Skip to main content
. 2020 Apr 13;6:e270. doi: 10.7717/peerj-cs.270

Table 6. Tuning hyperparameters of best results of algorithms tested.

Algorithm Conditions on the dataset Tuning parameters % Accuracy
Results on validation data (the best result)
K-Nearest Neighbors Any Neighbors=1 88.57
Scaling Neighbors: 1 71.43
PCA Neighbors: 1 82.86
Scaling + PCA Neighbors: 4 48.57
Support Vector Classifier Any C=10 8.57
Scaling C=70 94.29
PCA C=10 8.57
Scaling + PCA C=40 91.43
Logistic regression Any C=0,1 100.00
Scaling C=0,1 97.14
PCA C=0,1 94.29
Scaling + PCA C=0,1 94.29
Linear discriminant analysis Any Default 91.43
Scaling Default 91.43
PCA Default 97.14
Scaling + PCA Default 82.86
Gaussian NB Any Default 85.71
Scaling Default 85.71
PCA Default 80.00
Scaling + PCA Default 71.43
Random forest Any n_estimators=81, max_depth=91, min_samples_split=10, max_features=50 97.14
Scaling n_estimators=91, max_depth=81, min_samples_split=10, max_features=60 97.14
PCA n_estimators=91, max_depth=21, min_samples_split=10, max_features=30 94.28
Scaling + PCA n_estimators=61, max_depth=11, min_samples_split=10, max_features=20 85.71
Decision tree Any max_depth=71, min_samples_split=10, max_features=40 68.57
Scaling max_depth=51, min_samples_split=10, max_features=60 68.57
PCA max_depth=81, min_samples_split=10, max_features=30 82.85
Scaling + PCA max_depth=51, min_samples_split=20, max_features=60 74.28
Multi-layer perceptron Any Neurons=800 85.71
Scaling Neurons=50 91.43
PCA Neurons=300 97.14
Scaling + PCA Neurons=50 91.43
K-means Any Clusters=16 76.97
Scaling Clusters=14 68.34
PCA Clusters=16 73.38
Scaling + PCA Clusters=11 58.99