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abstractOBJECTIVES: Childhood blindness from retinopathy of prematurity (ROP) is increasing as a result
of improvements in neonatal care worldwide. We evaluate the effectiveness of artificial
intelligence (AI)–based screening in an Indian ROP telemedicine program and whether
differences in ROP severity between neonatal care units (NCUs) identified by using AI are
related to differences in oxygen-titrating capability.

METHODS:External validation study of an existing AI-based quantitative severity scale for ROP on
a data set of images from the Retinopathy of Prematurity Eradication Save Our Sight ROP
telemedicine program in India. All images were assigned an ROP severity score (1–9) by using
the Imaging and Informatics in Retinopathy of Prematurity Deep Learning system. We
calculated the area under the receiver operating characteristic curve and sensitivity and
specificity for treatment-requiring retinopathy of prematurity. Using multivariable linear
regression, we evaluated the mean and median ROP severity in each NCU as a function of
mean birth weight, gestational age, and the presence of oxygen blenders and pulse
oxygenation monitors.

RESULTS: The area under the receiver operating characteristic curve for detection of treatment-
requiring retinopathy of prematurity was 0.98, with 100% sensitivity and 78% specificity. We
found higher median (interquartile range) ROP severity in NCUs without oxygen blenders and
pulse oxygenation monitors, most apparent in bigger infants (.1500 g and 31 weeks’
gestation: 2.7 [2.5–3.0] vs 3.1 [2.4–3.8]; P = .007, with adjustment for birth weight and
gestational age).

CONCLUSIONS: Integration of AI into ROP screening programs may lead to improved access to care
for secondary prevention of ROP and may facilitate assessment of disease epidemiology and
NCU resources.

WHAT’S KNOWN ON THIS SUBJECT: Childhood blindness from
retinopathy of prematurity (ROP) is increasing in many parts of the
world as a result of improved neonatal survival after preterm birth in
the setting of underresourced health systems with limited ability to
monitor oxygen and provide screening.

WHAT THIS STUDY ADDS: Evaluation of an artificial intelligence system
in an ROP telescreening program in India revealed high accuracy for
detection of sight-threatening ROP, and by using a quantitative scale, it
was found that units with oxygen-monitoring capability had lower ROP
severity.
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The incidence of retinopathy of
prematurity (ROP) worldwide is
increasing because health systems are
improving in low- and middle-income
countries (LMICs).1–3 One hundred
years ago, prematurely born infants
died before ROP was recognized
clinically. As modern neonatal care
developed in the mid-20th century,4

but before our understanding of the
relationship between oxygen and
ROP,4,5 ROP emerged and quickly
caused an epidemic of blindness in
the United States and Europe.3 After
the implementation of stricter
oxygen-monitoring protocols, the
incidence of blindness from ROP fell
dramatically before modern disease
classification and before any clinical
trials for ROP treatment.4,6,7 Since
then, the epidemiology of the disease
has varied geographically and over
time primarily on the basis of 2
factors: the survival of increasingly
premature infants and the
implementation of strict oxygen-
monitoring protocols.3,8

Over the last few decades, the
incidence of blindness from ROP has
been rising rapidly in many LMICs
because of the same epidemiological
factors.1,3 As neonatal care unit (NCU)
capacity expands in countries such as
India,1 which leads the world in
premature births,9 these new NCUs
must balance the primary goal of
reducing mortality with the
secondary goal of minimizing all of
the consequent morbidities of
premature birth, including ROP. Many
NCUs lack the material resources,
such as oxygen blenders and pulse
oxygenation monitors, necessary for
primary prevention of ROP.1 This has
2 effects: (1) both the incidence and
the severity of ROP are greater for
a given degree of prematurity in
LMICs and (2) a greater number of
infants need to be screened because
in the setting of unmonitored oxygen,
even mildly premature infants remain
at risk for blinding ROP, which is no
longer true in the United States.10,11

As a result, ∼20 000 infants go blind

and tens of thousands more develop
severe visual impairment every year,
primarily in LMICs.12

Artificial intelligence (AI)–facilitated
disease screening has been proposed
for a number of ophthalmic diseases
and would have the greatest impact in
these regions where the disease
burden far outweighs the existing
capacity for screening.13 ROP severity
is diagnosed on the basis of 3 clinical
features: how much of the retina is
vascularized (zone), the degree of
pathology at the vascular-avascular
border (stage), and the degree of
dilation and tortuosity of the
posterior retinal vessels (plus
disease).6,14,15 Brown et al16 reported
the expert-level automated
performance of an AI algorithm for
the diagnosis of plus disease that was
developed for a North American
population of premature infants, and
extensions of this work have revealed
that the same algorithm (Imaging and
Informatics in Retinopathy of
Prematurity Deep Learning [i-ROP
DL]) can be used to assign
a quantitative severity score (1–9) on
the basis of a single photograph that
correlates with the full zone, stage,
and plus disease classification.17–20

