Table 5. Performance of the proposed architectures on other datasets downloaded from UC Irvine Machine Learning Repository (University of California Irvine, 1987), measured through the area under the Precision–Recall curve.
Dataset | Baseline | Semi | Sym | Zero | |
---|---|---|---|---|---|
Breast cancer | Mangasarian, Street & Wolberg (1995) | 0.9795 | 0.9864 | 0.9835 | 0.9856 |
Mammography | Elter, Schulz-Wendtland & Wittenberg (2007) | 0.8551 | 0.8539 | 0.8533 | 0.8489 |
Parkinson | Little et al. (2007) | 0.9517 | 0.9526 | 0.9573 | 0.9604 |
Pima diabetes | Smith et al. (1988) | 0.7328 | 0.7262 | 0.7095 | 0.7331 |
Lung cancer | Hong & Yang (1991) | 0.7083 | 0.6042 | 0.6927 | 0.8021 |
Cardiotocography | Ayres-de Campos et al. (2000) | 0.9948 | 0.9948 | 0.9925 | 0.9958 |
SPECTF heart | Kurgan et al. (2001) | 0.9470 | 0.9492 | 0.9462 | 0.9463 |
Arcene | Guyon et al. (2005) | 0.8108 | 0.8433 | 0.8900 | 0.8455 |
Colposcopy QA | Fernandes, Cardoso & Fernandes (2017b) | 0.7760 | 0.8122 | 0.7961 | 0.8470 |
Best | 1 | 2 | 1 | 5 |
Note:
We highlight the best performing models in bold.