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ABSTRACT
Background: Several new programming languages and technologies have emerged

in the past few decades in order to ease the task of modelling complex systems.

Modelling the dynamics of complex systems requires various levels of abstractions

and reductive measures in representing the underlying behaviour. This also often

requires making a trade-off between how realistic a model should be in order to

address the scientific questions of interest and the computational tractability of the

model.

Methods: In this paper, we propose a novel programming paradigm, called temporal

constrained objects, which facilitates a principled approach to modelling complex

dynamical systems. Temporal constrained objects are an extension of constrained

objects with a focus on the analysis and prediction of the dynamic behaviour of a

system. The structural aspects of a neuronal system are represented using objects, as

in object-oriented languages, while the dynamic behaviour of neurons and synapses

are modelled using declarative temporal constraints. Computation in this paradigm

is a process of constraint satisfaction within a time-based simulation.

Results: We identified the feasibility and practicality in automatically mapping

different kinds of neuron and synapse models to the constraints of temporal

constrained objects. Simple neuronal networks were modelled by composing circuit

components, implicitly satisfying the internal constraints of each component and

interface constraints of the composition. Simulations show that temporal constrained

objects provide significant conciseness in the formulation of these models.

The underlying computational engine employed here automatically finds the

solutions to the problems stated, reducing the code for modelling and simulation

control. All examples reported in this paper have been programmed and

successfully tested using the prototype language called TCOB. The code along with

the programming environment are available at http://github.com/compneuro/

TCOB_Neuron.

Discussion: Temporal constrained objects provide powerful capabilities for modelling

the structural and dynamic aspects of neural systems. Capabilities of the constraint

programming paradigm, such as declarative specification, the ability to express partial

information and non-directionality, and capabilities of the object-oriented paradigm

especially aggregation and inheritance, make this paradigm the right candidate for

complex systems and computational modelling studies. With the advent of multi-core
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parallel computer architectures and techniques or parallel constraint-solving, the

paradigm of temporal constrained objects lends itself to highly efficient execution which

is necessary for modelling and simulation of large brain circuits.

Subjects Computational Biology, Scientific Computing and Simulation, Programming Languages

Keywords Temporal constrained objects, Constraint programming, Object-oriented languages,

Declarative modelling, Neuron models

INTRODUCTION
Modelling complex systems using computer languages has spanned a wide range of

domains: from organs and organ systems to weather and atmospheric turbulence to

economic systems and social networks. While it is the responsibility of the programmer to

choose an appropriate paradigm for the problem at hand, conventional languages are

limited in their ability to provide the right framework for a broad range of problems.

Models for complex problems tend to be large and unwieldy, and hence it is critically

important that the programming language used to program such models not exacerbate

the problem with inadequate support. In this regard, imperative languages require more

effort on the programmer, in providing the detailed data representation and algorithms,

needed to solve a problem. This adds another layer of software complexity, especially

when the problem to be modelled is a highly complex one.

Declarative languages had their origins in 1960s and are useful in directly modelling a

problem by stating the properties of solutions (Benhamou, Jussien & O’Sullivan, 2007).

In constraint-based languages, programmers declaratively specify the relation between

variables using constraints, and the task of solving/maintaining the constraints is the

responsibility of the underlying constraint solvers (Freeman-Benson, Maloney &

Borning, 1990). This approach provides the desired separation between the problem-

specification phase and the problem-solving phase. In this paper, we present a

compositional approach in constraint programming to model the structure and

behaviour of complex biological systems using the concept of temporal constrained objects

(Kannimoola et al., 2017).

Temporal constrained objects are an extension of the paradigm of constrained objects

which has been studied for over three decades (Borning, 1981; Leler, 1987; Horn, 1993;

Tambay, 2003) and provide a declarative approach to data abstraction using the concepts

of classes, hierarchies and aggregation found in object-oriented languages (Lago &

Artalejo, 2001; Reiner & Zimmer, 2017). Constrained objects also provide a declarative

approach to behavioural specification using constraints within the class (Jayaraman &

Tambay, 2002). Constrained objects have been used previously to model cellular

behaviour (Covert, Famili & Palsson, 2003) and metabolic pathways in cells (Pushpendran,

2006) in the context of biological systems. Although constraint satisfaction problems

were introduced originally as a static framework, the paradigm of temporal constrained

objects allows a modeller to solve a broader class of problems. In temporal constrained

objects, constraint-solving is integrated within a time-based simulation regime and is
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well-suited to problem domains that require ordinary differential equations or partial

differential equations. Extensions to constraint programming frameworks, such as hybrid

concurrent constraint programming (Gupta et al., 1995), have also proved to be useful in

modelling constraint satisfaction problems with time-varying behaviours. Temporal

constrained objects were successful in modelling highly dynamic systems such as vehicular

networks (Kannimoola, Jayaraman & Achuthan, 2016) and firewalls (Kannimoola,

Jayaraman & Achuthan, 2018). This paper applies similar modelling principles to

neural microcircuits.

In this paper, we demonstrate how the paradigm of temporal constrained objects can be

applied for modelling the structure and behaviour of a complex biological system.

Temporal constrained objects are appropriate for systems whose behaviour is governed by

physical laws. The adaptive and dynamic nature of neural circuits demands efficient

modelling strategies to incorporate structural compositions of the constituents at various

translational levels—from ion channels to neurons to networks and behavioural systems.

This paradigm is suitable to model neural systems since it focuses on a component-

based modelling approach, with individual components governed by invariant principles.

For example, neurons’ and synapses’ signalling mechanisms and its non-linear dynamics are

represented by membrane voltage models constrained by current and voltage laws,

and are also known to be constrained by neuronal anatomy and interconnection

between neurons (Gutkin, Pinto & Ermentrout, 2003). While building neural networks, the

aggregation of different neuronal circuit elements was automatically addressed using internal

and interface constraints, without imposing the relations explicitly from outside.

In this paper, the section ‘Background’ gives background about the programming

language aspects of temporal constrained objects followed by the essential modelling

principles of neural systems. Computational modelling of neural systems using temporal

constrained objects is described in the section ‘Methods.’ We present a detailed case

study of an implementation of neurons and the micro-circuitry of a rat cerebellum

granular layer. The ‘Results’ section includes the results of modelling with temporal

constrained objects as well as model validations and performance optimizations.

The last two sections of the paper highlights the discussion followed by conclusions

and remarks on future research directions.

BACKGROUND
Programming methodology
Popular mainstream programming languages such as C, Java or Python require the

programmer to specify detailed procedural instructions on how to solve a problem.

In these languages, model specification and model implementation details are interwoven.

In contrast, a declarative program specifies the expected result of a computation

without explicitly detailing with the steps that must be performed to obtain that result.

That is, declarative programming focuses more on what is to be computed, rather than

how (Lloyd, 1994). In this paper we introduce a declarative programming paradigm

called temporal constrained objects which integrates declarative constraints and constraint

solving within the popular object-oriented paradigm for data abstraction.
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A constraint is a declarative specification of a relation between variables and does

not explicitly specify a procedure or algorithm to enforce the relation. In constraint

programming, the programmer models the system as a set of variables over well-defined

domains and states the problem as a set of constraints on these variables. The constraint

solver enumerates the possible values of the variables and checks whether these

enumeration leads to a solution or not, by a process called constraint satisfaction.