Two retrospective evaluations of this
system in a North American
population revealed high sensitivity
for detection of treatment-requiring
retinopathy of prematurity (TR-
ROP).19,21 However, it is well
recognized that AI algorithms that
reveal high diagnostic accuracy in
research data sets or one
demographic population may not
generalize to other populations, and
there has been little real-world
evaluation of AI-based screening in
LMICs.17,22,23

Furthermore, the ability of AI to
quantitatively assess ROP severity in
individuals opens the door for
quantification of ROP severity in
groups of individuals, such as
comparing rates of ROP between
NCUs within a geographic region or
over time. There are several potential

reasons that NCUs may have different
levels of ROP: (1) differences in
neonatal mortality may affect
whether infants survive to the point
of ROP screening, which generally
occurs after 3 to 4 weeks of life; (2)
differences in oxygen management
between NCUs may lead to higher
rates of ROP; and (3) tertiary referral
centers may provide care for higher-
risk patients on the basis birth weight
and gestational age. In this study, we
retrospectively evaluate the
diagnostic performance of this AI-
based ROP severity score in a real-
world data set from an Indian ROP
telescreening program. We further
evaluate the hypothesis that this
severity score could be used as
a quantitative metric at the NCU level
to assess differences in ROP severity
and possibly differences in neonatal
care in this population.

METHODS

Data Set

The data set was obtained from
images collected through the
Retinopathy of Prematurity
Eradication Save Our Sight
telemedicine program at the Aravind
Eye Hospital in Coimbatore, India,
between August 2015 and October
2017. Each NCU was given a unique
study identification on the basis of
the order it appeared in the database.
Trained technicians who traveled
weekly to each NCU used the Retcam
Shuttle (Natus Medical Incorporated,
Pleasanton, CA) to obtain fundus
photographs for each infant who met
Indian screening guidelines (born at
#34 weeks and weighing 2000 g).11

Images of each eye were obtained,
including an anterior segment
photograph and multiple views of the
posterior retina (containing the optic
nerve) as well as the retinal
periphery. The data set also included
demographic characteristics
associated with ROP, including birth
weight, gestational age, and

2 CAMPBELL et al



postmenstrual age at time of initial
ROP examination.

Consensus Diagnosis of Plus Disease

Each eye examination in the data set
was classified as plus, pre-plus, or no
plus by the original clinicians (P.K.S.
or P.S.) via telemedicine and
subsequently by a trained study
coordinator (S.O.) who was masked to
the clinical diagnosis. Disagreements
were adjudicated by 2 additional ROP
clinicians (J.P.C. and M.F.C.). All
graders were masked to the deep
learning results. Thus, each eye
examination received a label of plus,
pre-plus, or normal on the basis of
a majority vote among 3 graders,
which served as the ground truth for
evaluation of the i-ROP DL system.

Image Preprocessing

Because the i-ROP DL system is only
used to evaluate images of the
posterior retina, we developed
a preprocessing step to exclude
images that did not have an optic
nerve present within the image (such
as anterior segment images or far
peripheral retinal images). We
trained an optic disc segmenter using
a U-Net24 implemented in Keras with
TensorFlow.25 Our model was trained
by using Adam optimization (with b1
= .9 and b2 = .999) for 200 epochs
with a batch size of 8 and an initial
learning rate of 0.05. Images were
preprocessed by rescaling to size 480
3 480 and applying various data
augmentation techniques, such as
horizontal and vertical flips, rotations,
etc. From the original data set of 8567
images, 4383 nonposterior retinal
images were excluded by this process.
An additional 9 nonposterior pole
images were excluded on manual
review during the image grading
process.

Comparison of Clinical Diagnosis
With Severity Score

All of the remaining images were then
analyzed by the i-ROP DL system and
assigned a plus disease classification
(plus, pre-plus, or normal). Because

the output of the i-ROP DL system is
at the image level, but clinical
diagnosis is performed at the eye
level, the mode classification was
used for the deep learning label for
each eye examination, with the higher
classification chosen in the case of an
even split. Each image was also
assigned an AI severity score from 1
to 9 by using methods previously
published.19,20 We averaged the AI
severity score for all posterior retinal
images for each eye examination and
compared the AI severity score to the
consensus plus disease diagnosis
using analysis of variance. We then
calculated the area under the receiver
operating characteristic (AUROC)
curve, sensitivity, specificity, and
positive predictive value (PPV) for the
detection of plus disease (all infants
diagnosed with plus disease require
treatment) and any infant who was
deemed to require treatment by the
clinician.15 In this article, we report
the performance of the AI system for
detection of TR-ROP, as determined
by the clinician.

