
A comparative study of machine learning
and deep learning algorithms to classify
cancer types based on microarray gene
expression data
Reinel Tabares-Soto1, Simon Orozco-Arias2,3, Victor Romero-Cano4,
Vanesa Segovia Bucheli5, José Luis Rodríguez-Sotelo1 and
Cristian Felipe Jiménez-Varón6

1 Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales,
Caldas, Colombia

2 Department of Computer Science, Universidad Autónoma de Manizales, Manizales,
Caldas, Colombia

3 Department of Systems and informatics, Universidad de Caldas, Manizales, Caldas, Colombia
4 Department of Automatics and Electronics, Universidad Autónoma de Occidente, Cali,
Valle del Cauca, Colombia

5 İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
6 Department of Physics and Mathematics, Universidad Autónoma de Manizales, Manizales,
Caldas, Colombia

ABSTRACT
Cancer classification is a topic of major interest in medicine since it allows
accurate and efficient diagnosis and facilitates a successful outcome in medical
treatments. Previous studies have classified human tumors using a large-scale
RNA profiling and supervised Machine Learning (ML) algorithms to construct
a molecular-based classification of carcinoma cells from breast, bladder,
adenocarcinoma, colorectal, gastro esophagus, kidney, liver, lung, ovarian,
pancreas, and prostate tumors. These datasets are collectively known as the
11_tumor database, although this database has been used in several works in
the ML field, no comparative studies of different algorithms can be found in
the literature. On the other hand, advances in both hardware and software
technologies have fostered considerable improvements in the precision of
solutions that use ML, such as Deep Learning (DL). In this study, we compare
the most widely used algorithms in classical ML and DL to classify the tumors
described in the 11_tumor database. We obtained tumor identification
accuracies between 90.6% (Logistic Regression) and 94.43% (Convolutional
Neural Networks) using k-fold cross-validation. Also, we show how a tuning
process may or may not significantly improve algorithms’ accuracies.
Our results demonstrate an efficient and accurate classification method
based on gene expression (microarray data) and ML/DL algorithms,
which facilitates tumor type prediction in a multi-cancer-type scenario.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
Keywords Machine Learning, Deep Learning, Cancer classification, Microarray gene expression,
11_tumor database, Bioinformatics

How to cite this article Tabares-Soto R, Orozco-Arias S, Romero-Cano V, Segovia Bucheli V, Rodríguez-Sotelo JL, Jiménez-Varón CF.
2020. A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression
data. PeerJ Comput. Sci. 6:e270 DOI 10.7717/peerj-cs.270

Submitted 17 September 2019
Accepted 8 March 2020
Published 13 April 2020

Corresponding authors
Reinel Tabares-Soto,
rtabares@autonoma.edu.co
Simon Orozco-Arias,
simon.orozco.arias@gmail.com

Academic editor
Diego Amancio

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.270

Copyright
2020 Tabares-Soto et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.270
mailto:rtabares@�autonoma.�edu.�co
mailto:simon.�orozco.�arias@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.270
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Cancer is one of the most deadly diseases in human health caused by the abnormal
proliferation of cells, leading to malignant malformations or tumors with different
pathology characteristics (Varadhachary, 2007). Cancer-type classification is critical to
increasing patient survival rates. Molecular genetic analyses have discovered genetic
alterations, or signatures, with different biological characteristics that allow discerning the
responses to several treatments (Greller & Tobin, 1999). This enables early diagnosis and
an accurate treatment; therefore, ensuring the efficacy and reduction of side effects
(toxicity) of the treatment (Wang et al., 2005).

Impaired gene expression is a characteristic of carcinogenic cells (Su et al., 2001).
Accordingly, microarray gene expression data from tumor cells provide an important
source of information to improve cancer diagnosis in a cost-efficient manner, allowing the
use of this strategy in developing countries. Since microarray datasets contain thousands
of different genes to be analyzed, an accurate and efficient way of analyzing this
amount of data is by Machine Learning (ML) and Deep Learning (DL) algorithms
(Motieghader et al., 2017). In particular, these algorithms have been applied in other
biological areas, including rules of association (Orozco-Arias et al., 2019b). Previous studies
demonstrate the use of ML and DL in microarray gene expression to infer the expression of
target genes based on landmark gene expression (Chen et al., 2016), in feature selection
aimed at finding an informative subset of gene expression (Sharma, Imoto & Miyano,
2012), and in the diagnosis and classification of cancer types (Fakoor et al., 2013).

A well-known database of gene microarrays related to cancer is the 11_Tumors database
(Su et al., 2001), which is available at https://github.com/simonorozcoarias/ML_DL_
microArrays/blob/master/data11tumors2.csv. This dataset is a good example of the curse
of dimensionality due to the high number of characteristics and few registers of this
database. Therefore, most studies use it to test specific data science techniques,
such as feature selection methods (Bolón-Canedo et al., 2014; Wang & Wei, 2017; Han &
Kim, 2018; Perera, Chan & Karunasekera, 2018), dimension reduction (Araújo et al.,
2011), clustering methods (Sardana & Agrawal, 2012; Sirinukunwattana et al., 2013;
Li et al., 2017), preprocessing techniques (Liu et al., 2019), among others. The 11_Tumors
database has also been used in gene selection for cancer classification (Moosa et al.,
2016; Alanni et al., 2019). Although the authors achieved high accuracy in these
publications, they only used some ML algorithms, one preprocessing strategy, and one
learning technique (supervised or unsupervised), which could add bias to their
methodology. Additionally, to date, no comparative study on the application of ML in
microarray datasets is found in the literature.

