Skip to main content
. 2018 Apr 2;4:e150. doi: 10.7717/peerj-cs.150

Table 4. Comparison of the quality of risk estimation on the test data via the slope and bias of the calibration curve for all ICS setups (lpICS and enICS, each with preselection), Decision Tree (DT), Naive Bayes, linear and nonlinear (RBF) SVM.

Datasets include Acute inflammation (‘Inflammation’ and ‘Nephritis’ labels), Breast Cancer Diagnosis, Cardiotocography (‘Cardio’), Chronic kidney disease (‘Kidney’) and Indian Liver Patient data (‘Liver’).

Inflammation Nephritis Breast Cancer Cardio Kidney Liver
Slope Bias Slope Bias Slope Bias Slope Bias Slope Bias Slope Bias
lpICS 1 0 1 0 0.89 0.03 0.95 −0.01 0.95 0.05 0.44 0.40
lpICS-pre 1 0 1.02 −0.02 0.89 0.03 0.92 0.01 0.98 0.02 0.55 0.32
enICS 1.01 −0.01 1.02 −0.02 0.96 −0.01 1.04 −0.01 0.95 0.05 0.72 0.21
enICS-pre 1 0.01 1.02 −0.02 0.96 −0.01 1.04 0 0.92 0.05 0.72 0.21
DT 1 0 1 0 0.90 0.01 0.94 0.03 0.91 0.09 0.63 0.27
Naive Bayes 1.15 −0.05 1.03 0.05 0.84 0.05 0.74 0.06 0.84 0.18 0.34 0.61
SVM-lin 1 0 1 0 0.96 0.01 1 0 0.99 0.03 0.72 0.22
SVM-rbf 1 0 1 0 0.94 0 0.88 0.03 0.97 0.03 0.68 0.24