Quantitative Evaluation of ROP
Severity at the NCU Level

We identified all NCUs that had
screened .5 infants during the study
period, which was an arbitrary
number chosen to limit analysis of
NCUs that were only recently added
to the screening program. To generate
a quantitative metric of ROP severity
for each NCU, we averaged the
individual-level severity scores from
the first examination for all infants
within that NCU during the study
period. Per Indian ROP screening
guidelines, the first examination
occurs at 31 weeks’ gestation or 4
weeks of life, whichever is later.11

This produced a number, from 1 to 9,
for each NCU in the data set, which
we labeled “NCU-level ROP severity.”

Assessment of Oxygen-Management
Capability

Ophthalmic technicians who were
masked to the results of the AI output
surveyed neonatal nurses and

documented the characteristics of the
NCUs, including the number of beds,
whether they were government
funded or private, and whether each
NCU had oxygen blenders and pulse
oxygenation monitors. We split the
cohort into 2 groups: those with
oxygen blenders and pulse
oxygenation monitors for every bed
in the unit (both necessary for best
practices regarding oxygen
management) and those without one
or the other or both. We then
performed a multivariable linear
regression of NCU-level ROP severity
as a function of the mean NCU birth
weight and gestational age,
government versus private status,
and oxygen-monitoring capability.

This study was conducted in
accordance with Health Insurance
Portability and Accountability Act
guidelines, and institutional review
board approval was obtained at both
Oregon Health & Science University
and the Aravind Eye Hospital under
a waiver of consent for retrospective
evaluation of clinical and imaging
data obtained as part of routine
clinical care. Statistical analysis was
performed by using Stata MP 13
(Stata Corp, College Station, TX) and R
(R Foundation, Vienna, Austria). A P
value ,.05 was considered
statistically significant.

RESULTS

Description of Data Set

After preprocessing with removal of
nonposterior retinal images and
duplicates, there were 4175 unique
images from 1253 eye examinations
of 363 infants from 32 NCUs for the
eye examination level analysis. Two
hundred three infants were male
(56%). The mean 6 SD gestational
age was 31 6 4 weeks. The mean 6
SD birth weight was 1405 6 390 g,
and the mean 6 SD postmenstrual
age was 38 6 5 weeks. The results of
762 examinations (61%) were
classified as no plus disease, 436
(35%) were classified as pre-plus
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disease, and 55 (4%) were classified
as plus disease by consensus
diagnosis. All infants diagnosed with
TR-ROP had a consensus diagnosis of
plus disease in this data set. Four
hundred thirteen of the 1253 eye
examinations (33%) occurred in
infants who would not meet ROP
screening guidelines in the United
States. Figure 1 reveals the
distribution of infants in this data set
by birth weight and gestational age.

Comparison of Clinical Diagnosis
With Severity Score

Figure 2A reveals the receiver
operating characteristic curve, and
Fig 2B reveals the confusion matrix
for the output of the i-ROP DL system
compared to the consensus diagnosis.
The i-ROP DL system agreed with the
3-level consensus diagnosis of plus
disease (no plus versus pre-plus
versus plus) in 939 of 1253 (75%)
examinations. Figure 2C reveals a box
plot of the median AI severity score
for each eye examination compared to
the consensus diagnosis of normal,
pre-plus, or plus disease. The median
(interquartile range [IQR]) AI severity
score of images with no plus disease
according to the telemedicine grading
was 1.8 (1.3–2.4), compared to 3.5
(2.4–4.3) for pre-plus disease and 6.2
(5.3–6.9) for plus disease (P , .001).
The AUROC was 0.98 for detection of
TR-ROP by using the 1 to 9 severity
score. Optimizing for sensitivity, the
system performed optimally at 3.5,
with 100% sensitivity and 78%
specificity for detection of treatment-
requiring disease (Youden’s index
operating point was 3.6, with 98.2%
sensitivity and 79.7% specificity) and
a PPV of 12% for treatment-requiring
disease and 74% for pre-plus or
worse disease.19,20

Quantitative Evaluation of ROP
Severity at the NCU Level

During the study period, 14 of the 32
NCUs screened .5 infants, resulting
in 3928 images from 583 initial eye
examinations (325 infants) for the
NCU-level analysis. NCU-level ROP

severity scores at each hospital are
shown in the Table 1. Only 3 of the 14
NCUs (21%) had both oxygen
blenders and pulse oxygenation
monitors at the time of the survey.
NCUs with both oxygen blenders and
pulse oxygenation monitors had
lower NCU-level ROP severity, with
a mean ROP severity of 3.2 (median
2.9; IQR 2.2–3.5), compared to 3.5
(median 3.2; IQR 2.3–4.0) in units
without these resources (P = .04 by
analysis of variance). On the

multivariable linear regression,
higher NCU-level ROP severity was
associated with lower birth weight (P
, .001) and the absence of oxygen-
management capability (P = .003).
Gestational age and government
versus private NCU status were not
associated with ROP severity.

