Skip to main content
. 2019 Aug 12;5:e208. doi: 10.7717/peerj-cs.208

Table 1. The comparison of AES systems.

AES/Parameter Vendor Release date Primary focus Technique(s) used Training data Feedback Application Correlation with human raters’ scores
PEG™ Ellis Page 1966 Style Statistical Yes (100 –400) No 0.87
IEA™ Landauer, Foltz, & Laham 1997 Content LSA (KAT engine by PEARSON) Yes (∼100) Yes 0.90
E-rater® ETS development team 1998 Style & Content NLP Yes (∼400) Yes (Criterion) ∼0.91
IntelliMetric™ Vantage Learning 1998 Style & Content NLP Yes (∼300) Yes (MY Access!) ∼0.83
BETSY™ Rudner 1998 Style & Content Bayesian text classification Yes (1000) No ∼0.80
Alikaniotis, Yannakoudakis & Rei (2016) Alikaniotis, Yannakoudakis, and Rei 2016 Style & Content SSWE + Two-layer Bi-LSTM Yes (∼8000) No ∼0.91 (Spearman) ∼0.96 (Pearson)
Taghipour & Ng (2016) Taghipour and Ng 2016 Style & Content Adopted LSTM Yes (∼7786) NO QWK for LSTM ∼0.761
Dong & Zhang (2016) Dong and Zhang 2016 Syntactic and semantic features Word embedding and a two-layer Convolution Neural Network Yes (∼1500 to ∼1800) NO average kappa ∼0.734 versus 0.754 for human
Dasgupta et al. (2018) Dasgupta, T., Naskar, A., Dey, L., & Saha, R. 2018 Style, Content, linguistic and psychological Deep Convolution Recurrent Neural Network Yes ( ∼8000 to 10000) NO Pearson’s and Spearman’s correlation of 0.94 and 0.97 respectively

Notes.

Scorers.