Skip to main content
. 2020 Nov 30;6:e324. doi: 10.7717/peerj-cs.324

Table 1. The detailed parameters of our proposed deep neural network.

Layers Layer name Kernel size No. of
filters
Stride Output shape No. of trainable
parameters
No. of non-trainable
parameters
0 Input1a 200 × 1
1 1D Convolution 11 16 3 64 × 16 192
2 Batch Normalization 64 × 16 32 32
3 ReLU 64 × 16
4 Max-Pooling 3 2 31 × 16
5 1D Convolution 5 32 1 27 × 32 2,592
6 Batch Normalization 27 × 32 64 64
7 ReLU 27 × 32
8 Max-Pooling 3 2 13 × 32
9 1D Convolution 3 64 1 11 × 64 6,208
10 Batch Normalization 11 × 64 128 128
11 ReLU 11 × 64
12 Max-Pooling 3 2 5 × 64
13 Flatten 320
14 Input2b 4
15 Concatenate 324
16 Dense 64 20,800
17 Dense 4 260

Notes:

a

Refers to the raw signal of the heartbeat. The morphological features of the heartbeat will be obtained through the CNN architecture.

b

Is the RR interval features of the heartbeat. It will be combined with the CNN-based morphological features to build the final classification model.