The differences between NCUs were
even more apparent when we
compared bigger infants (birth weight
.1500 g) in the NCUs with and

FIGURE 1
Scatterplot of birth weight and gestational age in the Retinopathy of Prematurity Eradication Save
our Sight program population. Reference lines indicate cutoffs for screening guidelines in the United
States (,31 weeks or 1500 g). Screening criteria in India are more liberal, which increases ROP
screening burden because infants at a higher birth weight and gestational age remain at risk for
disease.

FIGURE 2
External validation of the i-ROP DL system for plus disease. A, AUROC for the classification of plus
disease = 0.98. B, Confusion matrix for AI versus consensus diagnosis. C, Quantitative severity score
(1–9) by consensus diagnosis of plus disease (P , .001 for all comparisons).

4 CAMPBELL et al



without oxygen-management
capabilities. Those with oxygen
blenders and oxygen monitors for
every infant had a mean severity of
2.7 (median 2.7; IQR 2.5–3.0),
compared to 3.4 (median 3.1;
IQR 2.4–3.8) in those without
(P = .007), despite those NCUs
having a population of infants at
significantly higher risk by birth
weight (P = .02) and gestational age
(P = .04).

DISCUSSION

In this study, we retrospectively
evaluated an AI system for ROP
diagnosis that was developed for
a North American population of
premature infants on a data set from
an ROP telemedicine program in
India. The key findings are the
following: (1) at the individual eye
examination level, the system
revealed high diagnostic accuracy as
a screening device for TR-ROP; and
(2) at the population level, looking at
individual NCUs, we found higher
ROP severity in NCUs that did not
have the resources to monitor and
titrate oxygen. We consider these
results to be proof of principle that AI
may be used to improve the efficiency
of ROP screening and also as an

epidemiological tool for monitoring
NCU-level ROP severity across
geography and time.

In this article, we demonstrate high
diagnostic accuracy in an external
data set in a real-world ROP
screening population in India.
Telescreening programs have proven
to be an effective force multiplier for
ROP screening across large
geographic areas; however, because
most screening examinations reveal
no or mild disease and because even
the most efficient systems take
significant clinical time away from
other patient care responsibilities for
clinicians, there is a compelling
argument for AI-based ROP
screening.18,26,27 As an autonomous
ROP screening device, the system
could provide automated real-time
referral decisions and refer only
positive cases for clinician review,
reducing the screening burden by
60% to 80%.19 In this population, the
PPV for TR-ROP was only 12%;
however, the PPV for pre-plus or
worse disease was 74%. Future
prospective evaluation is necessary to
determine the cost-effectiveness of
various operating points in diverse
settings, both in low- and high-
income countries.

We further evaluated the relationship
between quantitative assessment of
ROP severity in a NCU and oxygen-
management capability as a rough
measure of NCU quality. The
relationship between ROP severity
and NCU level of care is likely to be
a U-shaped curve. At one end, units
with high neonatal mortality may
have no infants survive to be
evaluated for ROP. As neonatal
mortality improves, the subsequent
risk of ROP increases, even for mildly
preterm infants, increasing the
population at risk and incidence of
severe ROP. Figure 1 reveals the
added screening burden caused by
the more inclusive screening criteria.
Figure 3 reveals an example of an
infant born at NCU 11 who would not
have met US screening guidelines but
developed aggressive posterior
retinopathy of prematurity (APROP)
presumably related to oxygen
exposure. Although there are rare
cases of inherited retinal
vasculopathies that may mimic
APROP, at the population level, the
observed relationship between
oxygen and these cases of APROP is
compelling.1,2 As NCU quality further
improves with strict oxygen
monitoring and high-quality neonatal

TABLE 1 Demographics for NCUs With .5 Screened Infants

ID n ROP Disease Severity,
%

Mean Birth Weight, g
(Range; SD)

Mean Gestational Age,
wk (Range; SD)

Mean Postnatal
Age, d (Range; SD)

