Skip to main content
. 2020 Oct 19;6:e303. doi: 10.7717/peerj-cs.303

Table 3. Comparing the recognition performance of the proposed model with other models in the recent literature.

Method Modality Accuracy (%) Senstivity (%) Specificty (%) Precision (%) F1-score (%) FPR MCC (%)
4-Classes Alexnet (Loey, Smarandache & Khalifa, 2020) X-ray 66.67 66.67 64.68 65.66
Resnet18 (Loey, Smarandache & Khalifa, 2020) X-ray 69.46 66.67 72.50 69.46
ShuffleNet + SVM (Sethy & Behera, 2020) X-ray 70.66 65.26 58.79 17.36
Googlenet (Loey, Smarandache & Khalifa, 2020) X-ray 80.56 80.56 84.17 82.32
CNN (Zhao et al., 2020) CT 84.7 76.2 97.0 85.3
Inception-v3 + SVM (Sethy & Behera, 2020) X-ray 96.00 90.26 90.28 4.86
DenseNet201 + SVM (Sethy & Behera, 2020) X-ray 97.33 93.86 93.86 3.06
XceptionNet + SVM (Sethy & Behera, 2020) X-ray 97.33 93.00 93.00 3.50
VGG-16 + SVM (Sethy & Behera, 2020) X-ray 97.33 94.20 94.20 2.90
InceptionResnetV2 + SVM (Sethy & Behera, 2020) X-ray 97.33 91.13 91.74 4.43
Ours TL-Incep-V3 X-ray 98.1 98.02 98.03 98.2 98.2 2
2-Classes
DRE-Net (Song et al., 2020) CT 64 92 96.12 96 94 3.85 88.3
DenseNet CT 96.25 96.29 96.21 96.29 96.29
VGG-16 CT 96.93 99.20 94.67 94.90 97.0 5.33 93.96
Resnet-50 CT 97.33 99.20 95.47 95.63 97.38 4.53 94.73
GoogleNet CT 97.87 96.93 98.80 98.78 97.85 1.2 95.75
Ozkaya, Ozturk & Barstugan (2020) CT 98.27 98.93 97.60 97.63 98.28 2.4 96.54
MobileNet v2 X-ray 97.40 99.10 97.09
VGG19 X-ray 98.75 92.85 98.75
Ours TL-Incep-V3 X-ray 99.4 99.5 99.1 99.1 99.3 0.9 98.7
Ours TL-Incep-V3 CT + X-ray 99.5 99.8 98.2 99.2 99.5 0.81 99.0