Table 2. Performance measures (AC, accuracy; FS, F1 score; KP, Kappa statistic) across class distributions for the Random Forest and HMM classifiers for dynamic data, forward roadway vs. instrument cluster, vs. left mirror, vs. center stack, vs. right mirror.
| Forward vs. | Model | Original dataset | Balanced Dataset | ||||
|---|---|---|---|---|---|---|---|
| AC | FS | KP | AC | FS | KP | ||
| Instrument cluster | Random forest | 0.59 | 0.33 | 0.08 | 0.56 | 0.48 | 0.11 |
| Instrument cluster | Hidden Markov Model | 0.66 | 0.32 | 0.12 | 0.66 | 0.61 | 0.33 |
| Left mirror | Random forest | 0.86 | 0.30 | 0.24 | 0.79 | 0.78 | 0.59 |
| Left mirror | Hidden Markov Model | 0.84 | 0.28 | 0.22 | 0.83 | 0.68 | 0.33 |
| Center stack | Random forest | 0.85 | 0.77 | 0.66 | 0.83 | 0.81 | 0.66 |
| Center stack | Hidden Markov Model | 0.83 | 0.72 | 0.60 | 0.85 | 0.83 | 0.69 |
| Right mirror | Random forest | 0.95 | 0.74 | 0.72 | 0.90 | 0.89 | 0.80 |
| Right mirror | Hidden Markov Model | 0.93 | 0.69 | 0.65 | 0.87 | 0.73 | 0.66 |