In several ML studies, DL has proven to be a robust technique for analyzing large-scale
datasets (Bengio, Courville & Vincent, 2013). With these advances, DL has achieved
cutting-edge performance in a wide range of applications, including bioinformatics and
genomics (Min, Lee & Yoon, 2016; Yue &Wang, 2018), analysis of metagenomics samples
(Ceballos et al., 2019), identification of somatic transposable elements in ovarian cancer
(Tang et al., 2017), identification and classification of retrotransposons in plants

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 2/22

https://github.com/simonorozcoarias/ML_DL_microArrays/blob/master/data11tumors2.csv
https://github.com/simonorozcoarias/ML_DL_microArrays/blob/master/data11tumors2.csv
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

(Orozco-Arias, Isaza & Guyot, 2019) and cancer classification using Principal Component
Analysis (PCA) (Liu, Cai & Shao, 2011). Recent work by Guillen & Ebalunode (2016)
demonstrated promising results for the application of DL in microarray gene expression.

In general, there are two different tasks that ML algorithms can tackle: supervised
and unsupervised learning. In supervised learning, the goal is to predict the label
(classification) or response (regression) of each data point by using a provided set of
labeled training examples. In unsupervised learning, such as clustering and principal
component analysis, the goal is to learn inherent patterns within the data (Zou et al., 2018).

The main goal of any ML task is to optimize model performance not only on the
training data but also on additional datasets. When a learned model displays this behavior,
it is considered to generalize well. With this aim, the data in a given database are randomly
split into at least two subsets: training and validation (Zou et al., 2018). Then, a model
as complex as possible is learned (training set), tuned (validation set), and tested for
generalization performance on the validation set. This process is crucial for avoiding
overfitting or underfitting. Therefore, a sound learning algorithm must reach an
appropriate balance between model flexibility and the amount of training data. An overly
simple model will underfit and make inadequate predictions, whereas an overly
flexible model will overfit to spurious patterns in the training data and not generalize
(Zou et al., 2018).

In this study, we compare the performance of the most commonly used ML and DL
algorithms in bioinformatics (Orozco-Arias et al., 2019a) in the task of classifying by
supervised and unsupervised techniques. We used the 11_Tumor database and applied
different preprocessing strategies. Our detailed evaluation and comparison illustrate the
high accuracy of these algorithms for tumor identification in a multiple-cancer-type
scenario and the influence of preprocessing strategies and tuning processes on these
accuracies.

MATERIALS AND METHODS
ML and DL techniques can learn the characteristics of a given problem from a certain
amount of data. These data are usually randomly subdivided into two groups: training and
validation. A training dataset is used to calibrate the parameters of the model, and a
validation dataset is utilized for evaluating model performance (Eraslan et al., 2019).

In this article, we compared results obtained from classifying 11 different tumor
classes through different approaches of ML and DL. We began by evaluating two
unsupervised methods; the first method is the popular K-means algorithm, in which a
given number of prototype samples, also known as cluster centers, are estimated by
iteratively assigning data points to prototype samples and updating them as the mean of
the assigned samples. The second method tested is hierarchical clustering, which is better
suited for irregular shapes than K-means. After, we tested eight different classification
algorithms. The most popular one, and the standard baseline in classification problems, is
K-Nearest Neighbors (KNN), where classification decisions are done through a voting
mechanism and model training stores the dataset in a way that queries can be done
efficiently. Another family of classification methods comprises the so-called linear models,

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 3/22

http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

for which a learning algorithm estimates as many weights as features from the training data
so classification prediction is done as a function of the dot product between the weights
and a test sample. Linear models are fast to train, fast to predict, and also scale well to
datasets in which the number of features is large compared to the number of samples. The
linear methods we tested are Linear Support Vector Classifier (SVC), Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Naive Bayesian Classifier (NB), and Multi-
Layer Perceptron (MLP).

We also included Decision Tree-methods (DT) such as Random Forests (RF). Unlike
linear models, DTs and RFs are invariant to data scaling and work well with features on
different scales. Finally, we applied Deep Neuronal Networks (DNN), such as fully
connected neural networks, also known as Multi-Layer Perceptron (MLP) and
Convolutional Neural Networks (CNNs). MLPs are well-suited for non-linear data,
whereas CNNs automatize the costly task of engineering features; an unavoidable task in
classical ML approaches. The above algorithms are extensively explained in Michie,
Spiegelhalter & Taylor (1994) and Chollet (2007).

Datasets
The datasets used represent measurements of gene expression using cancer microarrays
and normal biopsies (Statnikov et al., 2005; Bolón-Canedo et al., 2014), and are
consolidated in the “11 Tumors database”, which is freely available online at (https://
github.com/simonorozcoarias/ML_DL_microArrays/blob/master/data11tumors2.csv).
This database consists of 174 samples with 12,533 gene expression microarrays for 11
different types of cancer. The 12,533 microarrays of genetic expression are integers with
positive and negative values; these values represent the characteristics that allow the
ML and DL algorithms to learn how to classify by cancer type. The types of cancer and the
number of patients for each type are shown in Table 1. The classes of each cancer type are
unbalanced and remained so in the experimentation.

Preparing the data
For the experiments, we divided the information into two groups; the first group
corresponds to the features (X) and the second group to the classes (Y). The features
compose a matrix of size m × n and the classes are a vector of size n × 1, where m is the
number of samples and n is the number of genes for each class (12,533). The dataset,
containing 174 samples, is randomly subdivided into two subsets (80% training and 20%
validation), including 139 samples for training and 35 samples for validation. Initial
calibration of ML and DL algorithms (training) was done using the training set; then,
hyperparameter tuning was performed with the validation set and measured the
accuracy of the algorithms. We calculated the accuracy of each algorithm using tuned
hyperparameters with k-fold cross-validation and k = 10 to avoid overfitting.

The dataset used in this paper has the curse of dimensionality since the number of
characteristics (12,533) is higher than the number of samples (174) (Powell, 2007).
Therefore, the data are dispersed and the results are not statistically stable or reliable,
directly affecting the accuracy achieved by ML and DL algorithms. Two preprocessing

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 4/22

https://github.com/simonorozcoarias/ML_DL_microArrays/blob/master/data11tumors2.csv
https://github.com/simonorozcoarias/ML_DL_microArrays/blob/master/data11tumors2.csv
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

techniques were used to solve this problem: scaling (Géron, 2017) and principal
component analysis (PCA) (Wold, Esbensen & Geladi, 1987). The first technique
guarantees that the data are in a range of suitable values to calibrate the model. With the
second technique, the statistical significance is improved and the noise introduced by
irrelevant characteristics during model training decreases. In this paper, we worked with
several combinations of the preprocessing techniques mentioned above to find the best
performance.

