Table 3. Performance of the proposed architectures in terms of area under the Precision–Recall curve.
| Subset | Baseline | Semi | Sym | Zero | SVM | k-NN | DecTree |
|---|---|---|---|---|---|---|---|
| 0.1334 | 0.1424 | 0.1534 | 0.1744 | 0.0877 | 0.0345 | 0.1941 | |
| C | 0.1998 | 0.1853 | 0.2115 | 0.2174 | 0.1550 | 0.3033 | 0.2560 |
| H | 0.4536 | 0.4459 | 0.4407 | 0.4625 | 0.4192 | 0.3885 | 0.3616 |
| S | 0.6416 | 0.6411 | 0.6335 | 0.6668 | 0.5905 | 0.5681 | 0.6242 |
| CH | 0.4752 | 0.4684 | 0.4754 | 0.4609 | 0.4423 | 0.4095 | 0.4023 |
| CS | 0.6265 | 0.6424 | 0.6388 | 0.5985 | 0.6205 | 0.5379 | 0.6089 |
| HS | 0.6200 | 0.6356 | 0.6277 | 0.5864 | 0.6199 | 0.6335 | 0.5956 |
| CHS | 0.6665 | 0.6351 | 0.6875 | 0.6404 | 0.6374 | 0.6653 | 0.5542 |
| Best | 0 | 2 | 2 | 2 | 0 | 1 | 1 |
Notes:
The subset of observable screening strategies include: Cytology (C), Hinselmann (H), and Schiller (S).
Baseline, deep feed-forward neural network; Semi, semi-supervised dimensionality reduction (Eq. 2); Sym, symmetry mapping dimensionality reduction (Eq. 4); Zero, zero mapping dimensionality reduction (Eq. 5); SVM, support vector machine; k-NN, k-nearest neighbors; DecTree, decision tree.
We highlight the best performing models in bold.