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ABSTRACT
We are concerned with the challenge of coronavirus disease (COVID-19) detection
in chest X-ray and Computed Tomography (CT) scans, and the classification and
segmentation of related infection manifestations. Even though it is arguably not an
established diagnostic tool, using machine learning-based analysis of COVID-19
medical scans has shown the potential to provide a preliminary digital second
opinion. This can help in managing the current pandemic, and thus has been
attracting significant research attention. In this research, we propose a multi-task
pipeline that takes advantage of the growing advances in deep neural network
models. In the first stage, we fine-tuned an Inception-v3 deep model for COVID-19
recognition using multi-modal learning, that is, using X-ray and CT scans.
In addition to outperforming other deep models on the same task in the recent
literature, with an attained accuracy of 99.4%, we also present comparative analysis
for multi-modal learning against learning from X-ray scans alone. The second and
the third stages of the proposed pipeline complement one another in dealing with
different types of infection manifestations. The former features a convolutional
neural network architecture for recognizing three types of manifestations, while the
latter transfers learning from another knowledge domain, namely, pulmonary nodule
segmentation in CT scans, to produce binary masks for segmenting the regions
corresponding to these manifestations. Our proposed pipeline also features
specialized streams in which multiple deep models are trained separately to segment
specific types of infection manifestations, and we show the significant impact that
this framework has on various performance metrics. We evaluate the proposed
models on widely adopted datasets, and we demonstrate an increase of
approximately 2.5% and 4.5% for dice coefficient and mean intersection-over-union
(mIoU), respectively, while achieving 60% reduction in computational time,
compared to the recent literature.
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INTRODUCTION
The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) of the
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020)
is a strain of Severe Acute Respiratory Syndrome-related CoronaVirus (SARS-CoV or
SARSr-CoV). The latter is a species of coronaviruses, which are a group Ribonucleic Acid
(RNA) viruses. SARS-CoV-2 causes an infectious respiratory disease that is known as
the Coronavirus Disease 2019 (COVID-19), since it was first identified in December 2019,
following a pneumonia outbreak Lai et al. (2020), Sharfstein, Becker & Mello (2020).
The first human-to-human transmission was confirmed in January 2020 Chan et al.
(2020), and the World Health Organization (WHO) declared a pandemic on the 11th
of March 2020. Over three million confirmed cases to date, hundreds of thousands of
deaths, and a severe socioeconomic impact in hundreds of countries that are hit by the
virus (Li et al., 2020b; Wu, Leung & Leung, 2020) have induced significant efforts
from governmental, public, and private sectors worldwide to manage the pandemic.
One principal aspect of pandemic management and future epidemic prevention is the
development of effective, efficient, and scale-able diagnostic tools.

There are several diagnostic tools that have been used, or currently under development,
for SARS-CoV-2. To the best of our knowledge, nucleic acid tests are the most established
and the most widely used tool to date (Tahamtan & Ardebili, 2020); in particular, the
Polymerase Chain Reaction (PCR) and its variants, such as Quantitative PCR (qPCR)
and Reverse Transcription PCR (RT-PCR). PCR is a DNA and RNA cloning technique
that is used to amplify/augment DNA/RNA samples required in micro biology studies.
Even though it is characterized by high sensitivity and specificity, in addition to rapid
detection, it is prone to producing false negatives. In part, this is due to the localized
nature of the sample acquisition process, mainly as nasal, throat, and nasopharyngeal
swabs, that is, an active virus could be present elsewhere along the respiratory tract.
There are also other limitations for PCR-based tests including universal availability,
especially amidst shortage of supplies, slow turnaround times, depending on the resources
of the lab, and in many cases, it is required to repeat the tests several times before they can
be confirmed (Chu et al., 2020). Other diagnostic tools include antibody tests which
can give an indication on whether a person was previously infected by the virus. However,
they are still not well established; hence, they are not widely used. It is worth mentioning
that the recent literature features recommendations for combining more than one
diagnostic tool. Tahamtan & Ardebili (2020), for example, suggested the adoption of a
combination of qRT-PCR and CT scans for robust management of COVID-19.

Using CT scans and other modalities, such as X-ray, falls under an ever-growing area
of high-paced research, namely, medical imaging diagnostics. It has been emerging as
a reliable disease diagnosis tool, with several recent research findings referring to a
performance that is on-par with human performance (Liu et al., 2019; Shen et al., 2019).
In a large part, this is due to the advances that are taking place in developing new machine
learning techniques. This has resulted in the emergence of the Human-in-the-loop
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(HITL) AI framework (Patel et al., 2019), in order to harness the power of both approaches
while avoiding their respective limitation simultaneously. For the current pandemic,
though, using imaging as a first-line diagnostic tool for COVID-19 has been controversial
to date (Hope et al., 2020; Fang et al., 2020; Zu et al., 2020; Ai et al., 2020). Meanwhile,
to the best of our knowledge, there is a consensus on the possibility of using medical
imaging as a digital second opinion, or a complement, to the gold standard PCR-based
tests. For example, He et al. (2020) and Chen et al. (2020), respectively, highlighted CT
scans as either a tool with comparable diagnostic performance as initial RT-PCR, or an
important screening tool especially for patients who have initial negative results for the
RT-PCR test. Accordingly, highly-paced research has been devoted to harness the potential
of deep learning-based medical imaging diagnostics, towards the goal of providing a rapid,
accurate, scale-able, and affordable diagnosis.