Four different datasets were created for the training and validation of each ML or DL
algorithm. For the first dataset, we did not apply any preprocessing operations; for the
second, we performed a scaling process; for the third, we applied PCA with a retained
variance of 96% to reduce data dimensionality, obtaining a dimensional reduction from
12,533 to 83 features. Finally, for the last dataset, we applied both scaling and PCA,
obtaining a dimensional reduction from 12,533 to 113 features (principal components).

Unsupervised learning experiments
Classification performance is highly correlated with the degree of separability of a dataset;
therefore, we analyzed performance using clustering techniques. Based on data labels,
we can gain a priori insight into the algorithm that works best on the distribution of the
gene expression microarray dataset.

Before applying the classification algorithms (supervised learning), we performed a
hierarchical analysis to better understand the dataset. This hierarchical clustering used
different distance metrics, such as ward, average, single, complete, weighted, centroid, and
median. Further, as input, we used a dataset with no preprocessing. These distance metrics
serve to capture the differences between the data samples and vary in their capacity to
deal with large outliers (i.e., between weighted, centroid, and median metrics) or if they
allow choosing the number of clusters to consider (e.g., Ward) (Foss, Markatou & Ray,
2019). After this clustering, we tested all of the datasets created in the previous step
to determine the best preprocessing methodology. Finally, a dendrogram and a heatmap

Table 1 Cancer type classification in the 11_tumor database.

Class Cancer type Number of patients

0 Ovary 27

1 Bladder/Ureter 8

2 Breast 26

3 Colorectal 23

4 Gastroesophagus 12

5 Kidney 11

6 Liver 7

7 Prostate 26

8 Pancreas 6

9 Adenocarcinoma 14

10 Lung squamous cell carcinoma 14

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 5/22

http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

were used to illustrate the separability attribute of our dataset. Additionally, we performed a
clustering analysis using the K-means algorithm with k values of one to eleven clusters using
all datasets. We plotted the behavior in terms of accuracy and as a confusion matrix.

Supervised learning
We evaluated the performance of well-known ML classification algorithms, including
KNN, SVC, LR, LDA, NB, MLP, RF and DT. Subsequently, we evaluated DL architectures,
such as fully connected neural networks (FNNs) and convolutional neural networks
(CNNs).

Neural network architecture
Two types of networks were used for DL; the first is a fully connected neural network and
the second is a convolutional neural network. The FNN consists of three fully connected
layers of 100 neurons each and the Softsign activation function; then, a final layer of
11 neurons is generated with the Sigmoid activation function to generate the probability of
the type of cancer. The CNN consists of three convolutional layers with 128 filters each,
with a kernel size of 3 and a linear activation function; followed by a layer of 100 fully
connected neurons with the Softsign activation function and, finally, a layer of 11 neurons
with the Softmax activation function to generate the probability of the type of cancer.
Figure 1 shows the architectures used for the experiment, in which the top scheme is a
FNN and the bottom scheme is a CNN.

Tuning the algorithms
Several algorithms were tested by varying or tuning parameter values to find the best
performance (Table 2). With these results, we plotted the accuracy values using all datasets
created in the training and validation processes and also created confusion matrices.
Finally, we did a cross-validation of each algorithm to find the accuracy that was less
affected by bias. Additionally, in FNNs and CNNs, we performed a hyperparameter search
with a grid search method (GridSearchCV) from the sklearn module, considering the
variables shown in Table 3. Due to the high number of parameters, the process of tuning
FNNs and CNNs involved choosing the parameter values that achieved the best accuracy
and, then, using these values to find others. The process of finding the best parameter
values is presented as follows: (1) batch size and epochs (2) training optimization

Input Data
(174x113)

Dense
100 neurons

Softsign
Dense

100 neurons
Softsign

Dense
100 neurons

Softsign
Dense

11 neurons
Sigmoid

Class
probabilities

type of
cancer

FNN

CNN

Input Data
(174x113)

Conv 1D
Filters=128

Kernel size=3
Linear

Conv 1D
Filters=128

Kernel size=3
Linear

MaxPooling
(1)

Conv 1D
Filters=128

Kernel size=3
Linear Flatten

Dense
100 neurons

Softsing
Dense

11 neurons
Softmax

Figure 1 Artificial neural network architectures used for cancer classification. Full-size DOI: 10.7717/peerj-cs.270/fig-1

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 6/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-1
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

algorithm (3) learning rate and momentum (4) network weight initialization (5) neuron
activation function (6) dropout regularization and (7) number of neurons in the hidden
layers.

Significance tests
We performed a test for difference in proportions to determine whether the difference
between accuracies of the algorithms is significant. We calculated the differences between
the observed and expected accuracies under the assumption of a normal distribution.
Given the number of correct test predictions x and the number of test instances N,
accuracy is defined as follows:

Acci ¼ x
N

H0 : Acci � Accj ¼ 0

H1 : Acci � Accj 6¼ 0

This test allowed determining if the accuracies of the algorithm change significantly
after the tuning process and also if there are significant differences between the two
algorithms with the highest average accuracies. Based on this, we evaluated whether the
parameter tuning of the algorithms was necessary or if the ML algorithm used was more
relevant.

Table 2 Tested algorithm parameters.

