Skip to main content
. 2018 May 14;4:e154. doi: 10.7717/peerj-cs.154

Table 5. Performance of the proposed architectures on other datasets downloaded from UC Irvine Machine Learning Repository (University of California Irvine, 1987), measured through the area under the Precision–Recall curve.

Dataset Baseline Semi Sym Zero
Breast cancer Mangasarian, Street & Wolberg (1995) 0.9795 0.9864 0.9835 0.9856
Mammography Elter, Schulz-Wendtland & Wittenberg (2007) 0.8551 0.8539 0.8533 0.8489
Parkinson Little et al. (2007) 0.9517 0.9526 0.9573 0.9604
Pima diabetes Smith et al. (1988) 0.7328 0.7262 0.7095 0.7331
Lung cancer Hong & Yang (1991) 0.7083 0.6042 0.6927 0.8021
Cardiotocography Ayres-de Campos et al. (2000) 0.9948 0.9948 0.9925 0.9958
SPECTF heart Kurgan et al. (2001) 0.9470 0.9492 0.9462 0.9463
Arcene Guyon et al. (2005) 0.8108 0.8433 0.8900 0.8455
Colposcopy QA Fernandes, Cardoso & Fernandes (2017b) 0.7760 0.8122 0.7961 0.8470
Best 1 2 1 5

Note:

We highlight the best performing models in bold.