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Abstract

In genome-wide association studies, signals associated with rare variants and interactions between
genes are hard to detect even when the sample size is in tens of thousands. To overcome these
problems, we examine the concept of supervariant. Like the classic concept of the gene, a
supervariant is a combination of alleles in multiple loci, but the contributing loci can be anywhere
in the genome. We hypothesize that supervariants are easy to detect and the aggregated signals are
more stable in their associations with the disease than that from a single nucleoid polymorphism.
Using the UK Biobank databases, we develop a ranking and aggregation method for identifying
supervariants. Specifically, we examine 9,377 breast cancer cases with 46,861 controls matched by
sex and age. In our simulations, the use of supervariants outperforms single-nucleotide
polymorphism-based association method in detecting rare variants and signals with interactive
structure. In real data analysis, we identify supervariants on Chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10,
11, 16, and 22 which cover previously reported loci that have associations with breast or other
cancers, and several novel loci on Chromosomes 2, 5, 9, and 12. These findings demonstrate the
validity of supervariants and its potential of discovering replicable and novel results for complex
disease.
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1| INTRODUCTION

Genome-wide association studies (GWAS) have been popular in detecting association
between single-nucleotide polymorphisms (SNPs) and disease, where the association is
usually determined via the test of the marginal effect of an SNP. This has led to successful
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findings for many complex diseases including breast cancer and type 2 diabetes (Ferreira et
al., 2019; Xue et al., 2018). However, the risk attributed to genetic factors is still far from
satisfactory; for instance, the common genetic variation only explains 18% of the twofold
familial relative risk for breast cancer (Ferreira et al., 2019). One of the major impediments
is the focus on the additive effects of individual SNPs. Although there have been growing
efforts in identifying gene-gene interactions for complex diseases (Banerjee, Vats, Kushwah,
& Srivastava, 2019; Chen, Liu, Zhang, & Zhang, 2007), the success has been limited by the
lack of effective approaches of identifying potential interactions.

To overcome the aforementioned bottleneck, we consider the concept of supervariant. On
one hand, like the classic concept of the gene, a supervariant consists of a combination of
alleles in multiple loci. On the other hand, the loci contributing to a supervariant can be
anywhere in the genome while a gene refers to a physically connected region of the
chromosome. The combination of alleles for a supervariant is expected to reflect both the
individual and interactive effects of contributing alleles. We hypothesize that the
supervariants are easy to detect and the aggregated signals are more stable in their
associations with the disease than that from a single SNP.

Specifically, we introduce a ranking and aggregation approach to identifying supervariants.
It is based on the rank but generally weak association between an individual locus and a
disease of interest. SNPs are first divided into sets by their physical positions that may or
may not be adjacent to each other, and then ranked within the sets by their importance in
terms of disease discrimination ability. To account for integrated effects of multiple SNPs,
the importance of an individual SNP is measured by the so-called depth-importance in a tree
and forest based framework (Chen et al., 2007; Zhang & Singer, 2010). A supervariant is
formed by a certain number of top SNPs within the set. The number of top SNPs is selected
by considering all possible numbers of top SNPs and selecting the one with the strongest
association between the resulting supervariant and disease.

With access to the UK Biobank databases (Sudlow et al., 2015), we apply our method to
identify supervariants for breast cancer and empirically demonstrate the validity and power
of using supervariants. We consider breast cancer because it is not only a common and
complex disease but also has been extensively studied in the genetic literature. The UK
Biobank databases, including genetic data on ~500,000 individuals, have become valuable
sources for genetic studies of complex diseases (Anderson et al., 2018; Ferreira et al., 2019).

MATERIALS AND METHODS
Methodology details

We consider the following generalization of the logistic model:

P(Y;=

1)
]
logm = F(vj, ),

where Fis a function not limited to be linear, and Y;indicates the disease status, v includes
all genotyped variants, and z;denotes all confounding covariates to be adjusted. We consider
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the tree-based method to fit the unknown function ~which allows potential nonlinear
relations and any possible interactions.