Algorithm Parameter Range Step Description

KNN n_neighbors 1–99 1 Number of neighbors

SVC C, gamma C: 10–100, gamma: 1e−9 to 1e−4 C:10, gamma: 10 Penalty parameter C of the e
rror term. Gamma is the free
parameter of the Gaussian radial
basis function

LG C 0.1–1 0.1 Inverse of regularization strength

LDA N/A N/A N/A N/A

NB N/A N/A N/A N/A

MLP solver=‘lbfgs’, alpha=0.5,
hidden_layer_sizes

50–1,050 50 Number of neurons in hidden layers.
In this study we used solver lbfgs
and alpha 0.5

RF n_estimators, max_depth,
min_samples_split,
max_features

n_estimators: 1–91, max_depth: 1–91,
min_samples_split: 10–100,
max_features: 10–90

10 for all parameters N/A

DT max_depth,
min_samples_split,
max_features

max_depth: 1–91,
min_samples_split: 10–100,
max_features: 10–90

10 for all parameters N/A

K-means n_clusters, random_state=0 1–17 1 Number of clusters. In this study
we used random state equals to zero

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 7/22

http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Tools
The algorithms were executed using Python programing language and scikit-learn libraries
(Pedregosa et al., 2011), which are explained in Komer, Bergstra & Eliasmith (2014) for ML
algorithms. PCA transformations and scaling were executed with the decomposition
and preprocessing modules from scikit-learn. Also, DNNs were implemented using Keras
(Chollet, 2015). All images were created with matplotlib (Hunter, 2007). The significance
tests were performed using R software (Supplemental Material 1). The algorithms used
here are available at https://github.com/simonorozcoarias/ML_DL_microArrays.

RESULTS
Hierarchical analysis
Before evaluating the classification algorithms, we visualized the intrinsic groupings in the
data and determined how these groups are influenced by the different preprocessing
methodologies applied to our data (Fig. 2). Using the downloaded raw data, we created a
hierarchical graph (unsupervised learning) using different methodologies (Fig. S1) and

Table 3 Parameters tuned in DNNs.

Parameter Values Description

Batch size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 Number of training examples utilized
in one iteration

Epochs 10, 50, 100, 200 Number of times that the learning
algorithm will work through the
entire training

Training optimization algorithm SGD, RMSprop, Adagrad, Adadelta, Adam,
Adamax, Nadam

Tools that update model parameters
and minimize the value of the loss
function, as evaluated on the
training set

Learning rate 0.001, 0.01, 0.1, 0.2, 0.3 Hyper-parameter that controls how
much the weights are being adjusting
with respect to the loss gradient

Momentum 0.0, 0.2, 0.4, 0.6, 0.8, 0.9 Value between 0 and 1 that increases
the size of the steps taken towards
the minimum by trying to jump
from a local minima

Network weight initialization uniform, lecun_uniform, normal, zero, glorot_normal,
glorot_uniform, he_normal, he_uniform

Initialization of weights into hidden
layers of the network

Neuron activation function softmax, softplus, softsign, relu, tanh, sigmoid,
hard_sigmoid, linear

How the neuron output is activated
based on its inputs

Dropout regularization 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 Process of randomly dropping out
nodes during training

Weight constraint 1, 2, 3, 4, 5 Value that introduces a penalty to the
loss function when training a neural
network to encourage the network to
use small weights

Number of neurons in the hidden layers 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 Amount of neurons that composed
each hidden layers of the network

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 8/22

http://dx.doi.org/10.7717/peerj-cs.270/supp-1
https://github.com/simonorozcoarias/ML_DL_microArrays
http://dx.doi.org/10.7717/peerj-cs.270/supp-2
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

concluded that Ward’s method produced the most balanced clusters (Fig. 3). Then, using
only Ward’s method, we performed additional analyses using different datasets, including
raw data, scaled data, data transformed by PCA, and data scaled and transformed by
PCA. Finally, we created a dendrogram and a heatmap to find whether data can be
clustered into groups without any given class with the best results. Figure 4 shows four
well-separated groups, but the heatmap demonstrated other well-conserved groups, which
may indicate that the four main clusters could be divided into subgroups.

Ward’s method created four groups, while the other methods clustered the individuals
into fewer groups and, in most cases, these groups are largely unbalanced. On the other
hand, the raw data and data transformed by PCA performed better in the hierarchical
clustering analysis. Employing these datasets, we were able to obtain four and five clusters,
respectively. Finally, the heatmaps plotted in Fig. 4 showed one group greatly distant
from the others (green in Fig. 4A and light blue in Fig. 4B). On the other hand, the other

Figure 2 Hierarchical maps using Ward as the clustering method and (A) raw data (B) scaled data, (C) data reduced by PCA and (D) data
scaled and reduced by PCA. Due to the large number of characteristics of the dataset, it is recommended that you transform the dataset to use
only the most relevant and informative variables, which is called the preprocessing step. Full-size DOI: 10.7717/peerj-cs.270/fig-2

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 9/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-2
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

clusters showed low intra-cluster distances, which is an ideal feature in classification
problems (clear blue in Fig. 4A and green in Fig. 4B).

Based on a priori knowledge that the number of cancer types is eleven (11), we were
interested in determining how the hierarchical clustering algorithm created the cluster
assignments. Therefore, we applied the best parameters found previously (clustering

Figure 3 Hierarchical maps using Ward’s method as the criterion for choosing the pair of clusters to merge at each step. This hierarchical map
was generated by data without transformation and deleting their labels. Clustering approaches demonstrate whether the data contain relevant
patterns for grouping. Full-size DOI: 10.7717/peerj-cs.270/fig-3

A B

Figure 4 Hierarchical and heatmap analysis utilizing (A) raw data and (B) data processed by PCA.
These heatmaps show how similar (near zero) or different (about 200,000) the individuals in the clusters
are. A cluster is interesting when its members are very similar and are very different from individuals in
other groups. Full-size DOI: 10.7717/peerj-cs.270/fig-4

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 10/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-3
http://dx.doi.org/10.7717/peerj-cs.270/fig-4
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

method: ward, and input: raw data and data reduced by PCA). The results shown in Fig. 5
and Tables 4 and 5 demonstrate that, although the hierarchical clustering algorithm
displays good performance, it does not group the data into the correct number of groups.

