the Hippo pathway. 
More specifically, increased pYAP and lower YAP1 ex-
pression was associated with inhibition of tumor growth 
in vivo in scutellarin-treated mice [59]. The exact mo-
lecular mechanism of scutellarin regulating pYAP and 
YAP1 expression is not well understood. Furthermore, it 
must be noted that scutellarin has not yet been tested in 
humans and that only preclinical data support its effec-
tiveness as a therapeutic approach.

Conclusion and Future Challenges

The Hippo pathway is a recently described pathway 
which has several oncogenic functions. In BC this path-
way is involved in oncogenesis and tumor evolution [65]. 
Especially in TNBC, where the driving molecular path-
ways are still unknown, the Hippo pathway seems to play 
a crucial role [56].

Cross-talk of the Hippo pathway with other molecular 
pathways gives a compound position of Hippo signaling 
in BC tumor cells. PI3K/AKT, Notch, and EGFR signal-
ing are common Hippo partners conferring to the com-
plexity of the oncogenic process. Thus, EMT, invasive-
ness, metastatic potential, and stem cell characteristics 
are tumor characteristics that BC cells can exhibit when 
the Hippo pathway is deregulated [33, 67].

Hippo molecular elements – YAP1, TAZ, Kibra, Au-
rora kinase, and LATS – have been shown to participate 
in BC development through different mechanisms [65, 
69, 71, 73]. YAP1 and TAZ expression is associated with 
luminal A and luminal B, Her2+, and TNBC [65]. It must 
be pointed out that YAP1 has different roles among dif-
ferent BC subtypes. Especially for ER+ BC, YAP1 corre-

lates negatively with tumor grade and proliferation, 
whereas on the other hand in ER– BC, it correlates posi-
tively with proliferation. TAZ expression is related to me-
tastasis and hypoxia [69]. EMT and BCSC-like character-
istics are related to Kibra and TAZ [33, 34].

Response to systemic therapy, including all existing 
options – chemotherapy, immunotherapy, and radiation 
therapy – has also been associated with Hippo signaling 
deregulation. TAZ is examined as a predictive biomarker 
for drug response [77]. Resistance to systemic treatment 
used in BC such as paclitaxel, or lapatinib that targets 
Her2 signaling, can be reversed by inhibiting Hippo path-
way elements [51, 54]. CDK inhibitors induce the trans-
location of YAP1 from the nucleus to the cytoplasm, re-
sulting in a decrease in its activity [57]. Insights into im-
munotherapy link YAP1 and TAZ transcription cofactors 
via TEAD to PD-L1 and immune evasion, raising crucial 
questions regarding the potential use of Hippo-targeted 
therapy alone or in combination with immunotherapy 
[60].

The Hippo pathway can be a target to reverse resis-
tance to systemic treatments. Small-molecule verteporfin 
is used at experimental levels both in vitro and in vivo to 
inhibit the Hippo pathway [35]. Bortezomib, a protea-
some inhibitor which is already clinically used in multiple 
myeloma, is currently studied in several solid tumors. In-
teraction of Hippo signaling with molecules showing an-
titumor activity, such as scutellarin, may lead to new ther-
apeutic modalities in BC [59].

The Hippo pathway has a pivotal role in BC molecular 
biology, cellular behavior, and response to treatment. Es-
pecially through its cross-talk with other oncogenic sig-
naling pathways and biological processes it becomes a 
promising drugable target. However, it should be high-
lighted that BC patients who are going to benefit from 
therapies targeting the Hippo pathway are not yet well 
defined. Our understanding on this signaling pathway 
will provide scientists and clinicians with important in-
formation regarding BC tumorigenesis and develop-
ment. Moreover, targeting Hippo signaling may prove to 
be an important weapon for future therapeutic interven-
tions in the armamentarium of clinicians dealing with 
BC.
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