Skip to main content
. 2020 Oct 19;1(1):e23582. doi: 10.2196/23582

Table 2.

Comparative accuracy of six machine learning algorithms in predicting SARS-CoV-2 asymptomatic status from immunological factors.

Machine learning model Pseudo-R2 (10% evaluation holdback sample 1) (%) Pseudo-R2 (10% evaluation holdback sample 2) (%) Average Pseudo-R2 (%)
With SCGF-β a

Decision tree 100.00 100.00 100.00

XGBoostb 100.00 100.00 100.00

GLMc (logistic) 100.00 98.89 99.45

Random forest 99.46 94.83 97.15

SVMd 78.81 96.99 87.90
Without SCGF-β

Random forest 97.68 91.91 94.80

GLM (logistic) 100.00 85.96 92.98

SVM 77.76 89.69 83.73

XGBoost 99.42 54.27 76.85

Decision tree 100.00 2.22 51.11

aSCGF-β: stem cell growth factor-beta.

bXGBoost: extreme gradient boosting.

cGLM: generalized linear model.

dSVM: support vector machine.