Deep neural network models have shown a considerable potential with regards to
automatic detection of lung diseases (EL-Bana, Al-Kabbany & Sharkas, 2020; Polat &
Danaei Mehr, 2019; Nasrullah et al., 2019). Thanks to their ability to extract and
learn meaningful features, deep models can provide an effective alternative to manual
labeling by radiologists—a task that is highly impacted by individual clinical experiences.
Recent literature highlights the adoption of deep neural networks to analyze X-ray and
CT scans, in order to recognize/classify COVID-19 from healthy subjects. Moreover,
COVID-19 virus has a bilateral distribution of patchy shadows and ground glass opacity in
early stages, which progress to multiple ground glass opacities and infiltrations in both
lungs (Wang et al., 2020). These features are very similar to other types of pneumonia with
only slight differences that are difficult to be distinguished by radiologists. Hence, deep
models have been used to recognize/classify COVID-19 from other types of pneumonia,
including bacterial and viral pneumonia (Narin, Kaya & Pamuk, 2020; Wang & Wong,
2020; Song et al., 2020). Deep models have also been used in the quantification and
the segmentation of infection manifestations such as ground-glass opacity (GGO) and
pulmonary consolidation, in early and late stages of infection, respectively (Ye et al., 2020;
Ai et al., 2020).

In this research, we are inspired by a typical flow in a real-life scenario where a
radiologist would employ a deep learning-empowered screening system, first, to
recognize/diagnose COVID-19, then to quantify and segment infection manifestations in
X-ray and CT scans. The development of multi-task pipelines has been the scope for
previous research (Amyar, Modzelewski & Ruan, 2020). Nevertheless, we demonstrate
either competitive or superior performance compared to the recent literature at every stage
of the proposed pipeline. The following points summarize the principal contributions of
this research:

1. We outperformed the recent literature on COVID-19 recognition by attaining a
classification accuracy of 99.4% for the two-class problem, that is (COVID-19/
Non-COVID-19) and 98.1% for the four-class problem of recognizing COVID-19
among scans that involve normal cases, other types of pneumonia, in addition to
COVID-19. To achieve this performance, we propose a training procedure that involves
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fine-tuning of an Inception-v3 architecture. We present the performance of this
architecture under varying learning parameters, and using different performance
metrics.

2. For the same stage, we show comparative analysis for learning using X-ray scans only
against learning from X-ray and CT scans combined, that is, multi-modal learning, and
we demonstrate a potential advantage for the latter.

3. We propose a CNN architecture for multi-label recognition/classification (ML-CNN) of
different types of lung infection manifestations. Particularly, we solve the problem of
identifying the probabilities of having infection manifestations, such as Ground Glass
Opacities (GGO), Pleural Effusion (PE), and Consolidation, in medical scans. This is
envisaged to have a potential role in the early diagnosis of COVID-19. It is worth
mentioning that this problem was not addressed by previous work on multi-task
pipelines for COVID-19 (Amyar, Modzelewski & Ruan, 2020).

4. We adapt knowledge from another domain, namely, pulmonary nodule detection, to
enhance the segmentation of lung infections in chest CT scans. Particularly, we employ
our own previous work (EL-Bana, Al-Kabbany & Sharkas, 2020) on improving semantic
segmentation of pulmonary nodules using the recently proposed DeepLab-v3+
architecture. Moreover, using Xception network as a feature extractor backbone, we
evaluate the performance of the DeepLab model, which suits client-side applications.

5. We propose a new learning procedure for semantic segmentation of infection
manifestations. It involves the training of multiple streams, each of which is specialized
to segment a specific type of manifestations. We demonstrate the effectiveness of this
procedure over single stream-based segmentation, and compared to the recent
literature, we attain an increase of approximately 4.5% and 2.5% for mean intersection-
over-union (mIoU) and dice coefficient, respectively.

The rest of the article is organized as follows: Previous research that incorporates deep
learning methods for COVID-19 diagnosis and infection segmentation is presented in
“Related Work”. “Proposed Methods” discusses the proposed multi-stage pipeline, and
we elaborate on the adopted datasets, data augmentation methods, and pre-processing
techniques. “Results and Discussion” is dedicated to highlight and discuss the
Experimental results, and finally the work is concluded in “Conclusion”.

Related work
This research intersects with four main areas in the literature, namely, COVID-19
recognition based on deep models, segmentation of COVID-19-related infection
manifestations based on deep models, multi-task pipelines that have the ability to
accomplish both tasks, and multi-stream recognition pipelines. In the rest of this section,
we highlight the most relevant (to the proposed work) in these four areas.

The literature on COVID-19 diagnosis features end-to-end deep models as well as
transfer learning approaches. Sethy & Behera (2020), for example, proposed a COVID-19
classification method in X-ray images using deep features that are computed using a
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pre-trained convolutional neural network (CNN) model, and an SVM classifier.
This method attained an accuracy of 95.38% with the ResNet50 model employed as the
feature extractor. In Li et al. (2020a), a retrospective, single-center, study was conducted
on 78 patients. They aimed at investigating the correlation between CT-based
manifestations and clinical classification of COVID-19. With an attained sensitivity of
82.6% and a specificity of 100.0%, they concluded that CT-based quantitative analysis is
highly correlated with the clinical classification of COVID-19. They also pointed out
that CT visual quantitative analysis is highly consistent in terms of the Total Severity Score
that was introduced in their research. Ozkaya, Ozturk & Barstugan (2020) used a
dataset of 150 CT scans to generate two sub-datasets of 16 × 16 and 32 × 32 patches.
Deep features were then computed and an SVM classifier was trained on producing binary
labels. They also proposed a novel method for feature ranking and fusion to enhance the
performance of the proposed approach. An accuracy of 98.27% and 98.93% sensitivity
were attained on the latter sub-dataset of patches. A weakly-supervised software system
was developed in Zheng et al. (2020). It adopts deep learning and uses 3D CT volumes
to detect COVID-19, achieving a specificity and sensitivity of 0.911 and 0.907, respectively.