Government
Hospital

Oxygen-Titrating
Capability

Mean NCU-Level
Severity Score

(SD)None Pre-
Plus

Plus
Disease

6 15 93 7 0 1439 (930–1710; 281) 31 (27–37; 3) 53 (20–125; 37) Yes Yes 2.9 (0.4)
7 15 73 27 0 1363 (825–2100; 379) 32 (28–37; 3) 33 (9–59; 15) Yes No 2.9 (0.7)
2 26 62 39 0 1419 (1000–2350; 348) 30 (25–34; 3) 44 (24–66; 13) Yes Yes 3.2 (0.9)
3 43 77 19 5 1432 (865–2600; 364) 31 (28–37; 3) 40 (11–74; 15) Yes No 3.2 (1.4)
14 26 69 23 8 1271 (750–1850; 330) 30 (26–34; 2) 52 (18–100; 19) Yes No 3.3 (1.2)
10 77 66 22 12 1104 (565–1800; 294) 29 (24–34; 3) 48 (7–121; 24) No Yes 3.3 (1.3)
19 18 89 0 11 1198 (800–1440; 187) 30 (26–34; 2) 57 (29–118; 26) No No 3.4 (1.8)
21 28 64 36 0 1649 (800–2810; 617) 32 (28–37; 3) 34 (17–63; 15) No No 3.4 (1.1)
18 141 79 17 4 1545 (800–3200; 346) 32 (25–37; 2) 37 (7–115; 20) Yes No 3.5 (1.3)
1 82 66 32 2 1479 (800–2250; 323) 31 (26–36; 2) 40 (12–113; 21) Yes No 3.6 (1.3)
25 36 69 19 11 1462 (850–2900; 406) 32 (28–37; 2) 35 (13–55; 10) Yes No 3.6 (1.5)
20 45 56 40 4 1288 (900–1850; 287) 31 (28–36; 2) 36 (16–88; 17) No No 3.9 (1.2)
11 19 58 21 21 1506 (900–2000; 371) 32 (28–34; 1) 42 (17–71; 16) Yes No 3.9 (1.7)
4 12 25 75 0 1491 (1000–2000; 327) 30 (26–34; 3) 39 (10–91; 28) Yes No 4.7 (1.6)

ID, study identification number.
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care, the population at risk for ROP
shifts toward younger and smaller
infants, which would reduce the
screening burden, and this AI tool
could be used for resource
allocation to those NCUs that take
care of the youngest infants who
remain at risk for TR-ROP and
APROP.8,28,29

There are several limitations to this
study. First, it is possible that there
are unmeasured variables, such as
mortality, referral patterns, and loss
to follow-up of discharged patients,
that introduced selection bias to the
population studied here. However, in
general, higher mortality within an
NCU and high rates of referral out of
an NCU would tend to lower, rather
than raise, apparent ROP severity. We
believe that although the associations
identified here have face validity in
light of the ROP epidemic in India,
they need further prospective
validation, with careful assessment of
mortality, referrals, and disease at any

time point (not just the first
examination). Second, there are rare
cases of TR-ROP without plus disease
(zone I, stage 3, no plus); however,
none were observed in this
population, and nearly all such cases
in previous publications would have
had positive screen results at the
proposed operating point.19 The
relationship between the AI severity
score and zone I stage 3 eyes is worth
further prospective evaluation in
other populations. Fourth, the i-ROP
DL system was developed by using
images from a single camera system
(Retcam; Natus Medical
Incorporated), which is expensive and
not universally available in LMICs.
Further work is being done to
evaluate AI on images from other,
lower cost, camera systems, which
will be important to scale this
approach.

In this article, we demonstrate that AI
may not only have implications for
secondary prevention of ROP but also
be a useful tool for monitoring
disease epidemiology, which may
have application both in high- and
low-income countries. Improved
primary prevention would be more
impactful in terms of reducing the
incidence of ROP and reducing the
screening burden than any new
therapeutic intervention for
treatment of late-stage ROP. In
addition, AI may also have a role in
developing objective disease
classification systems19,20 and
standardizing treatment thresholds30

and may play a role in ROP education,
especially in regions of the world
where ROP is an emerging disease.31

AI has been used for outbreak and

infectious disease surveillance via big
data sources, such as social media
and search metadata.32,33 However, to
our knowledge, the current study is
the first application of an AI image-
based disease classifier at the
population level for epidemiological
assessment of disease severity and
may be a generalizable approach for
other disease states. The final, and
likely hardest, challenge for this and
all AI technologies will be to
incorporate these technologies into
sustainable models and integrated
health systems so that the potential
benefits of these technologies may be
seen.
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