Skip to main content
. 2020 Jun 15;6:e278. doi: 10.7717/peerj-cs.278

Table 2. Network architecture of the CNN model.

The first column depicts the different layers used consecutively in the network. The ”layer shape” column reports the shape of the convolutional kernels, the max-pooling windows and the fully connected layers. The ”output shape” column reports the variation of layer shapes at each step.

Layer name Layer shape Output shape
Input 4 × 299 × 1
Conv2D 32 × 4 × (4 × 1) 32 × 296 × 1
Max-pooling 2 × 1 32 × 148 × 1
Dropout 32 × 148 × 1
Conv2D 64 × 32 × (4 × 1) 64 × 145 × 1
Max-pooling 2 × 1 64 × 72 × 1
Dropout 64 × 72 × 1
Conv2D 128 × 64 × (4 × 1) 128 × 69 × 1
Max-pooling 2 × 1 128 × 34 × 1
Dropout 128 × 34 × 1
Dense 128 128
Dropout 128
Dense (sigmoid) 1 1