The U-Net model is a CNN that was proposed by Ronneberger, Fischer & Brox
(2015), and is among the widely-adopted neural networks in medical image segmentation.
It was further extended to 3D U-Net (Çiçek et al., 2016), and UNet++ (Zhou et al.,
2019) that showed promising performance on various image segmentation tasks. Zhou,
Canu & Ruan (2020) proposed a U-Net-based segmentation technique that addressed
COVID-19, and that employed an attention mechanism on 100 CT slices. They obtained a
Dice Score of 69.1%. In our previous work (EL-Bana, Al-Kabbany & Sharkas, 2020),
DeepLab-v3+ (Chen et al., 2017) was shown to outperform U-Net in pulmonary
nodule segmentation. Fan et al. (2020) proposed a novel COVID-19 deep model for lung
infection segmentation (Inf-Net) to identify infected regions from chest CT scans in an
automated manner. On ground glass opacities and consolidation, Inf-Net achieved a dice
coefficient of 0.646 and 0.238, respectively. Also, Elharrouss, Subramanian & Al-Maadeed
(2020) proposed a deep-learning-based, multi-task, two-stage approach for infection
segmentation in CT-scans. The first stage involves the possibly-infected lung regions,
which is followed by segmenting the infections in these regions.

Amyar, Modzelewski & Ruan (2020) proposed a deep learning model that jointly
identifies COVID-19 and segments the related lesions in chest CT scans. Their three-arm
model consisted of a common encoder and two decoders for image reconstruction and
segmentation, where the image reconstruction stage is meant to enhance feature
representation. The third arm featured a multi-layer perceptron neural network for
COVID-19 recognition, that is, a binary classification problem. For the segmentation task,
they achieved a dice coefficient of 0.78. Wu et al. (2020) proposed a COVID-19
classification and segmentation system, that was trained on a dataset containing 144,167
CT scans, collected from 400 COVID-19 patients and 350 uninfected cases. Their JCS
model achieved a 78.3% Dice Coefficient on the segmentation test set, and a sensitivity of
95.0%, and a specificity of 93.0% on the classification test set.
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Deep networks with multiple streams have been employed in visual recognition
applications. To the best of our knowledge, Simonyan & Zisserman (2014) were the first
to adopt a two-stream ConvNet architecture, which incorporates spatial and temporal
networks, for action recognition in videos. The proposed architecture involved training the
second stream on optical flow, and it was shown to attain a very good performance despite
limited data. Following the work of Simonyan & Zisserman (2014), other multi-stream
techniques that adopt other modalities (Zhang et al., 2016) were proposed. In contrast
to these previous techniques, our proposed multi-stream approach for segmenting
infection manifestations trains each stream on a different label, rather than training each
stream on a different modality of the whole dataset (all the labels). The latter is still a point
of future research, though.

Proposed methods
A machine learning-empowered system for COVID-19 diagnostics inherently involves
multiple tasks. As a digital second opinion for radiologists, the system would first be
required to recognize COVID-19 in medical scans. It might further be asked to
differentiate between COVID-19 and other types of pneumonia. Following the recognition
of COVID-19, the system would be required to identify the probability of presence of
different infection manifestations, and would further be asked to segment the regions
corresponding to these manifestations accurately. Figure 1 depicts the proposed pipeline
which realizes the aforementioned tasks. First, we employ the Inception-v3 model for
image classification, particularly, for COVID-19 recognition. Second, we train a

Figure 1 The block diagram of the proposed method. Full-size DOI: 10.7717/peerj-cs.303/fig-1
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multi-label classifier to infer the probability of different types of infection manifestations,
namely, Ground Glass Opacities (GGO), Pleural Effusion (PE), and Consolidation.
The third stage involves feeding COVID-19 CT scans to DeepLab-v3+ model, which
produces binary segmentation masks that highlight the regions corresponding to infection
manifestations. To alleviate the impact of the limited amount of data, we use data
augmentation techniques throughout the proposed pipeline. In the rest of this section,
we elaborate on the datasets that are used for the training and testing of the proposed
models, we elaborate on the adopted data augmentation techniques, and we discuss the
implementation details of each of the three stages in the pipeline.

Datasets
To the best of our knowledge, the research community still lacks a comprehensive dataset
that involves CT and/or X-ray scans and that suits both diagnosis and segmentation
tasks at the same time. This necessitates the reliance on multiple datasets if the goal is
to develop a multi-task pipeline. For training the proposed deep models, we used the
following datasets, which involve two of the most widely used datasets in the recent
literature (Fan et al., 2020):

1. COVID-19 CT Segmentation Dataset: This dataset includes 100 axial CT images
from 40 patients with COVID-19. The images were segmented by a radiologist using
Three labels: ground-glass, consolidation and pleural effusion. Figure 2 shows an
example of CT COVID-19 slice from the dataset.

2. The COVID-19 Image Data Collection Repository on GitHub: This dataset is hared by
Dr. Joseph Cohen. It is a growing collection of deidentified chest X-rays (CXRs) and CT
scans from COVID-19 cases internationally (Cohen, Morrison & Dao, 2020).

3. The RSNA Pneumonia Detection Challenge Dataset: This dataset is available on Kaggle,
and it contains several deidentified CXRs and includes a label indicating whether the
image shows evidence of pneumonia. Figure 3 shows different examples of X-ray images
from the dataset.

Preprocessing and data augmentation
All medical scans were resized to have the shape of 512 × 512 × 3. The Contrast Limited
Adaptive Histogram Equalization (CLAHE) method is used for enhancing small details,
textures and local contrast of the images (Zuiderveld, 1994). Local details can therefore
be enhanced even in the regions that are darker or lighter than most of the image
(Koonsanit et al., 2017). To avoid over-fitting, since the number of CT volumes is
limited, we applied data augmentation strategies such as random transformations.
These transformations include rotation, horizontal and vertical translations, zooming
and shearing. For each training sample, the transformation parameters were randomly
generated and the augmentation was identically applied for each slice in the sampled
image. We augmented each training sample 34 times, and each validation and test sample
51 times. The augmentation for the training, validation and testing datasets, rather than
the training dataset only, is done in accordance with recent findings on the impact of
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test-time augmentation on the system performance (Perez et al., 2018). More details about
the medical scans included in the adopted datasets are summarized in Table 1, such as
the types of involved cases, the number of slices in each case and their modalities, and the
total number of slices after augmentation.

Table 1 Details of the medical scans included in the adopted datasets, such as the cases available, the
number of slices in each case and their modalities, the total number of slices after augmentation, and
the task supported by each type of slices.

