Skip to main content
. 2020 Apr 13;6:e270. doi: 10.7717/peerj-cs.270

Table 2. Tested algorithm parameters.

Algorithm Parameter Range Step Description
KNN n_neighbors 1–99 1 Number of neighbors
SVC C, gamma C: 10–100, gamma: 1e−9 to 1e−4 C:10, gamma: 10 Penalty parameter C of the error term. Gamma is the free parameter of the Gaussian radial basis function
LG C 0.1–1 0.1 Inverse of regularization strength
LDA N/A N/A N/A N/A
NB N/A N/A N/A N/A
MLP solver=‘lbfgs’, alpha=0.5, hidden_layer_sizes 50–1,050 50 Number of neurons in hidden layers. In this study we used solver lbfgs and alpha 0.5
RF n_estimators, max_depth, min_samples_split, max_features n_estimators: 1–91, max_depth: 1–91, min_samples_split: 10–100, max_features: 10–90 10 for all parameters N/A
DT max_depth, min_samples_split, max_features max_depth: 1–91, min_samples_split: 10–100, max_features: 10–90 10 for all parameters N/A
K-means n_clusters, random_state=0 1–17 1 Number of clusters. In this study we used random state equals to zero