Skip to main content
. 2019 Feb 25;5:e177. doi: 10.7717/peerj-cs.177

Table 2. All layers and trainable parameters of the two-dimensional convolutional neural networks in this study.

Layer (type) Output shape Parameters #
Zeropadding2d_1 (None, 3, 22, 20) 0
Conv2d_1 (None, 1, 20, 32) 5,792
Max_pooling2d_1 (None, 1, 10, 16) 0
Zeropadding2d_2 (None, 3, 12, 16) 0
Conv2d_2 (None, 1, 10, 64) 9,280
Max_pooling2d_2 (None, 1, 5, 32) 0
Zeropadding2d_3 (None, 3, 7, 32) 0
Conv2d_3 (None, 1, 5, 128) 36,992
Max_pooling2d_3 (None, 1, 2, 64) 0
Zeropadding2d_4 (None, 3, 4, 64) 0
Conv2d_4 (None, 1, 2, 256) 147,712
Max_pooling2d_4 (None, 1, 1, 128) 0
Flatten_1 (None, 128) 0
Dense_1 (None, 256) 33,024
Dropout_1 (None, 256) 0
Dense_2 (None, 2) 514
Activation_1 (None, 2) 0