Case Modality #Slices Total after
Augmentation

Task

COVID-19 COVID-19 X-rays 60 1,995 Diagnosis

COVID-19 (with
segmented masks)

CT Scan 100 3,724 Diagnosis + Segmentation

Pneumonia Bacterial Pneumonia X-rays 70 2,122 Diagnosis

Viral Pneumonia X-rays 70 2,277 Diagnosis

Normal Normal X-rays 70 2,485 Diagnosis

Figure 2 An example of a CT scan. (A) COVID-19 CT axial slice, (B) ground truth segmented mask.
The white regions in the latter represent the consolidation, while the dark gray regions represent pleural
effusion, and light gray regions represent ground-glass opacities. Please see sub-section 1.

Full-size DOI: 10.7717/peerj-cs.303/fig-2

Figure 3 Examples of input X-ray images from the adopted datasets. (A) Covid-19, (B) normal,
(C) Pneumonia Bacteria, (D) Pneumonia Virus. Please see subsection 1.

Full-size DOI: 10.7717/peerj-cs.303/fig-3
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COVID-19 recognition using transfer learning on the inception-v3
architecture
The Inception-v3 architecture is an evolution of the GoogLeNet architecture. Prior to
GoogLeNet, such as in the AlexNet and VGGNet architectures, a standard structure for
CNNc consisted of stacked convolutional layers, max-pooling, and full-connected layers.
To avoid over-fitting, computational demand, and exploding or vanishing gradients,
the inception architecture encouraged sparsity through local sparse structures, namely,
the Inception Modules/Blocks. Each of these blocks consists of four paths, and contains
filters (convolutions) of different sizes, providing the ability to extract patterns at different
spatial sizes. Convolutional layers that consist of 1 × 1 filters were used to make the
network deeper, and to reduce the model’s complexity and the number of parameters, by
reducing the number of input channels. The 1 × 1 convolutional layers also add more
non-linearity by using ReLU after each 1 × 1 convolutional layer (Mahdianpari et al.,
2018). The fully connected layer in this architecture is replaced with a global average
pooling layer. In comparison to GoogLeNet, Incpetion-v2 featured the factorization of
convolutions into smaller convolutions, while Incpetion-v3 extended Incpetion-v2 by
batch-normalization of the fully connected layer of the auxiliary classifier (Szegedy et al.,
2016). Figure 4 depicts a compressed view of the Inception-v3 (Xia, Xu & Nan, 2017)
model.

In the first stage of the proposed pipeline, we fine-tuned an Incpetion-v3 architecture,
which consists of a feature extraction stage, followed by a classification stage. Instead
of training the whole architecture from scratch, we started from a model that is pre-trained
on ImageNet. We left the weights of the pre-trained model untouched while the final
layer is retrained from scratch. The number of classes in the dataset determines the
number of output nodes in the last layer. In “Results and Discussion”, we discuss the
impact of varying learning parameters, such as the number of steps and the learning rate,

Figure 4 A schematic diagram of the Inception-v3 architecture, inspired by the research in Szegedy
et al. (2016). Full-size DOI: 10.7717/peerj-cs.303/fig-4
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on the attained accuracy. We also demonstrate the performance of fine-tuning using
multi-modal data, that is, X-rays and CT scans, as compared to fine-tuning using X-rays
only.

A CNN architecture for multi-label recognition of infection
manifestations in chest CT scans
There are several differences between the proposed pipeline and previous work on
multi-task models for COVID-19 (Amyar, Modzelewski & Ruan, 2020). One principal
difference, though, is that the second stage of our pipeline addresses a problem that was not
handled by previously proposed models (Amyar, Modzelewski & Ruan, 2020), namely, the
inference of the probabilities of presence of different infection manifestations, namely,
Ground Glass Opacities (GGO), Pleural Effusion (PE), and Consolidation. Given that the
output of the segmentation stage is a binary mask, important insights are missing with
regards to the types of manifestations that correspond to the segmented regions, that is, the
white regions in the output mask.

COVID-19 CT scans have featured three types of manifestations, namely, ground-glass
opacity, consolidation and pleural effusion. Moreover, a scan may include one or more
types of infections; hence it is a multi-label image recognition/classification problem.
Towards the goal of recognizing different manifestations, we propose the CNN
architecture that is shown in Fig. 5. The output of this architecture is a vector of three
probabilities for the presence of ground-glass opacities, consolidations and pleural
effusion in a CT scan. In a sense, the output of this stage complements the information
obtained from binary segmentation masks, which will be addressed by the third stage
of the pipeline. In addition, we envisage the second stage to have a significant role in early
diagnosis even if the output from the first stage does not indicate signs for COVID-19.

Figure 5 The proposed CNN model for multi-label classification of infection manifestations. As
depicted in the figure, the output from the model are the probabilities of having different types of
infection manifestations in chest CT scans. Full-size DOI: 10.7717/peerj-cs.303/fig-5
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The convolutional layers consist of M kernels of size N × N. Max-pooling is applied in
non-overlapping windows of size 2 × 2. Every max-pooling reduces the size of each patch
by half. Two dense layers with 128 and 64 neurons respectively are used with a dropout
of 0.5 to avoid over-fitting, and the elu activation function is applied. The last layer is a
dense layer for image classification using a sigmoid function to obtain the multi-label
predictions and a cross entropy as the loss function. For N > 2, that is, multi-label
classification, we calculate a separate loss per observation for each class label and sum the
result as follows:

loss ¼ �
XN

i¼1

yi logðŷiÞ (1)

where, N is the number of classes, y is the corrected label, ŷ is a predicted output.
Another principal difference between the proposed model and the work in Amyar,

Modzelewski & Ruan (2020) is that we deal with each task in the pipeline separately, that is,
there is no common encoder. Hence, we are able to harness the power of different
architectures in each task. This becomes apparent in the third stage where we adopted the
DeepLab-v3+ model for segmentation, which was shown to achieve significantly better
results (EL-Bana, Al-Kabbany & Sharkas, 2020) compared to U-NET that was adopted in
Amyar, Modzelewski & Ruan (2020).

