Table 6. Performance of the proposed architectures on other datasets downloaded from UC Irvine Machine Learning Repository (University of California Irvine, 1987), measured through logarithmic loss.
Dataset | Baseline | Semi | Sym | Zero | |
---|---|---|---|---|---|
Breast cancer | Mangasarian, Street & Wolberg (1995) | 0.0984 | 0.0888 | 0.0966 | 0.0930 |
Mammographic | Elter, Schulz-Wendtland & Wittenberg (2007) | 0.5122 | 0.5051 | 0.4973 | 0.4822 |
Parkinson | Little et al. (2007) | 0.3945 | 0.4042 | 0.3883 | 0.4323 |
Pima diabetes | Smith et al. (1988) | 0.5269 | 0.5229 | 0.5250 | 0.5472 |
Lung cancer | Hong & Yang (1991) | 1.1083 | 0.8017 | 0.6050 | 0.8328 |
Cardiotocography | Ayres-de Campos et al. (2000) | 0.0113 | 0.0118 | 0.0116 | 0.0110 |
SPECTF heart | Kurgan et al. (2001) | 0.4107 | 0.4205 | 0.4121 | 0.4196 |
Arcene | Guyon et al. (2005) | 1.3516 | 0.8855 | 1.0230 | 1.1518 |
Colposcopy QA | Fernandes, Cardoso & Fernandes (2017b) | 0.5429 | 0.5406 | 0.5195 | 0.4850 |
Best | 1 | 3 | 2 | 3 |
Note:
We highlight the best performing models in bold.