Skip to main content
. 2020 Nov 30;6:e307. doi: 10.7717/peerj-cs.307

Table 1. Evaluation of classical machine learning scores for all models, based on 5-features and 18-features inputs.

Model type MSE MSE MAE MAE R2
Train Test Train Test
Constant prediction 3.71 3.72 1.36 1.31 0
Using 5 features:
LR + L1 2.91 2.91 1.11 1.11 0.21
LR + L2 2.92 2.93 1.12 1.12 0.21
LR + L1 + L2 2.86 2.87 1.11 1.11 0.23
GB-250 2.45 2.67 1.10 1.11 0.28
biLSTM RNN 2.36 2.90 0.92 1.01 0.33
Using 18 features:
LR + L1 2.77 2.77 1.09 1.09 0.25
LR + L2 2.69 2.69 1.08 1.08 0.27
LR + L1 + L2 2.67 2.68 1.07 1.07 0.28
GB-250 2.22 2.53 1.06 1.07 0.32
biLSTM RNN 2.03 2.45 0.85 0.90 0.43