Segmenting infection manifestations with knowledge adaptation from
pulmonary nodule segmentation
The third stage of the proposed pipeline uses the first dataset in sub-section 1, and is
concerned with pixel-level segmentation of the regions corresponding to infection
manifestations in CT scans. We capitalize on our previous research work in EL-Bana,
Al-Kabbany & Sharkas (2020) in which we employed the DeepLab-v3+ model with CT
scans to enhance the segmentation of pulmonary nodules, and in which we attained
competitive results compared to the recent literature. The DeepLab-v3+ model was
developed by Google, and it involves a simple decoder module to refine the segmentation
masks along object boundaries. The model is fed with a single CT slice, and the
corresponding ground truth mask showing the lesion locations is expected at the output.
We explain the elements of the adopted model as follows:

1. Atrous Separable Convolution: This form of convolution (Chen et al., 2019) is
meant to reduce the complexity of the proposed model without compromising the
performance. It is applied in the depth-wise convolution, where a depth-wise separable
convolution replaces the standard convolution with two consecutive steps, namely, a
depth-wise convolution followed by a point-wise convolution (i.e., 1 × 1 convolution).
For 2D signals, each location i on the output feature map y, atrous convolution is
computed as follows:

y½i� ¼
X

k

½xi þ r:k�w½k�; (2)
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wherew is a convolution filter. The stride with the sampled input signal is determined by
the atrous rate r. Standard convolution, though, is a particular case with r = 1.

2. Encoder: In segmentation tasks, objects in images as well as their locations represent
the essential information required to accomplish successfully the computation of
segmentation masks. This information is expected to get extracted by the encoder. In the
proposed pipeline, the primary feature extractor in the DeepLab-v3+ model is an
Aligned Xception model—a modified version of the Xception-65 model (Chollet, 2017).
Xception is a modified version of the Inception module, in which Incpetion modules are
replaced with separable depth convolutions. Moreover, in Aligned Xception, we use
depthwise separable convolution with striding instead of all the maximum pooling
operations. After each 3 × 3 depthwise convolution, extra batch normalization and
ReLU activation are applied. Also, the depth of the model is increased without
varying the entry flow of the network structure. Figure 6 depicts the modified Xception
model.

3. Decoder: In this stage, the features computed during the encoding phase are employed
to compute the segmentation masks. First, we bilinearly-upsample the encoder features
by a factor of 4, before we concatenate them with the corresponding low-level
features. 1 × 1 convolution is used on the low-level features before concatenation, in
order to decrease the number of channels. After the concatenation, 3 × 3 convolutions
are applied to enhance the features, which is followed by another bilinear upsampling by
a factor of 4, as shown in the DeepLab-v3+ model in Fig. 1.

In this work, we started from a pre-trained DeepLab-v3+ model. Particularly, we
adapt another knowledge domain, namely, the pulmonary nodule segmentation, to
enhance the segmentation of COVID-19 manifestations in CT-scans. We used the
pre-trained model weights that were obtained in EL-Bana, Al-Kabbany & Sharkas
(2020). Furthermore, since we focus on the enhancement of segmentation masks,
we propose a new learning procedure that involves specialized streams, each of which
features a DeepLab-v3+ model that trains to segment a specific type of manifestations.
In the next section, we present the results of the proposed pipeline, and we elaborate
on the gain of training multiple specialized streams as compared to a single-stream
pipeline.

RESULTS AND DISCUSSION
All the simulations were carried out on a machine with a GeForce GTX 1080Ti GPU, and 8
GB of VRAM.We used Python as the primary programing language and Tensorflow as the
backbone in all the experiments. This research implements a new multi-task pipeline
that is capable of accomplishing the following types of tasks: (1) COVID-19 classification
in X-rays and CT scans, (2) Multi-label recognition of COVID-19 manifestations in
CT scans, and (3) and segmentation of COVID-19 manifestations in CT scans. We
adopted the most commonly used performance metrics in the respective areas, that is, for
classification and segmentation, which are: sensitivity, specificity, accuracy, precision,
F1-Score, Dice Coefficient (DSC), Intersection over Union (IoU), and Matthews
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Correlation Coefficient (MCC). The mathematical expressions for computing the
aforementioned metrics are are given by:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; (3)

Senstivity ¼ TP
TPþ FN

; (4)

Specificity ¼ TN
TNþ FP

; (5)

Precision ¼ TP
TPþ FP

; (6)

MCC ¼ ðTP � TNÞ � ðFN � FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞp ; (7)

F1‐Score ¼ 2 � precision:Recall
precisionþ precision

; (8)

DSC ¼ 2 A
T
Bj j

Aj j þ Bj j ; (9)

Figure 6 The modified Xception model (Chen et al., 2018) which is used as the backbone (feature
extractor) for the DeepLab-v3+ model in the segmentation stage of the proposed pipeline.

Full-size DOI: 10.7717/peerj-cs.303/fig-6
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IoU ¼ TP
TPþ FPþ FN

; (10)

where TP, FP, FN, and TN are the number of True Positives, False Positives, False
negatives, and True Negatives, respectively.

For the segmentation task, our training set contains 5,000 COVID-19 images and the
test set has 403 images. For the classification task, however, the training set contains the
9,618 images, and 955 images are included in the test set. For the two-class version of
the classification problem, that is, COVID-19 vs. Normal, the total number of training
images are 5,219, and 536 images are included in the test set. Train-test split was used for
the evaluation in the three tasks. In the rest of this section, we refer to the COVID-19
classification of stage 1 as Task 1, to the multi-label recognition problem of stage 2 as Task
2, and the segmentation problem of stage 3 as Task 3.