Another unsupervised learning assessment involved the implementation of the
K-means algorithm. We used all datasets and changed the number of clusters iteratively

Figure 5 Clusters composition using (A) raw data and (B) data processed by PCA. Clustering was
performed using Ward as the distance algorithm. Label correspond to the cluster number predicted by
the algorithm and may not correspond to labels of Table 1.Full-size DOI: 10.7717/peerj-cs.270/fig-5

Table 4 Cluster composition and original number of individuals from each class of cancer.

Class Original number Clustering using
raw data

Clustering using data
processed by PCA

0 27 47 47

1 8 29 28

2 26 16 39

3 23 4 4

4 12 31 25

5 11 25 10

6 7 6 6

7 26 1 1

8 6 4 4

9 14 2 1

10 14 9 9

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 11/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-5
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

from one to eleven, increasing by one cluster at a time. Then, we calculated the accuracy in
each iteration and a confusion matrix was plotted with the best results (Fig. 6).
Additionally, we calculated other metrics, such as precision, recall, and f1-score for each
class. Overall, the best results were obtained by K-means using 11 clusters with input data
processed by PCA, achieving an accuracy of 68.34% (validation set, using the hold-out
splitting method). Also, classes 6, 7 and 9 showed precisions of 100% and class 5 of 91%
(Table 5).

Table 5 Metrics obtained by K-means for each cancer type.

Class Precision Recall F1-Score

0 0.74 0.68 0.71

1 0 0 0

2 0.45 0.9 0.6

3 0.68 1 0.81

4 0 0 0

5 0.91 1 0.95

6 1 0.4 0.57

7 1 0.95 0.98

8 0 0 0

9 1 0.11 0.2

10 0.53 0.89 0.67

BA

Figure 6 (A) Behavior of Accuracy in terms of number of clusters and (B) confusion matrix with best results (clusters = 11) using K-means
algorithm. Results showed in (A) are the accuracy using validation dataset which correspond to 20% of whole data.

Full-size DOI: 10.7717/peerj-cs.270/fig-6

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 12/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-6
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Algorithm tuning
The algorithms were tuned by setting several parameters between a given value range
(Table 2) to find the best behavior using all datasets. Through this, we aimed to calculate
the best hyperparameters for each algorithm and determine which dataset could be the
most appropriate. The results of the highest validation accuracies are shown in Table 6.
To evaluate overfitting or underfitting, we plotted the accuracy values of the training and
validation processes on all datasets described above (Fig. 7). RF and DT were not plotted
since more than one hyperparameter were tuned. The best results were obtained using
LG and raw data. We also calculated a confusion matrix for these results, finding very good
classification rates (Fig. 8).

Cross-validation
KNN, SVC, LG, MLP, K-MEANS, LDA, NB, RF and DT were trained and validated
with the same fraction of data and each experiment was repeated 10 times to obtain the
standard deviations using sklearn’s cross-validation function with k = 10 (Komer,
Bergstra & Eliasmith, 2014). We used the entire dataset (174) for this procedure. The
accuracy and standard deviation results are shown in Table 7.

Deep neural networks
The grid-search method showed the hyperparameter values that provided the best
accuracy in FNN and CNN architectures (Table 8). Figures 9 and 10 show the training
results of both architectures, demonstrating how the loss function decreases when
most epochs are used until a specific number of epochs is reached (80 for FNN and 8 for
CNN). Similarly, the accuracy increases in both the training and validation data until
reaching the same number of epochs mentioned for the loss function. After this number
of epochs, no significant changes were observed for the loss and accuracy values. Using
these parameters and cross-validation with k = 10, FNN and CNN achieved accuracies of
91.43% and 94.43%, respectively.

Significance tests
We performed a test of significant differences, with a 95% confidence level, between the
two best-performing ML algorithms (LG and CNN). Accordingly, we found no significant
differences between the accuracies of these two algorithms (p-value = 0.447).

DISCUSSION
In this work, we show the application of unsupervised and supervised learning approaches
of ML and DL for the classification of 11 cancer types based on a microarray dataset.
We observed that the best average results using the training and validation data are
obtained using the raw dataset and the LR algorithm, yielding an accuracy value of
100% (validation set, using the hold-out splitting method). One could assume there is
overfitting since the confusion matrix showed an extremely good behavior; however, the
comparison of the training and validation accuracies between parameters using the entire

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 13/22

http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Table 6 Tuning hyperparameters of best results of algorithms tested.

Algorithm Conditions on the dataset Tuning parameters % Accuracy

Results on validation data (the best result)

K-Nearest Neighbors Any Neighbors=1 88.57

Scaling Neighbors: 1 71.43

PCA Neighbors: 1 82.86

Scaling + PCA Neighbors: 4 48.57

Support Vector Classifier Any C=10 8.57

Scaling C=70 94.29

PCA C=10 8.57

Scaling + PCA C=40 91.43

Logistic regression Any C=0,1 100.00

Scaling C=0,1 97.14

PCA C=0,1 94.29

Scaling + PCA C=0,1 94.29

Linear discriminant analysis Any Default 91.43

Scaling Default 91.43

PCA Default 97.14

Scaling + PCA Default 82.86

Gaussian NB Any Default 85.71

Scaling Default 85.71

PCA Default 80.00

Scaling + PCA Default 71.43

Random forest Any n_estimators=81, max_depth=91, min_samples_split=10,
max_features=50

97.14

Scaling n_estimators=91, max_depth=81, min_samples_split=10,
max_features=60

97.14

PCA n_estimators=91, max_depth=21, min_samples_split=10,
max_features=30

94.28

Scaling + PCA n_estimators=61, max_depth=11, min_samples_split=10,
max_features=20

85.71

Decision tree Any max_depth=71, min_samples_split=10, max_features=40 68.57

Scaling max_depth=51, min_samples_split=10, max_features=60 68.57

PCA max_depth=81, min_samples_split=10, max_features=30 82.85

Scaling + PCA max_depth=51, min_samples_split=20, max_features=60 74.28

Multi-layer perceptron Any Neurons=800 85.71

Scaling Neurons=50 91.43

PCA Neurons=300 97.14

Scaling + PCA Neurons=50 91.43

K-means Any Clusters=16 76.97

Scaling Clusters=14 68.34

PCA Clusters=16 73.38

Scaling + PCA Clusters=11 58.99

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 14/22

http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

BA

DC

E

Figure 7 Comparison of training and validation accuracy between parameters using all dataset and (A) KNN, (B) SVC, (C) LG, (D) MLP and
(E) K-means. The algorithm do not present in this figure; it appears in Table 6 as default in the “Tuning Parameters” column.