Constraints have been used in the past for formulating many combinatorial problems,

including search problems in artificial intelligence and operational research.

Object-oriented methods support component-based modelling where the whole

system can be modelled incrementally using subsystems modelled previously. Although

most mainstream languages that support object-oriented principles follow the

imperative style of programming, object-oriented languages supporting declarative

semantics have also been proposed (Lago & Artalejo, 2001). In temporal constrained objects

the state of an object, i.e., the values of its attributes, is determined by a set of

declarative constraints rather than by imperative procedures.

Constraint-based and related systems
Among the first in the area of constrained objects was ThingLab (Borning, 1981),

a constraint-based simulation laboratory designed for interactive graphical simulations.

The Kaleidoscope ’91 language (Lopez, Freeman-benson & Borning, 1994; Govindarajan,

Jayaraman & Mantha, 1996) integrated constraints and object-oriented programming

for interactive graphical user interfaces. Kaleidoscope added constraint hierarchies,

multi-methods and constraint constructors, as well as user-defined constraints, which

were simplified by the compiler to primitive constraints that could be solved by a

primitive solver. Bertrand (Leler, 1987) was another language aimed at graphics

applications, which was extended by Bruce Horn in his constrained object language Siri

(Horn, 1991). This language used the notion of event pattern to declaratively specify

state changes: by declaring what constraints held after the execution of a method, and also

specifying which attributes may and may not change during the method execution.

This constraint imperative language uses constraints to simulate imperative constructs

such as updating, assignment and object identity. Inspired by Kaleidoscope, the language

Babelsberg (Felgentreff et al., 2015) was developed that integrates constraints with

object-oriented systems. A Ruby extension has been developed wherein programmers

could add constraints to existing Ruby programs in incremental steps. Another extension

has been made accessible from the Smalltalk language to enable the dynamic management

of constraints, and a similar approach was followed by integrating constraint

programming into Java language environment (Hon & Chun, 1999). Being early

approaches, they provide a limited capability for expressing constraints. Modelica

(Fritzson, 2004) is a constrained object language for modelling and simulation in the

engineering context. It supports numerical constraints in an object-oriented framework

and uses the MATLAB engine for constraint solving. Temporal constrained objects

presented in this paper also employs similar modelling principles.
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Existing neuroscience modelling platforms and tools
Modelling and simulation techniques are extensively used as powerful complements to

hypothesis testing for experimental studies related to biological and physiological systems.

Simulation engines, computing environments and languages help building the

computational model of the system from mathematical models. Currently, a neuroscience

modeller has wide choice of tools that support better integration and model reuse

across multiple simulators. While simulators such as NEURON, GENESIS and NEST

employ domain-specific custom scripting languages to isolate model specification from

simulation code, interoperable scripting was supported in simulators like MOOSE

and PyNN (Goddard & Hood, 1998;Hines & Carnevale, 1997; Diesmann & Gewaltig, 2001;

Ray & Bhalla, 2008; Davison et al., 2009). NEURON uses the interpreted language hoc

for simulation control and a high-level language Neuron model description language

(NMODL) for describing models, where each line of NMODL is translated into

equivalent C statements. Both GENESIS and NESTuse high-level simulation languages to

model neurons and synapses. While the simulation kernel of NEST is written in C++,

Python commands are used to formulate and run neuron simulations with an extended

code generation support using Cython (Zaytsev & Morrison, 2014). GENESIS also

supports declarative modelling using a script-based language interpreter. These

specialized tools are less verbose and can address different domain-specific modelling

tasks in a computationally tractable way. All these simulators are software packages with

several thousands of lines of code (LOC) and pose model exchange and interoperability

problems. Although conceptual structure of modelling is commonly addressed in

these simulators in a precise and concise manner, the simulation kernel of these tools

uses object oriented and low level procedural code libraries.

Since conversion of models from one simulator to another is a non-trivial task,

simulator-independent language initiatives facilitated model sharing and model reuse

across multiple simulators. PyNN and MOOSE uses high level Python libraries and

APIs to support simulator independent interface for neuron modelling. Apart from

these attempts, XML based model specification languages have helped reduce the

implementation and platform dependent biases in the modelling process. As a model

representation language, systems biology markup language provides a common format

for describing models and supports interoperability among different tools in

computational biology (Hucka et al., 2003). NeuroML (Gleeson et al., 2010) uses

distinctive XML schemas to represent the morphology (MorphML), channel conductance

(ChannelML) and network properties (NetworkML) of neural systems. NineML

(Raikov, 2010) uses XML based abstract object models and enable quick prototyping of

neuron, synapse and network models using parameters for model variables, state

update rules and mathematical descriptions. Low entropy model specification also

follows a similar approach and are more flexible in defining and translating models

(Cannon et al., 2014). Even though the XML-based model description frameworks reduce

external software dependencies, they do not provide any details on how to simulate the

models. XML schemas supports model exchange and automated validation of
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components but for better integration with existing simulators, these models should be

easily translatable to multiple simulation platforms. The simulators need to either

translate the models into equivalent internal models or use code generation through

external or built in libraries. Spiking Neural Mark-up Language (SpineML), an extension

of NineML uses simulator specific eXtensible Stylesheet Language Transformations

(XSLT) templates to generate the simulation code (Richmond et al., 2014). The encoding

of model details from XML format to the internal representation of the simulator

completely depends on the data structure of the language selected for this translation.

For example, mapping the NeuroML model description to the internal data structure

of the simulators such as NEURON, GENESIS, PyNN or MOOSE is provided through

simulator specific native scripts.

Although the aforementioned simulators hide the implementation complexity

from the modeller either through GUI or through modules and scripting, the

software complexity of the simulator increases while satisfying these requirements.

The computational architecture of the simulators handled the complexity and provided

interfaces to the end user. Since temporal constrained objects are founded on constraints,

a model’s concept space (model specification) and computational space (simulation

control) can be represented with less implementation complexity. For modelling multiple

levels as in enzyme or biochemical kinematics to neurons and neural circuits,

a constraint-based solver that could handle several models of differential equation style

mathematical abstractions was attempted in this study.

Another motivation for our choice of the paradigm of temporal constrained objects is

its amenability to parallelization. Modern programming paradigms are biased more

towards many-core and multi-core programming. Current day simulation systems have

become more reliant on high performance computing techniques. In computational

neuroscience, a modelling study generally involves learning a domain specific language

and then depending on the framework of this language to parallelize the programs.

NEURON and GENESIS require modifications in the coding strategy to port the model

to cluster computing environment while NEST almost transparently maps a model to

multicore computers. Brian has little support for parallelization which limits its use for

large scale systems (Goodman & Brette, 2008). The transition of a software to

parallelization is easier with declarative paradigms (Darlington, Reeve & Wright, 1990).