Results of Task 1: classification using a fine-tuned inception-v3 model
For fine-tuning the Inception-v3 model, we used a batch size of 100 for 2,800 steps/
iterations. Starting from a pre-trained model on ImageNet, we removed the weights of the
last layer and re-trained it using X-ray and CT scans. For the four-class version of the
recognition problem, that is, COVID-19, Normal, Viral Pneumonia, and Bacterial
Pneumonia, the number of output nodes that is equal to the number of the classes is
set to 4. For the two-class version of the recognition problem, that is, COVID-19 and
Normal, the number of output nodes is set to 2. The last layer of the model was trained
with the back-propagation algorithm, and the weight parameter is adjusted using the
cross-entropy cost function by calculating the error between the softmax layer output and
the specified sample class label vector.

Table 2 summarizes the results of the fine-tuned Inception-v3 model using 0.01 learning
rate on the two-class and the four-class problems. After 2,800 steps for 4 classes, we
achieved an accuracy of 99.9%, 97.71%, and 98.1% for the training, validation and testing,
respectively. For 2 classes, however, we achieved an accuracy of 98.84%, 99.08%, and 99.4%
for the training, validation and testing respectively. The confusion matrices of the two-
class and four-class cases are shown in Figs. 7A and 7B respectively. We also show the
variations of the accuracy and cross-entropy for that model for classification of 2 classes in
Fig. 8.

We also compared the performance of the adopted model with other models in the
recent literature. Table 3 presents a summary of the accuracy, sensitivity, specificity,
precision, F1-Score and MCC attained by different architectures. We demonstrate that the
transfer learning approach with Inception-v3 surpassed all other architectures by

Table 2 Classification results of the fine-tuned Inception-v3 model for the two-class and the
four-class COVID-19 recognition problems. Please see text for more details.

# of
Classes

Training
accuracy (%)

Validation
accuracy (%)

Test accuracy
(%)

Training cross
entropy

Validation cross
entropy

Classes 98.59 97.71 98.1 0.07687 0.09425

Classes 99.84 99.08 99.4 0.01626 0.03283
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achieving a 99.4% accuracy in case the training was done using X-rays only. We further
tried to train using multi-modal data, that is, using X-rays and CT scans, and we
achieved a 99.5% accuracy. We argue that the increase in the attained accuracy, using

Figure 8 The variation of accuracy and cross-entropy using the Inception-v3 model with 2-classes
X-ray dataset. (A) The variation of accuracy. (B) The variation of cross-entropy.

Full-size DOI: 10.7717/peerj-cs.303/fig-8

Figure 7 Confusion matrices of the fine-tuned Inception-v3 model for the two-class and the four-
class COVID-19 recognition problems. (A) Confusion matrix for two classes, (B) Confusion matrix
for four classes. Full-size DOI: 10.7717/peerj-cs.303/fig-7
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multi-modal data, is due to the 3D cues that are provided by, and inherently exist, in CT
scans, but are missing in X-rays. It is worth mentioning that in order to avoid imbalanced
data, we made sure that we have an equal number of X-rays and CT scans when we trained
with multi-modal data. Particularly, we under-sampled the X-rays so that we get a
number equal to the number of available CT scans. The under-sampling was done
randomly, and we report the results that corresponds to the average of 5 runs. Complete
results for each of the 5 runs are given in Table 4. It is worth mentioning that due to
the limited number of available CT scans, uni-modal learning (using X-rays only) was
carried out using a larger number of scans, yet multi-modal learning attained a slightly
higher accuracy—99.4% for the former vs. 99.5% for the latter. We report this comparison
to highlight that multi-modal learning is worth further exploration when larger number of
CT scans becomes available.

Table 3 Comparing the recognition performance of the proposed model with other models in the recent literature.

Method Modality Accuracy
(%)

Senstivity
(%)

Specificty
(%)

Precision
(%)

F1-score
(%)

FPR MCC
(%)

4-Classes Alexnet (Loey, Smarandache & Khalifa,
2020)

X-ray 66.67 66.67 – 64.68 65.66 – –

Resnet18 (Loey, Smarandache & Khalifa,
2020)

X-ray 69.46 66.67 – 72.50 69.46 – –

ShuffleNet + SVM (Sethy & Behera, 2020) X-ray 70.66 65.26 – – 58.79 17.36 –

Googlenet (Loey, Smarandache &
Khalifa, 2020)

X-ray 80.56 80.56 – 84.17 82.32 – –

CNN (Zhao et al., 2020) CT 84.7 76.2 – 97.0 85.3 – –

Inception-v3 + SVM (Sethy & Behera,
2020)

X-ray 96.00 90.26 – – 90.28 4.86 –

DenseNet201 + SVM (Sethy & Behera,
2020)

X-ray 97.33 93.86 – – 93.86 3.06 –

XceptionNet + SVM (Sethy & Behera,
2020)

X-ray 97.33 93.00 – – 93.00 3.50 –

VGG-16 + SVM (Sethy & Behera, 2020) X-ray 97.33 94.20 – – 94.20 2.90 –

InceptionResnetV2 + SVM (Sethy &
Behera, 2020)

X-ray 97.33 91.13 – – 91.74 4.43 –

Ours TL-Incep-V3 X-ray 98.1 98.02 98.03 98.2 98.2 2 –

2-Classes

DRE-Net (Song et al., 2020) CT 64 92 96.12 96 94 3.85 88.3

DenseNet CT 96.25 96.29 96.21 96.29 96.29 – –

VGG-16 CT 96.93 99.20 94.67 94.90 97.0 5.33 93.96

Resnet-50 CT 97.33 99.20 95.47 95.63 97.38 4.53 94.73

GoogleNet CT 97.87 96.93 98.80 98.78 97.85 1.2 95.75

Ozkaya, Ozturk & Barstugan (2020) CT 98.27 98.93 97.60 97.63 98.28 2.4 96.54

MobileNet v2 X-ray 97.40 99.10 97.09 – – – –

VGG19 X-ray 98.75 92.85 98.75 – – – –

Ours TL-Incep-V3 X-ray 99.4 99.5 99.1 99.1 99.3 0.9 98.7

Ours TL-Incep-V3 CT + X-ray 99.5 99.8 98.2 99.2 99.5 0.81 99.0
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Results of Task 2: multi-label classification of infection manifestations
in CT scans
In the multi-label classifier, each convolutional layer is followed by maxpooling and
dropout regularization of 25% to prevent the model from over-fitting. We used 5 × 5 filter
for convolution and 2 × 2 for maxpooling, then, a flattening operation is carried out
for classification. The activation function is elu for all the layers, except for the last one
which is a sigmoid, in order to generate a probability for each label—ground glass,
consolidation, and pleural effusion. The loss function is the binary cross-entropy and the
metric is the accuracy, with Adam as the optimizer (Kingma & Ba, 2014). The model was
trained for 50 epochs. Figure 9 shows the confusion matrix for the three labels in the

Table 4 The prediction performance for the five runs which were carried out on two-class,
multi-modal data (X-ray and CT scans).