Full-size DOI: 10.7717/peerj-cs.270/fig-7

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 15/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-7
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

dataset may indicate perfect accuracy in both training and validation datasets.
Additional tests with independent data should be done to discard potential overfitting.

On the other hand, MLP and LDA showed a high accuracy value of 97.14% in the
validation dataset. This improvement in accuracy was obtained by optimizing several
parameters (number of neurons in MLP) and preprocessing the dataset with PCA.

After tuning four parameters, RF obtained high results, with a maximum accuracy of
85.71%. In contrast, DT obtained 51.14% accuracy, demonstrating that DT does not
work properly for the datasets used in this study, despite tuning several parameters (in our
case, three).

Figure 8 Confusion matrix of LG algorithm results. Full-size DOI: 10.7717/peerj-cs.270/fig-8

Table 7 Cross validation of KNN, SVC, LG, MLP, K-Means, LDA, NB, RF and DT before and after of tuning process.

Algorithm Before tuning After tuning Significance difference

% accuracy Standard deviation % accuracy Standard deviation

Results of cross validation (10 splits)

KNN 78.3 12.71 82.03 10.19 NO

SVC 10.82 6.65 81.98 13.7 YES

Logistic regression 90.6 7.93 90.6 5.94 NO

Multi-layer perceptron 79.89 20.62 83.40 13.64 NO

K-means 10.16 9.36 68.34 9.26 YES

Linear discriminant analysis 83.4 11.62 N/A N/A N/A

Gaussian NB 84.12 12.78 N/A N/A N/A

Random forest 66.75 13.79 72.69 15.85 NO

Decision tree 69.78 14.9 66.04 15.45 NO

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 16/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-8
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Our findings demonstrate that the various algorithms work better by preprocessing the
datasets differently. Our results show that MLP, DT, and LDA improved in performance if
PCA was applied in advance. However, LG, KNN, NB, RF, and K-means worked better
using no preprocessing. Only SVC improved when using scaling and, interestingly, none
of the other algorithms showed better results using scaling and PCA on the datasets.

Parameter tuning can improve the accuracy of the algorithm used (Table 7). For
instance, SVC obtained a low accuracy of 10.82% before preprocessing but increased to
81.98% after tuning. Although most of the algorithms improved their accuracies after the
tuning process, only two of them (SVC and K-means) showed significant changes.
We conclude that LG is the best ML algorithm for the test dataset in this study, providing

Figure 9 Results obtained by FNN architecture in training using 100 epochs. (A) Lost value and
(B) Accuracy. Lost function and accuracy is plotted on both training and validation datasets in order to
observe behavior. When both datasets show very distant results, the architecture may be overfitting.

Full-size DOI: 10.7717/peerj-cs.270/fig-9

Table 8 Best value of hyperparameters tuned in deep neural networks.

Parameter Best value

FNN CNN

Batch size 20 10

Epochs 100 10

Training optimization algorithm Adagrad SGD

Learn rate 0.2 0.1

Momentum 0 0

Network weight initialization Normal Glorot_normal

Neuron activation function Softsign Linear

Weight constraint 3 1

Dropout regularization 0 0.4

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 17/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-9
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

an accuracy of 90.6% with a standard variation of 5.94 from the cross-validation analysis
based on ten times. Nevertheless, we recommended using it with moderation. On the other
hand, for DL architectures, CNN obtained the best accuracy with 94.43% (Fig. 10). The
grid search technique enabled parameter tuning and improved the results, allowing us to
propose new DNN architectures (i.e., the architectures showed in Fig. 1). Finally, we found
no significant difference between the accuracies obtained by LG and CNN.

CONCLUSIONS
Cancer is predicted to become the most deadly disease for humans in the future (Dagenais
et al., 2019); therefore, early diagnosis, identification, and treatment are needed to control
the disease. ML and DL techniques are promising tools for the classification of cancer
types using complex datasets, such as microarrays. In this study, we obtained predictions
with as high as 93.52% and 94.46% accuracies, which will allow patients with these
types of pathologies to receive an early and precise detection of their disease, and will
also contribute to the discovery of new selective drugs for the treatment of these types
of tumors.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Simon Orozco-Arias is supported by a Ph.D. grant fromMinisterio de Ciencia, Tecnología
e Innovación de Colombia (Minciencias), Convocatoria 785/2017 and Universidad
Autónoma de Manizales, Manizales, Colombia supported and covered the publication fees
under the project 589-089. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

BA

Figure 10 Results obtained by CNN architecture in training using 10 epochs. (A) Lost value and
(B) Accuracy. Lost function and accuracy is plotted on both training and validation datasets in order to
observe behavior. When both datasets show very distant results, the architecture may be overfitting.

Full-size DOI: 10.7717/peerj-cs.270/fig-10

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 18/22

http://dx.doi.org/10.7717/peerj-cs.270/fig-10
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Grant Disclosures
The following grant information was disclosed by the authors:
Ministerio de Ciencia, Tecnología e Innovación de Colombia (Minciencias), Convocatoria:
785/2017.
Universidad Autónoma de Manizales, Manizales, Colombia: 589-089.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Reinel Tabares-Soto conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

� Simon Orozco-Arias conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

� Victor Romero-Cano conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

� Vanesa Segovia Bucheli analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� José Luis Rodríguez-Sotelo analyzed the data, authored or reviewed drafts of the paper,
and approved the final draft.