The advantage with parallel constraint programming is that no change is needed in the

problemmodel for parallelization and the constraint framework handle the parallelization

primitives. Parallel constraint programming frameworks exist (Rolf, 2011) which

automatically parallelize the problem by dividing the task among several constraint

solvers which perform parallel consistency and parallel search processes. Since consistency

checking during constraint solving has similarities to single instruction multiple

thread parallelism, GPU level parallelization of constraint propagation has been

explored recently (Campeotto et al., 2014). Although beyond the limits of this paper,

integrating parallelization with temporal constrained objects frameworks will benefit the

neuroscience community to easily create abstract models which are automatically scalable.
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Temporal constrained objects
Constrained objects support object-oriented features, such as aggregation and inheritance,

along with constraint-based specifications such as arithmetic equations and inequalities,

quantified and conditional constraints. The programming language COB implements

the constrained object paradigm (Jayaraman & Tambay, 2002). The COB language

defines a set of classes, each of which contains a set of attributes, constraints, predicates

and constructors. Every constrained object is an instance of some class whose outline

is as follows.

class_definition ::= [ abstract] class class id [ extends class id ] {body}

body ::= [ attributes attributes]

[ constraints constraints]

[ predicates predicates ]

[ constructors constructors]

A class may optionally extend another class and the attributes, constraints, predicates and

constructors are all optional. Constraints specify the relation between attributes of

the typed classes. Constrained objects support both primitive and user-defined attributes,

and constraints may be simple, conditional, quantified, or aggregate (also see

Supplementary Material for a complete specification of the grammar of the language)

(Tambay, 2003).

Temporal constrained objects extend the basic paradigm of constrained objects to support

time-varying properties of dynamic systems. Using temporal constrained objects, the

structural aspects and the modularity of a system are modelled using encapsulation,

inheritance and aggregation while the behavioural aspects are modelled through a rich set of

constraints. The underlying computational engine performs logical inference and constraint

satisfaction to enforce the behaviour automatically while each object is created.

One of the most useful features of temporal constrained objects for modelling temporal

(or dynamic) behaviour is the series variable, declared as:

series type variable_name [initialization];

The series variable takes on an unbounded sequence of values over time, and temporal

constraints are defined in terms of past and future values of the series variable. For

every series variable v, the expression�v refers to the immediate previous value of v and v�

to the next value. These operators can be juxtaposed (for example,��v and v��) to refer to

successive values of v in the past or future. A series variable may also be initialized by

explicitly assigning values at specific time points.

An example of an alternating-current (AC) circuit illustrates the basic constructs of the

language (Fig. 1). The series attributes, voltage (V) and current (I), in the abstract

component class holds the sequence of values at different instance of time. The source

class generates the input voltage for the circuit, which varies sinusoidal with time.

The classes resistor and capacitor inherit voltage and current from the component

class. The constraints in each class define the laws of circuit elements: the resistor class
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abstract class component{
attributes

series real V, I;
constraints

V<1> = 0.0; I<1> = 0.0
}
class source extends component{

constraints
sin(Time, V);

constructors source(){}
}
class resistor extends component{

attributes
real R;

constraints
V = I * R;

constructors resistor(R1)
{ R = R1; }

}
class capacitor extends
component{

attributes
real C;

constraints
I = C * (V -‘V);

constructors capacitor(C1)
{ C = C1; }

}
class series_comp extends
component{

attributes
component [] SC;

constraint

forall C in SC: C.I = I;
(sum X in SC: X.V) = V;

constructors series_comp(A)
{ SC = A; }

}
class parallel_comp extends
component{

attributes
component[] PC;

constraints
forall X in PC: X.V = V;
(sum X in PC: X.I) = I;

constructors parallel_comp(B)
{PC = B;}

}
class sample_circuit {

attributes
source AC;resistor R1,R2;
capacitor C;
series_comp S;
parallel_comp P;
component[]Ser;
component[]Par;

constructors sample_circuit(){
R1 = new resistor(10.0);
R2 = new resistor(10.0);
C = new capacitor(0.1);
Ser[1] = R1;Ser[2] = C;
S = new series_comp(Ser);
AC = new source();
Par[1]=S;
Par[2]=AC;
Par[3]=R2;
P = new parallel_comp(Par);

}}

Figure 1 Temporal constrained object representation of AC circuit.

Full-size DOI: 10.7717/peerj-cs.159/fig-1

incorporates Ohm’s law for resistance (Eq. (1)); and the capacitor class incorporates

Ampere’s law for capacitance (Eq. (2)).

V ¼ IR (1)

I ¼ C
dv

dt
(2)

The differential equation (Eq. (2)) is treated as difference equations in the capacitor

class, i.e. the rate of change of voltage can be approximated by change in voltage in one

unit of time. The parallel_comp and series_comp classes represent the two different
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ways of combining the components of the AC circuit. (Of course, non-series parallel

circuits can also be defined, but the example in Fig. 1 pertains only to series-parallel

circuits.) The constraints describe the resultant voltage and current for both kinds

of circuits. For example, in class parallel_comp, the quantified constraint forall

enforces that the voltage across every component in the parallel circuit is the same and

equal to the voltage across the parallel circuit; and, the summation constraint sums up the

currents through each component of the parallel circuit and equates it to the current

through the parallel circuit. The class sample_circuit builds a series component with a

resistor and capacitor and a parallel component consisting of the series component, a

sinusoidal voltage source and a single resistor. In order to understand the execution of a

TCOB program, TCOB provides a built-in variable Time, which represents the current

time and is automatically incremented by one unit to record the progression of time.

The default initial value for Time is equal to one unless a different value is specified by the

user. The user may adopt any other discrete granularity for time by multiplying with

a suitable scaling factor, e.g. MyTime = 0.01 � Time.
We use the example of an on-off controller (Fig. 2) to illustrate the basic concepts

of conditional constraints in the TCOB. This is a simplified version of traffic light

example from a previous paper (Kannimoola, Jayaraman & Achuthan (2016)). The variable

C is declared using series keyword to model transitioning from on/off state in each time

instance, specified by the conditional constraint symbol -->. When Time = 1, the value of C

= on since this is the initial value of C as given in the constructor. At this time, the value of C�,

i.e. value of C at Time = 2 is set as off based on the first constraint in the program. In a

similar manner, the second constraint determines values for C for off-on transition.

In this implementation, the TCOB programming environment consists of a

compiler which translates the class definitions into equivalent predicates in SWI-

Prolog which provides support for constraint-solving through its libraries. A more

detailed description of the language is given in reference (Kannimoola et al., 2017).

Electrical equivalent circuit of neurons
A single neuron is often conceptualised using the biophysics of a neuronal membrane,

represented by resistance-capacitance (RC) low-pass filtering properties wherein the

class controller {
attributes

series string C;
constraints

C = on --> C` = off;
C = off --> C` = on;

constructor controller(){ C<1> = on;}
}

Figure 2 Simple controller using conditional constraints.

Full-size DOI: 10.7717/peerj-cs.159/fig-2
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lipid bi-layer of the neurons is modelled as capacitance (C), the voltage-gated ion

channels as electrical conductance (g) and the electrical gradient as reversal potentials.

Then, basic voltage and current laws (Ohm’s and Kirchhoff ’s laws) are employed to

calculate the voltage across the membrane of the neuron. The cell membrane acts as a

diffusion barrier and an insulator to the movement of ions. The lipid bi-layer of the

membrane accumulates charges over its surface where the intracellular and extracellular

solutions act as the conducting plates separated by the non-conducting membrane.

