Skip to main content
. 2021 Jan 26;7:e349. doi: 10.7717/peerj-cs.349

Table 1. The summary of various deep learning algorithms for COVID-19 lung CT scans and the segmentation results.

RVE, ACC, DC, Sen, Sp and F1 represent relative volume error, accuracy, Dice coefficient, sensitivity, specificity and F1 score, respectively.

Literature Data Type Dataset Technique Segmentation results
Fan et al. (2020) CT Scan 100 CT images Semi supervised CNN 73.9% (DC)
FCN8s network 96.0% (Sp)
Wang et al. (2020b) CT Scan 558 CT images Residual connection 80.7% (DC)
CNN 16.0% (RVE)
Yan et al. (2020) CT Scan 21,658 CT images Deep CNN 72.6% (DC)
75.1% (Sen)
Zhou, Canu & Ruan (2020) CT Scan 100 CT images Attention mechanism 69.1% (DC)
Res-Net, dilation convolution 81.1% (Sen)
Elharrouss et al. (2020) CT Scan 100 CT images Encoder-decoder-based CNN 78.6% (Dice)
71.1% (Sen)
Chen, Yao & Zhang (2020) CT Scan 110 CT images Encoder-decoder-based CNN 83.0% (DC)
89.0% (ACC)
Xu et al. (2020) CT Scan 110 CT images CNN 86.7% (ACC)
83.9% (F1)
Shuai et al. (2020) CT Scan 670 CT images CNN 73.1% (ACC)
67.0% (Sp)