Test no Accuracy (%) Senstivity (%) Specificity (%) Precision (%) F1-Score (%) FPR MCC

Test-1 99.7 100 99.4 99.5 99.7 0.57 99.4

Test-2 99.7 100 99.4 99.5 99.7 0.56 99.5

Test-3 99.4 100 98.9 98.9 99.4 1.14 98.9

Test-4 99.7 100 99.4 99.4 99.7 0.64 99.4

Test-5 99.1 99.4 98.9 98.8 99.1 1.16 98.2

Mean 99.5 99.8 99.2 99.2 99.5 0.81 99.0

Figure 9 The confusion matrix of the adopted multi-label classifier.
Full-size DOI: 10.7717/peerj-cs.303/fig-9
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COVID-19 dataset. More performance metrics are given in Table 5. It is worth mentioning
that we do not report a comparison between our performance at this stage and the
recent literature. This is because, to the best of our knowledge, this research is the first to
address the problem of recognizing different types of infection manifestations. Even for
the recently proposed multi-task model in Amyar, Modzelewski & Ruan (2020), its
recognition arm addressed binary classification, which is identical to the two-class problem
addressed by stage 1 of our pipeline. The segmentation stage in Amyar, Modzelewski &
Ruan (2020) did not address multi-label infection recognition either, as it was limited to
produce binary masks.

Results of Task 3: semantic segmentation of COVID-19 infection
manifestations using multiple specialized streams
As mentioned in the previous section, we initialized the DeepLab-v3+ model using the
weights of the checkpoint used to segment the lung cancer nodules in our previous
work (EL-Bana, Al-Kabbany & Sharkas, 2020). We set the learning rate to 0.0001, the
momentum to 0.9, the weight decay to 0.00004, and the steps to 50,000. We also adjusted
the atrous rates as [6, 12, 18] with an output stride of 16. In Fig. 10, we present the
output segmentation masks on the COVID-19 validation set. The figure shows the
segmentation output of each of the specialized streams, and the output of the all-class
stream, that is, the single stream that was trained to segment all the classes of
manifestations at the same time. To support subjective results with objective measures, we
report in Table 6 the dice coefficient (DSC) and the mean Intersection over Union (IoU)
attained by the all-class stream, each of the three specialized streams, and their average.
Considering the performance of the specialized streams, which outperformed the single
stream approach, we believe that this defines an accuracy-complexity trade-off, that is, in
order to attain better DSC and IoU, the system needs to include multiple specialized
streams. We also believe that given the COVID-19 pandemic management as an
application, in which significant resources have already been invested, there is a higher
priority for developing highly accurate systems over low-complexity systems.

To compare the performance of the proposed approach with other models, we report
the results for specific types of infection manifestations as well as the overall performance
for all types of manifestations. Table 7 shows a manifestation-specific comparison
between the performance of our model, namely, DeepLab-v3+ model with transfer
learning from pulmonary nodule detection, and other models from the recent literature

Table 5 Different performance metrics for the adopted multi-label classifier. We show the perfor-
mance for individual labels as well as the overall performance.

Class name Accuracy (%) Precision (%) Senstivity (%) F1-Score (%)

Pleural effusion 91.31 83 90 86

Ground glass 89.46 91 80 85

Consolidation 93.72 88 93 90

Overall 87.2 87.3 87.6 87
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including previous research that adopted DeepLab-v3+. The comparison highlights
the superiority of our approach consistently for the two types of manifestations.
This represents approximately 41% and 290% increase in DCS of ground-glass opacities
and consolidation, respectively, compared to the recent literature. For mIoU, the

Figure 10 The output segmentation masks of the adopted deep models. The images in column 1 from (A) to (C) show the chest CT images of
three scans. Column 2 from (D) to (F) shows the ground-truth masks for these three scans, where the white represents the consolidation, dark gray
represents pleural effusion and light gray corresponds to ground-glass opacities. Column 3 from (G) to (I) depicts the segmentation results generated
by our model for all classes where the red represents the consolidation, the green represents the pleural effusion, and the yellow represents the
ground-glass opacities. The images in columns 3, 4, and 6 from (J) to (R) represent the output from the specialized stream that are trained to segment
ground-glass opacities, pleural effusion, and the consolidation, respectively. Full-size DOI: 10.7717/peerj-cs.303/fig-10

Table 6 A comparison between the performance of each of the specialized streams as well as the
all-class stream, with regards to dice coefficient (DSC) and mean Intersection over Union (mIoU).
For all the streams, a DeepLab-v3+ model, with an Xception 65 as a feature extractor, is used.

All-Class Stream 1: PE Stream 2:
GGO

Stream 3:
Consolidation

Multi-Stream
Average

DSC (%) 86.04 91.34 90.2 91.5 91.01

mIOU (%) 75.5 84.06 82.15 84.46 83.5
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comparison yields an increase of approximately 77% and 500% in DCS of ground-glass
opacities and consolidation, respectively.

We further make a comparison that is not manifestation-specific, between the
performance of the proposed approach and the recent literature. In Table 8, we
demonstrate an increase of approximately 4.5% and 2.5% for mean intersection-over-
union (mIoU) and dice coefficient, respectively, compared to the recent literature.
Figure 11 depicts a subjective comparison using examples for the output segmentation

Table 8 A quantitative comparison on the COVID-19 segmentation dataset between our
segmentation method and other methods in the recent literature. The comparison considers DSC
and mIoU. It also considers the overall performance on the three different types of infection manifes-
tations, that is, it is not a manifestation-specific comparison.