The capacitive current Ic , thus formed is

Ic ¼ C
dV

dt
(3)

where C is the capacitance and V is voltage across the membrane. Ions flow into and out

of the cell through ion channels. The flow of ions through these channels leads to resistive

current flow into the neuron, which is represented using Ohm’s law:

Iion ¼ VGion (4)

where Gion is the conductance of ion across the membrane and Iion is the ionic current.

The electromotive force acting over the ions as the battery of the circuit, when included,

the ionic current can be represented as,

Iion ¼ GionðV � EionÞ (5)

Total current flowing across the membrane is the sum of the capacitive and ionic

currents:

ITotal ¼ Ic þ Iion (6)

At steady state, membrane voltage remains constant, which means that the net current

into the neuron plus the net current out of the neuron must equal zero.

ITotal ¼ Ic þ Iion ¼ 0 (7)

When an input current IExt is injected into the cell, it further charges the capacitor and

the current leaks through the membrane.

IExt ¼ C
dV

dt
þ Iion (8)

Larger number of open ion channels in the membrane decreases the resistance of the

membrane due to increased ionic flow across the membrane. This results in an increase in

conductance across the membrane. Ionic current flow through a neuron with Sodium,

Potassium and Leak channels can thus be modelled as,

IExt ¼ C
dV

dt
þ GNaðV � ENaÞ þ GK ðV � EK Þ þ GLðV � ELÞ (9)

Passive electrical properties persist in the neuron if the current is a sub threshold current

or a hyperpolarizing current. Neurons are known to communicate to each other using

stereotyped electrical signals called action potentials or spikes. The generation of action

potential in the neuron can be explained by modelling the activation of ion channels.
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Detailed conductance-based models like Hodgkin–Huxley (HH) model and simpler

phenomenological models like Izhikevich model and Adaptive exponential integrate and

fire model were used in this study to explain the spiking mechanisms of neurons.

METHODS
In this paper, we used temporal constrained objects to model the time-varying dynamics

of a neural circuit as exhibited by the electrical activity of neurons and synapses.

In modelling studies, elemental features of a neural system are abstracted into a

conceptual model and are formalized into a mathematical form. A working embodiment

of neural dynamics is created using computational models which is used to test and

examine the modelled abstract. Chemical and electrical phenomena of neural systems

were then simulated from mathematical representations (Fig. 3).

Temporal constrained objects allowed a direct implementation of the circuit model of a

neuronal system. Initial focus was on modelling the component-based structure of the

neural system by identifying the components, their functions and parameters. The main

constituent of the neural system—the neuron—was modelled in two different

formulations: (1) using voltage functions which are continuous over a time evolution

(as in a HH model, described in ‘Modelling neurons using continuous time HH

mechanisms’); and (2) using voltage reset functions which show piece wise state changes

(as in AdEx and Izhikevich models, described in ‘Reconstructing neurons using voltage

Vin

Vout

Ic Ina Ik IL

GNa GK GLC

ENa EK EL

Stim

IExt

dt
dVCVVgVVgVVgI LLKKNaNaext )()()(

Neuron

C,Vm,Iext
GNa,GK,GL,VNa,Vk,VL

INa =M*M*M*H*GNa*(Vm-ENa);
Ik = N*N*N*N* Gk * (Vm-Ek);

Ileak= GL* (Vm)-EL;
Iion= Ina + Ik+  IL;

Vm  = `Vm+ ( ( Iext -`Iion ) / C);

Neuron
RC Circuit Equivalent Model

Mathematical Model

Computational Model

Figure 3 Computational modelling of neurons. It is a common practice to abstract a neuron as an RC

circuit to describe the electrical properties of the neuron. Current flow in the neuron was mathematically

modelled using this equivalent model. In the temporal constrained object approach, a neuron was

represented as an abstract data type with attributes (state information) and constraints (rules of

behaviour). Full-size DOI: 10.7717/peerj-cs.159/fig-3
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reset models’). ‘Modelling synaptic dynamics’ presents modelling the synaptic

interactions between neurons using continuous functions of time.

In modelling neurons and synapses with temporal constrained objects, the biophysical

mechanisms (abstracted as mathematical formulations in the models) were represented

as constraints of the class. Continuous state changes of variables were represented using

simple constraints while voltage reset functions were represented using conditional

constraints. Once the fundamental components of a neural network were modelled, the

interaction between these components in a network (‘Modelling neuronal interactions’

and ‘Modelling cerebellar microcircuits’) was incorporated. Biological fidelity of the

models was tested to validate whether the model produces experimental outcomes.

Modelling neurons using continuous time Hodgkin–Huxley
mechanisms
Hodgkin–Huxley equations (Hodgkin & Huxley, 1952) model biophysical characteristics

of a neuronal membrane in detail. This model exhibits various neuronal behaviour by

the calculation of ionic current in their mathematical notation. A set of first-order

differential equations specify the dynamics of membrane voltages and ion channels of the

neurons. According to this model, the ionic current flow in Eq. (9) has been rephrased as,

IExt ¼ C
dV

dt
þ gNaMaxm

3hðV � ENaÞ þ gKMaxn
4ðV � EKÞ þ GLðV � ELÞ (10a)

where the ionic conductance was modelled as voltage dependent quantity with the flow of

ions regulated by physical gates which are either in their open state or in closed state.

In (10a), gNaMax and gKMax are the maximum conductance of Na+ and K+ ions, m and

h are the probabilities of the fast and slow subunits of Na channel being open and closed

states and n is the probability of the subunit of a K channel being open. Dynamical

properties of these gating variables are also represented using differential Eqs. (10b–10d).

dh

dt
¼ ahð1� hÞ � bhh (10b)

dn

dt
¼ anð1� nÞ � bnn (10c)

dm

dt
¼ amð1�mÞ � bmm; (10d)

Hodgkin–Huxley model represents a system of four differential Eqs. (10a to 10d) which

are coupled via voltage Vof the membrane. In the standard formulation of HHmodel, the

rate constants a and b of the ionic gates are empirically determined as a function of

membrane voltage V as

am ¼ ð2:5� 0:1V Þ
e2:5� 0:1V � 1

;bm ¼ 4e�
V
18 (10e)

an ¼ ð0:1� 0:01V Þ
e1� 0:1V � 1

;bn ¼ 0:125e�
V
80 (10f)
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ah ¼ 0:07e�
V
20;bh ¼

1

e3� 0:1V þ 1
(10g)

In temporal constrained object implementation of the HH model, the properties of

neurons, such as maximum channel conductance, reversal potential, or capacitance of the

cell were represented as attributes of the class. Dynamically changing membrane voltage,

the gating variables and the input current values were represented as series variables.

The mathematical equations representing the relation between these variables were

represented using quantified constraints and their initial values were represented using

simple constraints (Fig. 4). Objects of the class can be created using creational constraints.

The membrane potential in the HH model varies as a continuous function over time

and the numerical integration require that the values should be specified over a time

evolution. In traditional object-oriented languages, the behaviour of the model can be

enforced using member functions in the class which are to be explicitly called during

execution. In the temporal constrained object based formulation, the differential equations

are converted into difference equations and the simulation evaluated the constraint at

every time step. This facilitates a modular representation, where the model behaviour

is implicitly enforced during constraint satisfaction.

