Table 5. Performance of the proposed architectures on other datasets downloaded from UC Irvine Machine Learning Repository (University of California Irvine, 1987), measured through the area under the Precision–Recall curve.
| Dataset | Baseline | Semi | Sym | Zero | |
|---|---|---|---|---|---|
| Breast cancer | Mangasarian, Street & Wolberg (1995) | 0.9795 | 0.9864 | 0.9835 | 0.9856 |
| Mammography | Elter, Schulz-Wendtland & Wittenberg (2007) | 0.8551 | 0.8539 | 0.8533 | 0.8489 |
| Parkinson | Little et al. (2007) | 0.9517 | 0.9526 | 0.9573 | 0.9604 |
| Pima diabetes | Smith et al. (1988) | 0.7328 | 0.7262 | 0.7095 | 0.7331 |
| Lung cancer | Hong & Yang (1991) | 0.7083 | 0.6042 | 0.6927 | 0.8021 |
| Cardiotocography | Ayres-de Campos et al. (2000) | 0.9948 | 0.9948 | 0.9925 | 0.9958 |
| SPECTF heart | Kurgan et al. (2001) | 0.9470 | 0.9492 | 0.9462 | 0.9463 |
| Arcene | Guyon et al. (2005) | 0.8108 | 0.8433 | 0.8900 | 0.8455 |
| Colposcopy QA | Fernandes, Cardoso & Fernandes (2017b) | 0.7760 | 0.8122 | 0.7961 | 0.8470 |
| Best | 1 | 2 | 1 | 5 |
Note:
We highlight the best performing models in bold.