Table 2. Quantitative comparisons with respect to ground truth for different dense layers included the UNET (Ronneberger, Fischer & Brox, 2015) and Res-Net (He et al., 2016) architecture.
ACC, DC, Sen, Sp, Pc, AUC, F1, Sm, Ea and MAE represent accuracy, Dice coefficient, sensitivity, specificity, precision, the area under the curve, F1 score, structural metric, enhancement alignment meter and mean absolute error, respectively.
Number of dense network | ACC | DC | Sen | Sp | Pc | AUC | F1 | Sm | Eα | MAE |
---|---|---|---|---|---|---|---|---|---|---|
Num1 | 0.9696 | 0.7971 | 0.8011 | 0.9958 | 0.8290 | 0.9513 | 0.8129 | 0.8411 | 0.9315 | 0.0088 |
Num2 | 0.9700 | 0.8011 | 0.8096 | 0.9966 | 0.8596 | 0.9492 | 0.8184 | 0.8528 | 0.9394 | 0.0083 |
Num3 | 0.9686 | 0.7569 | 0.7546 | 0.9957 | 0.8200 | 0.9334 | 0.7806 | 0.8349 | 0.9379 | 0.0104 |
Num4 | 0.9699 | 0.7869 | 0.7579 | 0.9961 | 0.8485 | 0.9495 | 0.8241 | 0.8341 | 0.9348 | 0.0090 |
UNET | 0.9696 | 0.7998 | 0.8052 | 0.9957 | 0.8247 | 0.9347 | 0.8154 | 0.8400 | 0.9390 | 0.0088 |
Res-Net | 0.9698 | 0.8002 | 0.7978 | 0.9962 | 0.8344 | 0.9504 | 0.8180 | 0.8415 | 0.9352 | 0.0094 |