Reconstructing neurons using voltage reset models
Detailed conductance-based models (as in ‘Modelling neurons using continuous time

Hodgkin–Huxley mechanisms’) explain the behaviour of the neurons at a mechanistic

level. Since such models have higher computational costs for complex circuits, we adopted

two mathematical abstractions: Izhikevich model and Adaptive Exponential Integrate

and Fire model (Izhikevich, 2003; Brette & Gerstner, 2005).

class neuron {
…
constraints
%The voltage equation
(Vm-`Vm)=Dt*(Istim-((Gna*pow(`M,3)*`H*(`Vm-Ena))+(Gk*

pow(`N,4)*(`Vm-Ek))+(Gleak*(`Vm-Eleak))))/C;
%m,n,h dynamics
(M-`M)=Dt*((1-`M)*((0.1*(-Vm + 25))/(pow(E,(-Vm+25)/10)-1))

- 4 * pow(E,(-Vm) / 18)*`M);
(N-`N)=Dt*((1-`N)*(((0.1/10)*(-Vm+10))/(pow(E,(-Vm+10)/10)-

1)) - 0.125*pow(E,(-Vm)/80)*`N);
(H-`H)=Dt*((1-H)*((0.7/10)*pow(E,(-Vm)/20))-(1/(pow(E,(Vm+30)/10)

+1))*`H);
Time < 2500 -->Istim = 5; %Applying input current
Time >= 2500 -->Istim = 50;

… }

Figure 4 Representation of Hodgkin–Huxley model as a TCOB class.

Full-size DOI: 10.7717/peerj-cs.159/fig-4
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The Izhikevich model is expressed as:

dV

dt
¼ 0:04V 2 þ 5v þ 140� u þ I (11a)

du

dt
¼ a bV � uð Þ (11b)

If

u > 30mV ;V ¼ C; u ¼ u þ d (11c)
In the two-dimensional set of ordinary differential equations of the Izhikevich model

(Eqs. (11a)–(11c)), V is the membrane potential, u is the recovery variable, a represents

the time scale of this recovery variable, b represents the sensitivity of u towards

sub-threshold fluctuations in V, C represents the after spike reset value of V, d represents

the after spike reset value of u. This implementation of a canonical model includes a

nonlinear term V2, and has been shown to reproduce multiple behaviours of neurons such

as spiking, busting, adaptation, resonance and mixed mode behaviours.

The Adaptive-Exponential Integrate and Fire (AdEx) model is expressed as:

dV

dt
¼ gL � V � ELð Þ þ gL �T � exp V�Vt

T

� �� Isyn � w

C
(12a)

�w
dw

dt
¼ a � V � ELð Þ � w (12b)

If

V > 0mV ;V ¼ Vr ;w ¼ w þ b (12c)

This model (Eqs. (12a)–(12c)) represents spiking dynamics (Eq. (12a)) and the

adaptation in the firing rate of the neuron (Eq. (12b)) with V representing the membrane

voltage, C is the membrane capacitance, gL is the leak conductance, EL is the resting

potential, �T is the slope factor, Vt is the threshold potential, Vr is the reset potential,

Isyn is the synaptic current, �w is the adaptation time constant, a is the level of

sub-threshold adaptation and b represents spike triggered adaptation. The model

implementation follows the dynamics of a RC circuit until V reaches Vt. The neuron is

presumed to fire on crossing this threshold voltage and the downswing of the action

potential is replaced by a reset of membrane potential V to a lower value, Vr.

Since AdEx and Izhikevich models do not contain continuous-time equations, the

membrane dynamics and its reset mechanisms in TCOB models were represented using

conditional constraints. For example, Fig. 5 shows the class definition for an Izhikevich

model. In the model, the membrane voltage does not change as a continuous function

of time. The auxiliary reset of the membrane voltage v and the membrane recovery

variable u, required a discontinuous change during constraint solving, the value being

independent from the value of the variable in the previous time step. This change was

controlled using the value of a series variable ‘flag,’ and using conditional constraints.

It should be noted that this is not an imperative update of a state variable but rather

the declarative specification of a value at a new point in time. Since the membrane

potential Vm diverges towards infinity at a particular step and Vm need to be reset before
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this step, another series variable Varray was used to store a finite maximum upswing

value for Vm.

AdEx type neurons were also modelled similarly (See Supplementary Material for

the complete class definition).

Modelling synaptic dynamics
The neurotransmitter release and intake mechanisms of the pre- and post-synaptic

neurons were modelled using synaptic conductance gsyn(t). The changes were represented

as continuous-time equations which represented the fluctuations in synaptic conductance

changes attributed to current flow (Destexhe, Mainen & Sejnowski, 1998). The synaptic

currents were calculated as the difference between reversal potential and membrane

potential (Eq. (13)).

Isyn tð Þ ¼ gsyn tð Þ V � Esyn
� �

(13)

where gsyn(t) = gmax . g(t), and gmax is the maximal conductance of the synapse, g(t) is the

time course of synaptic channel conductance, Isyn(t) is the synaptic current, Esyn is

the synaptic reversal potential and V is the membrane voltage. The time course of

channel conductance g(t) was modelled using different mathematical formulations

(Roth & van Rossum, 2009). For example, reconstructing exponential synapses

biophysically included an instantaneous rise of gsyn(t) from 0 to gmax at time t0 (the time

at which spike occurs) followed by an exponential term specifying the decay, with a

time constant � (Eq. (14)).

class neuron {
attributes

series real Vm, Varray, U;
series int Flag;

real A,B,C,D;
real I,Dt;

constraints
Flag=1-->(Vm-`Vm)/Dt=((0.4/10)*`Vm*`Vm+5*`Vm+140-`U+I);
Flag=1-->(U-`U)/Dt=A*(B*`Vm-`U);
Vm > 30 --> (Vm` = C) ;
Vm > 30 --> (U`= U + D) ;
Vm > 30 --> Flag`=0;
Vm <= 30 --> Flag`=1 ;
Flag =1 --> Varray=Vm;
Flag = 0 --> Varray = 30.0;

constructors neuron() {
A = 0.012; B = 0.2; C = -65.0; D = 4.0;
Vm<1> = -60.0; U<1> = B* Vm<1>;
Flag<2> = 1;
I = 10.0, Dt=0.02;

}
}

Figure 5 Izhikevich model represented as a TCOB class.

Full-size DOI: 10.7717/peerj-cs.159/fig-5
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gsyn tð Þ ¼ gmax:e
� t�t0

�ð Þ (14)

The exponential synapse model approximates synaptic dynamics with the rising

phase shorter than the decay phase. A single-exponential function is a reliable

approximation for several synapses where the channels instantaneously transit

from closed to open states. Alpha synaptic models have been used for synapses with

finite duration rising phases (Eq. (15)) while in double-exponential synapse

model, both rise time and decay time of the synapses were modelled separately

(Eqs. (16a)–(16c)).

gsyn tð Þ ¼ gmax:
t � t0

�
:e

1� t�t0ð Þ
� (15)

gsyn tð Þ ¼ gmax : fnorm : e
� t�t0

�decay

� �
� e

� t�t0
�rise

� � !
(16a)

fnorm ¼ 1

e
� tpeak�t0

�rise

� �
þ e

� tpeak�t0

�decay

� � ! : (16b)

tpeak ¼ t0 þ �decay : � rise

�decay � � rise
: ln

�decay

� rise
(16c)

In temporal constrained object based implementation, synapses were also modelled

using classes. Continuous conductance changes of the synapses were represented as

constraints in each constituent class. Conditional constraints were used to represent the

conductance changes before and after the stimulus onset. Synaptic currents were

calculated by automatically evaluating the constraints in each class.

