Table 1. Performance difference across SC and conventional binary domain.
| CNN Model | Platform | Year | Method | Area (mm2) | Power (W) or energy (nJ) | Accuracy (%) | Energy efficiency (images/J) or (GOPS/W) |
|---|---|---|---|---|---|---|---|
| Lenet-5 | CPU | 2009 | Software | 263 | 156 W | 99.17 | 4.2 |
| GPU | 2011 | Software | 520 | 202.5 W | 99.17 | 3.2 | |
| ASIC | 2016 | SC 256 bit (Ren et al., 2017) | 36.4 | 3.53 W | 98.26 | 221,287 | |
| ASIC | 2018 | SC 128bit (Li et al., 2018a) | 22.9 | 2.6 W | 99.07 | 1,231,971 | |
| ASIC | 2018 | SC DWM 128bit (Ma et al., 2018) | 19.8 | 0.028W | 98.94 | – | |
| AlexNet (last second layer) | CPU | 2009 | Software | 263 | 156 W | – | 0.9 |
| GPU | 2011 | Software | 520 | 202.5 W | – | 2.8 | |
| ASIC | 2018 | SC 128bit (Li et al., 2018a) | 24.7 | 1.9 W | – | 1,326,400 | |
| Custom (3x3filter) | ASIC | 2015 | Binary | 5.429 | 3.287mW | – | – |
| ASIC | 2017 | SC MAC | 1.408 | 1.369mW | – | – | |
| ASIC | 2019 | SC DMAC | 1.439 | 1.393mW | – | – | |
| Custom (Ardakani et al., 2017) | ASIC | 2017 | Binary | – | 380 nJ | 97.7 | – |
| ASIC | 2017 | Integral SC | – | 299 nJ | 97.73 | – | |
| ConvNet for MNIST | ASIC | 2015 | Binary | 0.98 | 0.236W | – | 1158.11 GOPS/W |
| ASIC | 2017 | SC MAC | 0.43 | 0.279W | – | 5640.23 GOPS/W | |
| Custom (Hirtzlin et al., 2019) | ASIC | 2019 | BNN | 1.95 | 220 nJ | 91 | – |
| ASIC | 2019 | SC BNN | 0.73 | 90 nJ | 89.6 | – |
Notes.
- GOPS
- Giga operations per second