Skip to main content
. 2018 Apr 2;4:e150. doi: 10.7717/peerj-cs.150

Table 2. Comparison of test performance (AUC) and complexity (I: number of intervals, V: number of variables) for all ICS setups (lpICS and enICS, each with and without preselection), Decision Tree (DT), Naive Bayes, linear and nonlinear (RBF) SVM.

Datasets include Acute inflammation (‘Inflammation’ and ‘Nephritis’ labels), Breast Cancer Diagnosis, Cardiotocography (‘Cardio’), Chronic kidney disease (‘Kidney’) and Indian Liver Patient data (‘Liver’).

Inflammation Nephritis Breast cancer Cardio Kidney Liver
AUC I (V) AUC I (V) AUC I (V) AUC I (V) AUC I (V) AUC I (V)
lpICS 1 6 (3) 1 8 (4) 0.933 5 (2) 0.945 11 (5) 0.932 4 (2) 0.677 60 (9)
lpICS-pre 1 6 (3) 1 4 (2) 0.933 5 (2) 0.927 96 (8) 0.959 8 (3) 0.688 20 (5)
enICS 0.962 4 (2) 1 4 (2) 0.942 4 (2) 0.959 14 (6) 0.938 6 (3) 0.685 6 (2)
enICS-pre 0.955 4 (2) 1 4 (2) 0.942 4 (2) 0.873 6 (3) 0.941 8 (2) 0.685 6 (2)
DT 1 / (4) 1 / (2) 0.936 / (3) 0.935 / (13) 0.952 / (4) 0.659 / (3)
Naive Bayes 1 NA 1 NA 0.976 NA 0.938 NA 0.964 NA 0.720 NA
SVM-lin 1 NA 1 NA 0.993 NA 0.957 NA 0.948 NA 0.696 NA
SVM-rbf 1 NA 1 NA 0.994 NA 0.957 NA 0.985 NA 0.706 NA