Modelling neuronal interactions
Behaviour of sub-cellular or cellular components in biological neural circuits is not

entirely sufficient to understand network function, since the dynamics and complexity

of the neural systems are known to be nonlinear (Koch & Segev, 1998) (also see

Supplementary Material, Section 4). In the bottom-up modelling of brain circuits,

challenges remain in assessing how the properties of individual neurons combine together

to produce the emergent behaviour at the circuit and translational levels. In designing

large circuit models, new rules of interaction may emerge from underlying principles.

Here, TCOB like frameworks offer a natural way to express the interactions by identifying

and implementing the constraints.

A network of neurons was modelled in TCOB, where each neuron in the network was

simulated with different number of excitatory and inhibitory synaptic inputs. Excitatory

synapses were modelled using AMPA and NMDA synaptic dynamics where inhibitory

synapses were modelled using GABA synaptic dynamics (McCormick, Wang &

Huguenard, 1993). All neurons were modelled as complex objects, i.e. consisting of other

constrained objects with its own internal attributes and constraints (Fig. 6).
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The class Neuron creates instances of the classes Adex_neuron to include the neuron

model and the classes Ampa, Gaba and Nmda to model the synapses. Fig. 7 represents the

TCOB model for UML class diagram in Fig. 6.

The modelled neuron receives synaptic inputs through one AMPA, oneNMDA and one

GABA synapse. The total input current (Iin) to a neuron was set as the sum of its synaptic

currents using the constraint:

N.Iin =Am.Iampa+Ga.Igaba+Nm.Inmda;

This constraint automatically enforces the relation between change in membrane voltage

of the neuron and the synaptic inputs it receives. A cluster of such neurons were simulated

by creating an array of TCOB objects. Constraint solving and evaluation of these objects

utilized the implicit parallelization of constraints from the constraint store (Hutchison &

Mitchell, 1973).

Modelling cerebellar microcircuits
As a test of viability to use temporal constrained object based models for neural modelling,

firing patterns of several types of known neurons of the cerebellumwere reconstructed as in

a previous study (Nair et al., 2014). Single neurons of Wistar rat cerebellum were modelled

and attempted mathematical reconstruction of small scale cerebellar microcircuits.

Associated with motor tasks andmotor adaptation (Kandel et al., 2000), cerebellum receives

inputs from major motor regions of the brain and gives feedback to these sources. The

significantly large number of granule cells in the input layer of the cerebellum distinguishes

cerebellum from the rest of the nervous system. The computational significance of these

neurons has been a topic of interest and granule cell has received recent attention in

computational modelling studies attributed to the numerosity, its electronically compact

structure, simpler dendritic arbor and the signal recoding computations that it performs on

Neuron

<<attributes>>

<<constraints>>

<<constructor>>

0 ..*

0 ..*

0 ..*

0 ..*

0 ..*

0 ..*

Adex_neuron

<<attributes>>

<<constraints>>

<<constructor>>

11

Nmda

<<attributes>>

<<constraints>>

<<constructor>>

Gaba

<<attributes>>

<<constraints>>

<<constructor>>

Ampa

<<attributes>>

<<constraints>>

<<constructor>>

Figure 6 UML representation of TCOB implementation of a Neuron with synapses. A single neuron

is represented as an aggregate of a neuron model and model synapses.

Full-size DOI: 10.7717/peerj-cs.159/fig-6
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the inputs that it receive from different brain regions (Diwakar et al., 2009; Solinas, Nieus &

D’Angelo, 2010; D’Angelo, 2011). To reconstruct all the computational elements of the

cerebellar circuitry and their convergence-divergence ratios, computationally effective

methods may be needed to model circuit functions (Markram, 2006).

The input to cerebellum is through mossy fibres innervating the granule and Golgi

neurons (Fig. 8A). While Golgi neurons inhibit granule neurons via a feed-forward

inhibition, the axons of granule cells extend as parallel fibres and excite Purkinje neurons.

As in experiments (Diwakar et al., 2009), modelled granule neuron receives on an average

four excitatory and four inhibitory connections. In this paper, a small scale granular layer

circuitry with Purkinje neurons was modelled with temporal constrained objects (Fig. 8B)

using classes granule, golgi, purkinje, mossyfiber and parallelfiber

respectively. A model neuron inherited from the Neuron class and was represented using

AdEx dynamics. Excitatory synapses were modelled using AMPA kinetics and inhibitory

synapses were modelled using GABA kinetics. In the implementation, the microcircuit

consisted of an aggregation of the neurons and synapses (Fig. 9).

The temporal constrained objectmodel of the microcircuit allowed computing the spike-

train responses of constituent neurons. The class Microcircuit (Fig. 10) modelled the

rat granular layer neural circuit (also see UML flow diagram in Fig. 9). In the model,

granule and Golgi neurons received mossy fibre inputs and the change in membrane

potential of Golgi and Purkinje neurons were automatically computed by satisfying

internal and interface constraints.

Initial inputs to granule and Golgi neurons were provided by mossy fibre. This was

represented in the constraints:

GoC.MfInput = Mf.Input;

GrC.MfInput = Mf.Input;

The variable SpikeTrain holds the response train of each neuron, generated as a result of

model evaluation.

class Neuron
{

attributes
Adex_neuron N; Ampa Am; Gaba Ga;Nmda Nm;

constraints
Am.Vm = N.Vm; Ga.Vm = N.Vm; Nm.Vm = N.Vm;
N.Iin =Am.Iampa+Ga.Igaba+Nm.Inmda;

constructor Neuron(){
N=new Adex_neuron(200.0,10.0,-70.0,2.0,-50.0,2.0,0.0,

0.0,30.0,-58.0);
Am = new Ampa();
Ga = new Gaba();
Nm = new Nmda();

}
}

Figure 7 TCOB representation of Neuron with Synapse.

Full-size DOI: 10.7717/peerj-cs.159/fig-7

Nair et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.159 18/31

http://dx.doi.org/10.7717/peerj-cs.159/fig-7
http://dx.doi.org/10.7717/peerj-cs.159
https://peerj.com/computer-science/


The Golgi neuron output is applied to granule neuron using the constraints

GoC.Output = GoC.SpikeTrain;

GrC.GoCInput = GoC.Output

such that the granule neuron receives both excitatory input through mossy fibres and

inhibitory input through Golgi neurons.

