Skip to main content
. 2020 Nov 9;6:e309. doi: 10.7717/peerj-cs.309

Table 1. Performance difference across SC and conventional binary domain.

CNN Model Platform Year Method Area (mm2) Power (W) or energy (nJ) Accuracy (%) Energy efficiency (images/J) or (GOPS/W)
Lenet-5 CPU 2009 Software 263 156 W 99.17 4.2
GPU 2011 Software 520 202.5 W 99.17 3.2
ASIC 2016 SC 256 bit (Ren et al., 2017) 36.4 3.53 W 98.26 221,287
ASIC 2018 SC 128bit (Li et al., 2018a) 22.9 2.6 W 99.07 1,231,971
ASIC 2018 SC DWM 128bit (Ma et al., 2018) 19.8 0.028W 98.94
AlexNet (last second layer) CPU 2009 Software 263 156 W 0.9
GPU 2011 Software 520 202.5 W 2.8
ASIC 2018 SC 128bit (Li et al., 2018a) 24.7 1.9 W 1,326,400
Custom (3x3filter) ASIC 2015 Binary 5.429 3.287mW
ASIC 2017 SC MAC 1.408 1.369mW
ASIC 2019 SC DMAC 1.439 1.393mW
Custom (Ardakani et al., 2017) ASIC 2017 Binary 380 nJ 97.7
ASIC 2017 Integral SC 299 nJ 97.73
ConvNet for MNIST ASIC 2015 Binary 0.98 0.236W 1158.11 GOPS/W
ASIC 2017 SC MAC 0.43 0.279W 5640.23 GOPS/W
Custom (Hirtzlin et al., 2019) ASIC 2019 BNN 1.95 220 nJ 91
ASIC 2019 SC BNN 0.73 90 nJ 89.6

Notes.

GOPS
Giga operations per second