Skip to main content
. 2018 May 14;4:e154. doi: 10.7717/peerj-cs.154

Table 4. Performance of the proposed architectures in terms of logarithmic loss.

Subset Baseline Semi Sym Zero SVM k-NN DecTree
0.3004 0.2708 0.2657 0.2716 0.2421 4.3670 4.1889
C 0.2829 0.2757 0.2868 0.2609 0.2614 2.6884 3.5001
H 0.2169 0.2274 0.2422 0.2031 0.1984 0.7178 3.2175
S 0.1710 0.1475 0.1489 0.1359 0.1273 0.9366 1.6893
CH 0.2210 0.2054 0.2286 0.2123 0.2196 1.0477 2.8509
CS 0.1594 0.1469 0.1240 0.1464 0.1248 0.4036 1.7687
HS 0.1632 0.1786 0.1615 0.1622 0.1225 0.3238 1.8098
CHS 0.1563 0.1577 0.1494 0.1514 0.1099 0.4037 1.8906
Best 0 1 1 1 4 0 0

Notes:

The subset of observable screening strategies include: Cytology (C), Hinselmann (H), and Schiller (S). Area under the Precision–Recall curve.

Baseline, deep feed-forward neural network; Semi, semi-supervised dimensionality reduction (Eq. 2); Sym, symmetry mapping dimensionality reduction (Eq. 4); Zero, zero mapping dimensionality reduction (Eq. 5); SVM, support vector machine; k-NN, k-nearest neighbors; DecTree, decision tree.

We highlight the best performing models in bold.