Mossy Fiber inputs from various
brain regions

Golgi Cell

Granule
Cell

Purkinje Cell

Basket Cell
Stellate Cell

Climbing Fiber Input from IO

Parallel Fiber

Output to DCN

A

Mossy Fiber

+
+

-
-

+

Golgi Cell

Granule Cell

Purkinje Cell

Parallel Fiber

Input

Output

B

Figure 8 Modelling sample cerebellar microcircuits. (A) Circuits in the cerebellum: cartoon repre-

sentation of interconnections in the input-output pathway of the cerebellum. (B) Cellular components of

the microcircuit reconstructed: Granule neuron, Golgi neuron and Purkinje neuron, receiving inputs

through excitatory (+) and inhibitory (-) synapses. Full-size DOI: 10.7717/peerj-cs.159/fig-8
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In the next level of processing, output from the granular layer is applied as the parallel

fibre input into Purkinje neurons using the constraints:

GrC.Output = GrC.SpikeTrain;

Pf.Input = GrC.Output;

Pc.GrCInput = Pf.Input;

0 ..*

0 ..*

0 ..*

0 ..*

0 ..*

0 ..*

Neuron

<<attributes>>

<<constraints>>

<<constructor>>

Granule

<<attributes>>

<<constraints>>

<<constructor>>

Golgi

<<attributes>>

<<constraints>>

<<constructor>>

Purkinje

<<attributes>>

<<constraints>>

<<constructor>>

Mossyfiber

<<attributes>>

<<constraints>>

<<constructor>>

Parallelfiber

<<attributes>>

<<constraints>>

<<constructor>>

Microcircuit

<<attributes>>

<<constraints>>

<<constructor>>

Figure 9 UML representation of temporal constrained object implementation of the microcircuit.

Granule, Golgi and Purkinje classes inherit from the class Neuron. The classes Mossy Fiber and Parallel

Fiber represented inputs to the neurons. In the implementation, the microcircuit consisted of an

aggregation of the neurons and synapses. Full-size DOI: 10.7717/peerj-cs.159/fig-9

class Microcircuit
{

attributes
Mossyfiber Mf; Parallelfiber Pf;
Granule GrC; Golgi GoC; Purkinje Pc;

constraints
GoC.MfInput = Mf.Input;
GrC.MfInput = Mf.Input;
GoC.Output = GoC.SpikeTrain;
GrC.GoCInput = GoC.Output;

GrC.Output = GrC.SpikeTrain;
Pf.Input = GrC.Output;
Pc.GrCInput = Pf.Input;
Pc.Output = Pc.SpikeTrain;

constructor microcircuit(){
...

}
}

Figure 10 Representation of cerebellar microcircuit. Full-size DOI: 10.7717/peerj-cs.159/fig-10
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After evaluating the constraints of Purkinje neuron, the entire output from the
microcircuit was made available as:

Pc.Output = Pc.SpikeTrain;

The constraints highlighted above can be viewed as the interface constraints of the models

while each object in the microcircuit class has its own internal constraint to be

satisfied while object creation. The model evaluations were performed automatically while

the constructor of the microcircuit class is called.
The entire code with the programming environment is available freely at https://github.

com/compneuro/TCOB_Neuron.

RESULTS
Temporal spike train firing patterns in neurons
To demonstrate the effectiveness of constraint evaluation results against state-of-the-art

simulations, the output of TCOB models were recorded using TCOB predicates. Using
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Figure 11 Modelling the spiking mechanisms of neurons. Simulation times are in millisecond scale

matching slice recordings (Hodgkin & Huxley, 1952). The initial resting membrane potential was kept at

-70 mV. (A) Firing of HH neuron for current stimuli of various amplitudes. The implementation

showed repetitive firing behaviour for input current of six pA onwards. Firing rate of the neuron

depended on the intensity of the injected current. Firing rate increased as the depolarizing current

increases. (B) Channel Gating parametersm, n, h of the model for input current of three pA.m changed

faster than h or n. During hyperpolarization m, h and n returned towards resting values. (C) Regular

spiking behaviour shown by most typical neurons in the cortex reproduced using Izhikevich model.

(D) Chattering: Stereotypical bursts of closely spaced spikes reproduced using Izhikevich model.

(E) Tonic spiking with sharp reset showed the behaviour of certain constantly active neurons, modelled

using AdEx equations. (F) Adaptation behaviour of certain neurons showing the reduction in firing

frequency, modelled using AdEx equations. Full-size DOI: 10.7717/peerj-cs.159/fig-11
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standard values for model parameters, voltage plots of continuous-time HH models

and voltage-reset models, Izhikevich and AdEx, were reproduced (Naud et al., 2008).

In HH models, computationally reconstructed action potential peaked at a voltage of

+40 mV, followed by hyper-polarization following which the resting potential was

re-established (Hodgkin & Huxley, 1952) (Fig. 11A). As in experiments, when the injected

current in the model was insufficient to depolarize the membrane, no action potential

was generated. In our implementation, a minimum threshold non-zero current was

observed for which the HH model demonstrated repeated firing, and the firing frequency

increased with the increase in intensity of the input. The plot of HH gating variables

depicted the behaviour of channel activation and inactivation (Fig. 11B). Izhikevich and

AdEx models were also stimulated with input currents to reproduce various firing

behaviour of different neuron types in the brain (Figs. 11C–11F).

The neuron and synapse models implemented using temporal constrained objects

were parameter optimized to reproduce the firing behaviour of different neuron types

present in the cerebellum (Medini et al., 2014; Nair et al., 2014) under current clamp

experiments (D’Angelo et al., 1995; Bezzi et al., 2004), during in vitro behaviour

(as seen in brain slices) and during in vivo behaviour (as seen in anaesthetized rats) for

inputs through mossy fibres (Diwakar et al., 2009). Single spike inputs were applied

through the synapses to model in vitro inputs while small burst inputs (e.g., five spikes

per burst) was used to model in vivo inputs (Roggeri et al., 2008). The modelled

responses of granule, Golgi and Purkinje neurons using AdEx neuron models for 10 pA

input current are shown in Figs. 12A–12C (Medini et al., 2014). The modelled

responses of granule neurons during in vitro inputs and in vivo inputs are shown

in Figs. 12D and 12E.
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Figure 12 Modelling cerebellar neurons. (A–C) Granule, Golgi and Purkinje neuron responses for

current clamp protocol (I = 10 pA), modelled using AdEx equations. (D and E) Response of granule

neurons for in vitro like (left) and in vivo like (right) spike inputs.
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Synaptic dynamics resolved using TCOB
Using a conductance-based synaptic mechanism, neurons were excited synaptically using

pre-synaptic spike trains. Alpha function reproduced the post-synaptic conductance of

synapses with a finite rise time (Fig. 13A). Instantaneous rise and exponential decay of

membrane potential were modelled using single exponential synapses (Fig. 13B). A closer

approximation of post-synaptic dynamics was obtained by employing double exponential

models. Fluctuations of synaptic conductance were approximated using rise time and

decay time of conductance change independently (Fig. 13C). The activation kinetics of

excitatory and inhibitory synaptic receptors was modelled using AMPA, NMDA, GABAA

and GABAB receptor behaviour (Fig. 13D). In the models, AMPA channels mediated

the fast-excitatory transmission and were characterized by fast rise time and decay

time for the conductance values. Significantly slower NMDA channel modelled related

to modifications of synaptic efficacy and temporal summation of currents. In the

implementations, the two primary inhibitory receptor kinetics; GABAA and GABAB

modelled the fast and slow time course of inhibitory interactions.

Correctness of computations and performance improvements in
TCOB models
To test numerical accuracy of TCOB for floating point computations, the results of

numerical integration of TCOB were compared with imperative C++ implementation.