Method DSC (%) mIOU (%)

U-Net + DL (Zhou, Canu & Ruan, 2020) 61.0 43.88

U-Net + FTL (Zhou, Canu & Ruan, 2020) 66.7 50.15

U-NET 512 × 512 (Amyar, Modzelewski & Ruan, 2020) 67.14 50.53

AU-Net + DL (Zhou, Canu & Ruan, 2020) 68.5 52.09

U-NET 256 × 256 (Amyar, Modzelewski & Ruan, 2020) 69.09 52.77

AU-Net + FTL (Zhou, Canu & Ruan, 2020) 69.1 52.78

Backbone + PPD + RA + EA (Fan et al., 2020) 73.9 58.6

JCS (Wu et al., 2020) 77.5 65.2

JCS‘ (Wu et al., 2020) 78.3 66.5

Amine (Amyar, Modzelewski & Ruan, 2020) 78.52 64.6

U-net (Chen, Yao & Zhang, 2020) 82 69.49

M–A (Chen, Yao & Zhang, 2020) 85 73.91

M–R (Chen, Yao & Zhang, 2020) 84 72.41

Ours method 86.04 75.5

Table 7 A quantitative comparison of manifestation-specific DSC and mIoU, for Ground-Glass
Opacity and Consolidation, between our segmented method and other methods in the recent
literature.

Method DSC mIOU

Ground-glass opacities DeepLabV3+ (stride = 8) (Fan et al., 2020) 0.375 0.230

DeepLabV3+ (stride = 16) (Fan et al., 2020) 0.443 0.284

FCN8s (Fan et al., 2020) 0.471 0.308

Semi-Inf-Net+FCN8s (Fan et al., 2020) 0.646 0.477

Ours (DeepLab-v3+ + exception-65) 0.902 0.8215

Consolidation DeepLabV3+ (stride = 8) (Fan et al., 2020) 0.117 0.062

DeepLabV3+ (stride = 16) (Fan et al., 2020) 0.188 0.103

FCN8s (Fan et al., 2020) 0.221 0.124

Semi-Inf-Net+FCN8s (Fan et al., 2020) 0.238 0.135

Ours (DeepLab-v3+ + exception-65) 0.915 0.8446
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masks on the COVID-19 validation set obtained using U-net (Chen, Yao & Zhang, 2020)
and DeepLab-v3+ (ours). We also demonstrate less computational cost than the
traditional test, the RT-PCR, and other diagnostic tools (Huang et al., 2020; Wu et al.,
2020). We report this comparison in Table 9, which shows a 60% reduction in
diagnosis/computational time per case. Table 10 summarizes the model hyper-parameters
used in the three tasks that are accomplished by the proposed system.

Figure 11 Segmentation output visualization results. (A) and (B) chest CT images of two scans. (C) and (D) ground-truth masks for these
two scans, where the white represents the consolidation, dark gray represents pleural effusion and light gray corresponds to ground-glass opa-
cities. (E) and (F) the outputs of the U-Net. (G) and (H) the segmentation results generated by our model.

Full-size DOI: 10.7717/peerj-cs.303/fig-11

Table 10 A summary of hyper-parameters used in the proposed model.

Task_no Steps/Epochs Learning rate Optimizer Momentum Dropout Weight decay Batch size

Task 1 2,800 steps 0.01 Gradient descent – – – 100

Task 2 50 epochs 0.01 Adam – 0.5 – 64

Task 3 50 K steps 0.0001 SGD 0.9 – 0.00004 8

Table 9 A comparison between the proposed method and other diagnostic tools in the literature
concerning the average diagnosis time per case.

Method (Won et al., 2018) (Huang et al., 2020) (Wu et al., 2020) Ours

Test Time 4 h 21.5 min 19 s 5.33 s
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CONCLUSION
In this research, we proposed a multi-task pipeline for the recognition of COVID-19,
and the classification and segmentation of related infection manifestations in medical
scans. We are inspired by the emerging role that medical imaging-based diagnostics
can play as a digital second opinion to manage the current pandemic. The proposed
pipeline starts with a COVID-19 recognition stage. Towards this goal, we fine-tuned and
Inception-v3 model which was pre-trained on ImageNet. We evaluated the performance of
this model on two tasks, namely, the two-class problem of COVID-19/non-COVID-19
recognition, and the four-class problem of recognizing COVID-19 scans from other
scans that correspond to normal, viral pneumonia, and bacterial pneumonia cases.
We outperformed other techniques in the recent literature, consistently in both types of
classification problems. To the best of our knowledge, we are also the first to highlight a
potential advantage for multi-modal learning, that is, learning from X-rays and CT
scans over learning from X-rays only. In the second stage, we addressed a problem that was
not been addressed by the recent literature, namely, the identification of the probabilities of
presence for different types of infection manifestations in medical scans. This stage was
implemented using a multi-label CNN classifier, and we envisage its potential to serve
in early detection of infection manifestations. It also complements the third stage
which addresses the problem of computing binary masks for segmenting the regions
corresponding to infection regions in CT scans. For effective segmentation, we adapted
the knowledge from another domain, namely, pulmonary nodule segmentation.
This approach resulted in an increase of approximately 2.5% and 4.5% for dice
coefficient and mean intersection-over-union (mIoU), respectively, while requiring 60%
less computational time, compared to the recent literature. All the stages of the proposed
pipeline were trained and tested using widely adopted datasets, and evaluated using
various objective measures. We also used data augmentation techniques to avoid
over-fitting that might have occurred due to the relatively limited volume of available data.
For further enhancement of the performance of the segmentation stage, we showed that
using multiple streams can significantly improve the quality of the output masks, as
measured by the DSC and mIoU, such that each stream is trained to segment a specific
type of infection manifestations.
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