Table 2. Performance of classification model with variations in the r-value.
No | Resampling method | r | classifier | TPR (recall) | TNR | Precision (PPV) | FPR | AUC | Gmean | Adjusted Gmean | Fmeasure |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Cluster-based only | 1 | DT | 0.855a | 0.769 | 0.454 | 0.231a | 0.812 | 0.806 | 0.791 | 0.581 |
2 | CluSMOTE | 2 | DT | 0.797 | 0.834 | 0.526 | 0.163 | 0.815a | 0.811a | 0.823 | 0.622 |
3 | CluSMOTE | 3 | DT | 0.764 | 0.862 | 0.558 | 0.138 | 0.813 | 0.807 | 0.833 | 0.634 |
4 | CluSMOTE | 4 | DT | 0.730 | 0.881 | 0.575 | 0.119 | 0.806 | 0.796 | 0.835 | 0.631 |
5 | CluSMOTE | 5 | DT | 0.724 | 0.880 | 0.591 | 0.120 | 0.802 | 0.794 | 0.834 | 0.641 |
6 | SMOTE only | – | DT | 0.644 | 0.939a | 0.732a | 0.061 | 0.791 | 0.771 | 0.848a | 0.675a |
7 | No Resampling | – | DT | 0.637 | 0.939 | 0.730 | 0.061 | 0.788 | 0.767 | 0.846 | 0.669 |
8 | Cluster-based only | 1 | SVM | 0.591b | 0.668 | 0.393 | 0.328b | 0.629 | 0.579 | 0.620 | 0.388 |
9 | CluSMOTE | 2 | SVM | 0.577 | 0.746 | 0.441 | 0.254 | 0.661b | 0.60b | 0.666 | 0.400 |
10 | CluSMOTE | 3 | SVM | 0.498 | 0.790 | 0.486 | 0.210 | 0.644 | 0.580 | 0.675 | 0.396 |
11 | CluSMOTE | 4 | SVM | 0.475 | 0.801 | 0.508 | 0.199 | 0.638 | 0.566 | 0.672 | 0.387 |
12 | CluSMOTE | 5 | SVM | 0.468 | 0.819 | 0.529 | 0.178 | 0.643 | 0.572 | 0.683 | 0.401b |
13 | SMOTE only | – | SVM | 0.384 | 0.881b | 0.606b | 0.119 | 0.632 | 0.532 | 0.688 | 0.368 |
14 | No Resampling | – | SVM | 0.409 | 0.874 | 0.569 | 0.126 | 0.641 | 0.557 | 0.699b | 0.392 |
Notes.
- TPR
- True Positive Rate
- TNR
- True Negaitive Rate
- AUC
- Area Under ROC Curve
- Gmean
- Geometric mean
The best parameter value in DT model.
The best parameter vaue in SVM model.