Fourth-order Runge–Kutta integration technique was employed for solving differential

equations in the imperative implementation while numerical approximation using
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Figure 13 Reconstructing Synaptic Dynamics using temporal constrained objects. (A) The conductance

changes in alpha function for � = 3 ms and � = 12 ms. (B) Synaptic conductance modelled using single

exponential function for � = 3 ms and � = 12 ms. (C) Synaptic conductance modelled using double

exponential function. (D) Modelled conductance changes for AMPA, NMDA, GABAA and GABAB

synapses for input spike at time t = 20 ms. Full-size DOI: 10.7717/peerj-cs.159/fig-13
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Euler approach was used for the current TCOB models. It has been observed that the

membrane voltage traces produced by both approaches were approximately similar for the

entire time evolution (Figs. 14A–14C). In this paper, we present the core concepts of

TCOB and we have not discussed library support for the language. It is straightforward to

make standard solvers for differential equations, such as Runge–Kutta, as library functions

so that the programmer does not have to define them. However, these solvers need to

be ‘programmed’ by the end user, the specification occurs at a much higher level than

would be the case in an imperative language such as C or C++.

Although LOC are not always a definitive measure of software complexity, the

declarative approach of a temporal constrained object model significantly reduced coding

time, making the model more compact and closer to the problem specification, and

hence also easier to understand, similar to scripting languages used in computational

modelling. In comparison with the C++ version of the HH model, which required about

300 LOC, the temporal constrained object version was implemented in just 30 LOC.

TCOB compiler translates the temporal constrained objects program into Prolog code

which can be executed directly under SWI-Prolog with a CLP(R) library. The potential

sources of performance inefficiency of TCOB are due to the layers of predicate calls

arising from the systematic translation and also due to the repeated checking of

consistency in the underlying constraint store. To alleviate these inefficiencies, we adapted
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Figure 14 Correctness of computations and performance improvement. (A) HHmodel voltage traces

simulated using C++ and TCOB for 6 pA input current. Inset shows the area of voltage plot in which

absolute error was high. (B) Firing patterns for spike train adaptation of neurons modelled with AdEx

model and implemented in TCOB. (C) Firing patterns for spike train adaptation of neurons modelled

with AdEx model and implemented in C++. (D) Time step vs. execution time plot for HH model to

show the improvement in performance time for partially evaluated code.
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and extended a partial evaluation technique (Kannimoola, Jayaraman & Achuthan, 2016)

for optimized code generation of constrained object programs that was first presented

in Tambay (2003). Given the translated Prolog program of TCOB and a top-level goal,

the partial evaluator outputs the list of constraints that need to be solved for the given

goal. The partial evaluation process makes our implementation independent from

constraint solver. On an Intel i7 processor-based desktop computer with 16 GB memory,

the partially evaluated code for HH model executed approximately six times faster

than the corresponding normal code (Fig. 14D).

DISCUSSION
Temporal constrained objects were able to successfully recreate substantive classes of

neuroscience models related to time-varying behaviour using a declarative approach.

With large-scale brain circuit models in mind, the compositional modelling requirement

was tested by mathematically reconstructing the constituent components of neuronal

network, i.e., neurons and synapses. Models that followed continuous-time functions,

such as the HH type neuron model, as well as different synaptic models were implemented

in temporal constrained objects easily. Special mention must be made of how temporal

constrained objects were able to express voltage-reset models which exhibit piecewise

continuous-time behaviour through a constant reset of the voltage. These models exhibit

both discrete and continuous state changes, in contrast to the continuous-time behaviour

of HH type neuron models. Such systems that exhibited discontinuous behaviour or

choice, such as the Izhikevich- and AdEx-type neuron models, required injecting a

discontinuous change during constraint-solving. Temporal constrained objects were able to

elegantly support this capability using series variables and conditional constraints,

i.e., whenever the condition was met for resetting the voltage, the value of the series

variable at the applicable point in time is set appropriately. It should be noted that this is

not an imperative update of a state variable but rather the declarative specification of a

value at a new point in time of the series variable. Both continuous and voltage reset

behaviour of the models implemented in temporal constrained objects, generated typical

firing patterns of different neurons. Even though we have used manually defined

synaptic connections in the example scripts, conditional constraints and dynamic typing

in TCOB enables to use dynamic construction of objects based on the various conditions

of the networks. Since temporal constrained objects also supports unbounded arrays,

neurons can be programmed to receive dynamic stimuli generated from constraints. Since

TCOB programming environment use SWI-Prolog built-in predicates to create random

numbers, synaptic jitter and other forms of randomness in the network can also be

modelled easily. Having been able to test that the tractability of employing temporal

constrained objects as arbitrary neuron models, we perceive that temporal constrained

object implementations allow continuous functions as in HH models or discrete state

change of functions as in voltage reset models.

Constraint-based systems accumulate and aggregate the partial information from the

set of constraints. Moreover, the order of constraint specification does not depend on

the final result, which permits the incremental addition of information to the constraint
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store at any point of execution without worrying about the computation state.

Temporal constrained object-like frameworks are well-suited for modelling systems from

which useful inferences are to be derived based on partial or incomplete information

available at the current stage. In computational neuroscience of neurons and circuits,

this feature enables the modeller to process information incrementally at each functional

zone with in specialized brain circuits.

CONCLUSION
In our temporal constrained object implementation, the modelled neural responses

reproduced biologically validated and relevant outputs as observed in experiments.

The identification of global constraints of the system are to be tested on a larger scale,

i.e. at the population level. Debugging network models in such frameworks has been

changed to a constraint satisfaction problem where the constraint-solving algorithms

operate on the constraint representation of the network variables, their domain and a set

of relations between these variables. Successively imposing constraints with the level of

details expected makes the system automatically scalable in terms of its software

representation.

Although the current implementation of temporal constrained objects is not most

efficient to compare with specialised simulators available for computational neuroscience,

it is hoped that with novel re-implementation of the temporal constrained objects

programming platform, we would be able to express models for large-scale

reconstructions in the future. With new computing architecture and multiple core

GPUs and CPUs, it is crucial to consider declarative modelling strategies that allow

implicit parallelization. This re-implementation, however, pilots a general-purpose

constrained object-based programming paradigm to declaratively express both the

concept space and computational space of neuron models where the model evaluations

are automatically handled by the computational engine.

While declarative languages provide a much higher level of abstraction and are more

scalable, the execution of declarative programs under early implementations faced

performance bottlenecks. Since slight changes in the constraint formulation may lead to

unpredictable changes in the performance of the system, stability of constraint

formulation of a model has always been challenged. Similar limitations exist while

applying cost optimization techniques (Barták, 1999). Over the years, with advances in

compiler and hardware technologies, the performance of declarative programs improved

significantly, but is still not equal to that of imperative programs such as C or C++.

Detailed performance measures were introduced to reduce the execution time by using

methodologies such as compile-time optimization and partial evaluation. With these

improvements, we feel that our proposed paradigm of temporal constrained objects is a

good candidate for modelling small- to medium-scale brain circuit structures. In order to

build constrained-object-based simulators for large-scale networks, we propose studying

the parallelization of temporal constrained objects. Temporal constrained objects with

parallelization are a promising approach for representing the emergent properties of

systems that otherwise is too complex to model at multiple translational levels.
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