Table 2. All layers and trainable parameters of the two-dimensional convolutional neural networks in this study.
Layer (type) | Output shape | Parameters # |
---|---|---|
Zeropadding2d_1 | (None, 3, 22, 20) | 0 |
Conv2d_1 | (None, 1, 20, 32) | 5,792 |
Max_pooling2d_1 | (None, 1, 10, 16) | 0 |
Zeropadding2d_2 | (None, 3, 12, 16) | 0 |
Conv2d_2 | (None, 1, 10, 64) | 9,280 |
Max_pooling2d_2 | (None, 1, 5, 32) | 0 |
Zeropadding2d_3 | (None, 3, 7, 32) | 0 |
Conv2d_3 | (None, 1, 5, 128) | 36,992 |
Max_pooling2d_3 | (None, 1, 2, 64) | 0 |
Zeropadding2d_4 | (None, 3, 4, 64) | 0 |
Conv2d_4 | (None, 1, 2, 256) | 147,712 |
Max_pooling2d_4 | (None, 1, 1, 128) | 0 |
Flatten_1 | (None, 128) | 0 |
Dense_1 | (None, 256) | 33,024 |
Dropout_1 | (None, 256) | 0 |
Dense_2 | (None, 2) | 514 |
Activation_1 | (None, 2) | 0 |