� Cristian Felipe Jiménez-Varón analyzed the data, performed the computation work,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub: https://github.com/simonorozcoarias/ML_DL_
microArrays.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.270#supplemental-information.

REFERENCES
Alanni R, Hou J, Azzawi H, Xiang Y. 2019. A novel gene selection algorithm for cancer

classification using microarray datasets. BMC Medical Genomics 12(1):10
DOI 10.1186/s12920-018-0447-6.

Araújo D, Neto AD, Martins A, Melo J. 2011. Comparative study on dimension reduction
techniques for cluster analysis of microarray data. In: The 2011 International Joint Conference on
Neural Networks, 31 July–5 August, San Jose, CA, USA. 1835–1842.

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 19/22

https://github.com/simonorozcoarias/ML_DL_microArrays
https://github.com/simonorozcoarias/ML_DL_microArrays
http://dx.doi.org/10.7717/peerj-cs.270#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.270#supplemental-information
http://dx.doi.org/10.1186/s12920-018-0447-6
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Bengio Y, Courville A, Vincent P. 2013. Representation learning: a review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8):1798–1828
DOI 10.1109/TPAMI.2013.50.

Bolón-Canedo V, Sánchez-Marono N, Alonso-Betanzos A, Benítez JM, Herrera F. 2014.
A review of microarray datasets and applied feature selection methods. Information Sciences
282:111–135 DOI 10.1016/j.ins.2014.05.042.

Ceballos D, López-Álvarez D, Isaza G, Tabares-Soto R, Orozco-Arias S, Ferrin C. 2019.
A machine learning-based pipeline for the classification of CTX-M in metagenomics samples.
Processes 7(4):235 DOI 10.3390/pr7040235.

Chen Y, Li Y, Narayan R, Subramanian A, Xie X. 2016. Gene expression inference with deep
learning. Bioinformatics 32(12):1832–1839 DOI 10.1093/bioinformatics/btw074.

Chollet F. 2007. Deep learning with python. Shelter Island: Manning.

Chollet F. 2015. Keras, GitHub. Available at https://github.com/fchollet/keras.

Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P, Gupta R, Diaz R,
Avezum A, Oliveira GBF, Wielgosz A, Parambath SR, Mony P, Alhabib KF, Temizhan A,
Ismail N, Chifamba J, Yeates K, Khatib R, Rahman O, Zatonska K, Kazmi K, Wei L, Zhu J,
Rosengren A, Vijayakumar K, Kaur M, Mohan V, Yusufali AH, Kelishadi R, Teo KK,
Joseph P, Yusuf S. 2019. Variations in common diseases, hospital admissions, and deaths in
middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study.
Lancet 395(10226):785–794 DOI 10.1016/S0140-6736(19)32007-0.

Eraslan G, Avsec Ž, Gagneur J, Theis FJ. 2019. Deep learning: new computational modelling
techniques for genomics. Nature Reviews Genetics 20(7):389–403
DOI 10.1038/s41576-019-0122-6.

Fakoor R, Ladhak F, Nazi A, Huber M. 2013. Using deep learning to enhance cancer diagnosis
and classification in Transforming Healthcare. In: Proceedings of the ICML Workshop on the
Role of Machine Learning in Transforming Healthcare. Atlanta: JMLR.

Foss AH, MarkatouM, Ray B. 2019.Distance metrics and clustering methods for mixed-type data.
International Statistical Review 87(1):80–109 DOI 10.1111/insr.12274.

Géron A. 2017. Hands-on machine learning with scikit-learn and tensorflow: concepts, tools, and
techniques to build intelligent systems. Newton: O’Reilly Media, Inc..

Greller LD, Tobin FL. 1999. Detecting selective expression of genes and proteins. Genome
Research 9:282–296.

Guillen P, Ebalunode J. 2016. Cancer classification based on microarray gene expression data
using deep learning. In: 2016 International Conference on Computational Science and
Computational Intelligence Cancer, 15–17 December. Las Vegas, NV, USA. 208–216.

Han D, Kim J. 2018. Unified simultaneous clustering and feature selection for unlabeled and
labeled data. IEEE Transactions on Neural Networks and Learning Systems 29(12):6083–6098
DOI 10.1109/TNNLS.2018.2818444.

Hunter JD. 2007. Matplotlib: a 2D graphics environment. Computing In Science & Engineering
9(3):90–95 DOI 10.1109/MCSE.2007.55.

Komer B, Bergstra J, Eliasmith C. 2014. Hyperopt-sklearn: automatic hyperparameter
configuration for scikit-learn. In: Proceedings of the 13th Python in Science Conference (SCIPY
2014). 33–39.

Li J, Liu R, Zhang M, Li Y. 2017. Ensemble-based multi-objective clustering algorithms for gene
expression data sets. In: 2017 IEEE Congress on Evolutionary Computation (CEC), 5–8 June,
San Sebastian, Spain. 333–340.

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 20/22

http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1016/j.ins.2014.05.042
http://dx.doi.org/10.3390/pr7040235
http://dx.doi.org/10.1093/bioinformatics/btw074
https://github.com/fchollet/keras
http://dx.doi.org/10.1016/S0140-6736(19)32007-0
http://dx.doi.org/10.1038/s41576-019-0122-6
http://dx.doi.org/10.1111/insr.12274
http://dx.doi.org/10.1109/TNNLS.2018.2818444
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Liu J, Cai W, Shao X. 2011. Cancer classification based on microarray gene expression data using a
principal component accumulation method. Science China Chemistry 54(5):802–811
DOI 10.1007/s11426-011-4263-5.

Liu S, Zhang J, Xiang Y, Zhou W, Xiang D. 2019. A study of data pre-processing techniques for
imbalanced biomedical data classification. Available at http://arxiv.org/abs/1911.00996.

