Table 2. Weighted MSE of all models, based on 5-features and 18-features inputs.
| 5 features | 18 features | |||
|---|---|---|---|---|
| Train | Test | Train | Test | |
| Constant prediction | 1.61 | 1.62 | 1.61 | 1.62 |
| Linear Regression | 1.20 | 1.20 | 1.13 | 1.14 |
| Linear regression + L1 | 1.17 | 1.17 | 1.12 | 1.12 |
| Linear regression + L2 | 1.18 | 1.19 | 1.11 | 1.12 |
| Linear regression + L1 + L2 | 1.17 | 1.16 | 1.11 | 1.11 |
| Grad boosting 100 estimators | 1.11 | 1.13 | 1.08 | 1.10 |
| Grad boosting 250 estimators | 1.06 | 1.11 | 0.95 | 1.07 |
| biLSTM 64 units & 6 bins | 0.83 | 0.88 | 0.79 | 0.84 |