Table 1. Evaluation of classical machine learning scores for all models, based on 5-features and 18-features inputs.
| Model type | MSE | MSE | MAE | MAE | R2 |
|---|---|---|---|---|---|
| Train | Test | Train | Test | ||
| Constant prediction | 3.71 | 3.72 | 1.36 | 1.31 | 0 |
| Using 5 features: | |||||
| LR + L1 | 2.91 | 2.91 | 1.11 | 1.11 | 0.21 |
| LR + L2 | 2.92 | 2.93 | 1.12 | 1.12 | 0.21 |
| LR + L1 + L2 | 2.86 | 2.87 | 1.11 | 1.11 | 0.23 |
| GB-250 | 2.45 | 2.67 | 1.10 | 1.11 | 0.28 |
| biLSTM RNN | 2.36 | 2.90 | 0.92 | 1.01 | 0.33 |
| Using 18 features: | |||||
| LR + L1 | 2.77 | 2.77 | 1.09 | 1.09 | 0.25 |
| LR + L2 | 2.69 | 2.69 | 1.08 | 1.08 | 0.27 |
| LR + L1 + L2 | 2.67 | 2.68 | 1.07 | 1.07 | 0.28 |
| GB-250 | 2.22 | 2.53 | 1.06 | 1.07 | 0.32 |
| biLSTM RNN | 2.03 | 2.45 | 0.85 | 0.90 | 0.43 |