Michie ED, Spiegelhalter DJ, Taylor CC. 1994. Machine learning, neural and statistical
classification. Technometrics 37(4):459 DOI 10.2307/1269742.

Min S, Lee B, Yoon S. 2016. Deep learning in bioinformatics. Briefings in Bioinformatics
31(3):bbw068 DOI 10.1093/bib/bbw068.

Moosa JM, Shakur R, Kaykobad M, Rahman MS. 2016. Gene selection for cancer classification
with the help of bees. BMC Medical Genomics 9(S2):47 DOI 10.1186/s12920-016-0204-7.

Motieghader H, Najafi A, Sadeghi B, Masoudi-Nejad A. 2017. A hybrid gene selection algorithm
for microarray cancer classification using genetic algorithm and learning automata. Informatics
in Medicine Unlocked 9:246–254 DOI 10.1016/j.imu.2017.10.004.

Orozco-Arias S, Isaza G, Guyot R. 2019. Retrotransposons in plant genomes: structure,
identification, and classification through bioinformatics and machine learning. International
Journal of Molecular Sciences 20(15):3837 DOI 10.3390/ijms20153837.

Orozco-Arias S, Isaza G, Guyot R, Tabares-soto R. 2019a. A systematic review of the application
of machine learning in the detection and classification of transposable elements. Peerj
7(10):1–29 DOI 10.7717/peerj.8311.

Orozco-Arias S, Núñez-Rincón AM, Tabares-Soto R, López-Álvarez D. 2019b. Worldwide
co-occurrence analysis of 17 species of the genus Brachypodium using data mining. PeerJ 6(1):
e6193 DOI 10.7717/peerj.6193.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in python. Journal of Machine
Learning Research 12:2825–2830.

Perera K, Chan J, Karunasekera S. 2018. Feature selection for multiclass binary data. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining Part III, 3–6 June, Melbourne,
Australia. Cham: Springer, 52–63.

Powell WB. 2007. Approximate dynamic programming: solving the curses of dimensionality.
Hoboken: John Wiley & Sons.

Sardana M, Agrawal RK. 2018. A comparative study of clustering methods for relevant gene
selection in microarray data. In: Wyld D, Zizka J, Nagamalai D, eds. Advances in Computer
Science, Engineering & Applications. Berlin: Springer, 789–797.

Sharma A, Imoto S, Miyano S. 2012. A top-r feature selection algorithm for microarray gene
expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
9(3):754–764 DOI 10.1109/TCBB.2011.151.

Sirinukunwattana K, Savage RS, Bari MF, Snead DRJ, Rajpoot NM. 2013. Bayesian hierarchical
clustering for studying cancer gene expression data with unknown statistics. PLOS ONE
8(10):e75748 DOI 10.1371/journal.pone.0075748.

Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF. 2005. GEMS: a system for automated
cancer diagnosis and biomarker discovery from microarray gene expression data. International
Journal of Medical Informatics 74(7–8):491–503 DOI 10.1016/j.ijmedinf.2005.05.002.

Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM,
Moskaluk CA, Frierson HF, Hampton GM. 2001. Molecular classification of human
carcinomas by use of gene expression signatures. Cancer Research 61:7388–7393.

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 21/22

http://dx.doi.org/10.1007/s11426-011-4263-5
http://arxiv.org/abs/1911.00996
http://dx.doi.org/10.2307/1269742
http://dx.doi.org/10.1093/bib/bbw068
http://dx.doi.org/10.1186/s12920-016-0204-7
http://dx.doi.org/10.1016/j.imu.2017.10.004
http://dx.doi.org/10.3390/ijms20153837
http://dx.doi.org/10.7717/peerj.8311
http://dx.doi.org/10.7717/peerj.6193
http://dx.doi.org/10.1109/TCBB.2011.151
http://dx.doi.org/10.1371/journal.pone.0075748
http://dx.doi.org/10.1016/j.ijmedinf.2005.05.002
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

Tang Z, Steranka JP, Ma S, Grivainis M, Rodic N, Huang CRL, Shih I-M, Wang T-L, Boeke JD,
Fenyo D, Burns KH, Rodić N, Huang CRL, Shih I-M, Wang T-L, Boeke JD, Fenyö D,
Burns KH. 2017. Human transposon insertion profiling: analysis, visualization and
identification of somatic LINE-1 insertions in ovarian cancer. Proceedings of the National
Academy of Sciences of the United States of America 114(5):E733–E740
DOI 10.1073/pnas.1619797114.

Varadhachary GR. 2007. Carcinoma of unknown primary origin. Gastrointestinal Cancer
Research: GCR 1:229–235.

Wang Y, Makedon FS, Ford JC, Pearlman J. 2005. HykGene: a hybrid approach for selecting
marker genes for phenotype classification using microarray gene expression data. Bioinformatics
21(8):1530–1537 DOI 10.1093/bioinformatics/bti192.

Wang S, Wei J. 2017. Feature selection based on measurement of ability to classify subproblems.
Neurocomputing 224:155–165 DOI 10.1016/j.neucom.2016.10.062.

Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemometrics and Intelligent
Laboratory Systems 2(1–3):37–52 DOI 10.1016/0169-7439(87)80084-9.

Yue T, Wang H. 2018. Deep learning for genomics: a concise overview. Available at
http://arxiv.org/abs/1802.00810.

Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. 2018. A primer on deep
learning in genomics. Nature Genetics 51(1):12–18 DOI 10.1038/s41588-018-0295-5.

Tabares-Soto et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.270 22/22

http://dx.doi.org/10.1073/pnas.1619797114
http://dx.doi.org/10.1093/bioinformatics/bti192
http://dx.doi.org/10.1016/j.neucom.2016.10.062
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://arxiv.org/abs/1802.00810
http://dx.doi.org/10.1038/s41588-018-0295-5
http://dx.doi.org/10.7717/peerj-cs.270
https://peerj.com/computer-science/

	A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

