Skip to main content
. 2020 Oct 12;6:e306. doi: 10.7717/peerj-cs.306

Table 3. The evaluation metrics for the cubic kernel SVM classifier constructed with the fused DL features compared to SVM classifiers trained with each DL feature.

CNN Accuracy (std) AUC (std) Sensitivity (std) Specificity (std) Precision (std) F1 score (std) DOR (std)
AlexNet 94.8% (0.001) 0.99 (0) 0.95 (0) 0.948 (0.005) 0.947 (0.005) 0.949 (0.003) 342.001 (30.593)
GoogleNet 96.7% (0.003) 0.99 (0) 0.97 (0) 0.963 (0.004) 0.962 (0.005) 0.966 (0.003) 829.889 (113.608)
ShuffleNet 96.3% (0.001) 0.99 (0) 0.97 (0) 0.961 (0.001) 0.96 (0.001) 0.965 (0.001) 776 (0)
ResNet-18 97.6% (0.003) 1.00 (0) 0.975 (0.006) 0.975 (0.006) 0.975 (0.006) 0.975 (0.006) 1,723.223 (714.441)
DL FUSION 98.6% (0.001) 1.00 (0) 0.981 (0.001) 0.99 (0) 0.99 (0) 0.986 (0) 4,851 (0)

Note:

Bold values indicate the highest results.