Skip to main content
. 2020 Nov 9;6:e309. doi: 10.7717/peerj-cs.309

Table 2. Component-wise performance comparison of SC CNN.

SC CNN/BNN components Author Platform/ software Relative accuracy (%) Area/gate count (%) Power/Energy saving (%) Relative to
Integra SC Ardakani et al. (2017) FPGA & ASIC +0.03 −33.9 21.3 Binary computing
ESL Canals et al. (2016) FPGA −2.23 Binary computing
APC + Btanh Kim, Lee & Choi (2016a), Kim, Lee & Choi (2016b) and Kim et al. (2016) Synopsys Design Compiler −0.18; −1.71 (EDT) −50.0 70.0; 76.2 (EDT) Binary computing
APC with inverse adder Li et al. (2018a) Synopsys Design Compiler −50.0 10.0 Normal APC
SC MaxPooling Ren et al. (2017) Synopsys Design Compiler −0.20 −92.7 98.3 GPU computing
SC ReLU activation Li et al. (2018a) Synopsys Design Compiler −0.88 −95.3 99.1 GPU computing
SC normalisation Li et al. (2017b) Synopsys Design Compiler −0.02 −83.8 88.9 Binary computing
SC MAC Sim & Lee (2017) Synopsys Design Compiler −1 −93.9 −89.4 Binary computing ASICa
SC DMAC Hojabr et al. (2019) Synopsys Design Compiler −73.5 292 AlexNet
147 InceptionV3
370 VGG16
12 MobileNet
SC Sigmoid activation Li et al. (2017a) FreePDK −0.01 −96.8 96.7 Binary computing
SC Quantization Li et al. (2018b) FreePDK −0.79 −98.6 99.1 Binary computing
−45.7 77.9 Unipolar SC
−60.3 85.8 Bipolar SC
SC BNN Hirtzlin et al. (2019) Cadence First Encounter −1.40 −62.0 240 Binary BNN

Notes.

a

Binary computing ASIC apply to the CNN model comparison.