To facilitate the identification of supervariants, we adopt the transformation in Song and
Zhang (2014) which relies on an ordering of the estimated effect sizes of all variants. To be
consistent with the nonparametric spirit, we use the depth importance score (Chen et al.,
2007) as a proxy to the effect size of each variant, and to provide the ordering. The idea of
depth importance score is to measure the importance of the variable by the depth at which a
variable is used as a splitting node in a tree classifier. The assumption behind such measure
is that an important variable tends to be used in the early stage of the construction of a tree.
To provide a more stable measure, we also consider the ensemble approach to estimating the
importance. Specifically, for a given set g of SNPs, we construct forest fconsisting of a total
number of |f trees. Each tree in the forest is built without pruning based on a randomly
selected subset of variants in g. Then, the depth importance score of variant vj, the jth
variant in set g, in tree Tis defined as

_ —Ly
Vr(vjg) = 27t
teT, tissplitbijg

where L; is the depth of node tand G;is the 12 independence test statistics of node £ Then,
the overall depth importance score is given by

1
Vilojg) = TﬂTZe: fVT(Ujg)v

over all |f] trees in the forest £ Once we obtain the ordering of variants within the set g, let
djz be the index of the variant with the jth largest depth importance score. Define
min JiVigd:, > 01, &if3 vjgq. >0,
xig= 1Sjsjg{ '8djg } 1&g
J gt 1, &otherwise,

where Jj is the total number of variants considered in set g, 1 </<nand nis the total number
of subjects. In other words, for each subject, the transformation returns the rank of first
variant with minor allele within the depth-importance-ordered variants list of set g. This
transformation considers the dominant mode of transmission. Similarly, we can define a
transformation based on the recessive mode of transmission. Define
e | Sn}ig Jg{j:vigdjg > 1},&if3 Vigd jg > 1,
Jg+1, &otherwise,

where Jj is the total number of variants considered in set g, 1 </<nand nis the total number
of subjects. In this way, the transformation returns the rank of the first variant with two
copies of minor allele within the ordered list of set g.
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Finally, to obtain a supervariant, we inspect all possible thresholds for variable X, with
observations xy4...,Xpg FOr each threshold, the variable is turned into binary; that is, for a
threshold ¢, Sy = 1(Xy < ¢), where /is the indicator function, and c€{xyg...,Xpg}- A
univariate logistic regression is carried out to investigate its effect, and the final threshold is
the one that gives the smallest p value among all possible thresholds. This leads to the
supervariant constructed with top variants in the depth-importance-ordered variants list and
the total number of variants used to form the supervariant is the same as the final threshold.
Here, the threshold is selected to enhance the association between the disease and the
supervariant to be formed. After supervariants are identified, univariate, and/or multivariable
regression can be performed in both discovery and verification datasets. Hence, the tree and
forest methods are used to select putative supervariants for further evaluation, and not to
determine nor to fit the final model of analysis.

Data processing

We apply our proposed method at 41,502,298 genetic variants of UK Biobank imputed SNP
datasets after genotyping quality controls. Specifically, we consider the biallelic variants
coded based on the number of copies of the minor allele. We remove variants with low call
rate (missing probability > 0.1) and disrupted Hardy—Weinberg equilibrium (p< 1 x 1077).
We divide the whole SNP dataset into 2,734 nonoverlapping local sets by the physical
position so that each set consists of SNPs within a segment of physical length 1 Mb; for
instance, SNPs on Chromosome 1 with base-pair position value falling in 1 to 999,999 are in
SNP set 1, and those with base-pair position value between 1,000,000 to 1,999,999 are in
SNP set 2. This is similar to commonly used sliding window, except no overlapping so that
the same SNP will not appear in multiple supervariants. Our method still works without this
constraint but we find it reasonable not to allow the same SNP to appear repeatedly.
Otherwise, there would be many more possible supervariants with many of them
overlapping each other and highly correlated. Information of linkage disequilibrium (LD) is
not used in the identification of the supervariants.

To reduce the confound of population structure, we only keep individuals considered to have
recent British ancestry using the quality control information provided by UK Biobank. We
select individuals with self-reported breast cancer as cases and those without any self-
reported cancer diseases as control candidates. We use the difference between the reported
date of breast cancer and the date of birth as the age of cases. We use the difference between
the date of the last survey on cancer and the date of birth as the age of controls. Individuals
without age information are excluded. We also exclude individuals whose genetic and self-
reported genders are inconsistent. The construction and selection of supervariants do not
involve further covariates for simplicity.

We randomly select 60% of the cases and create a nominally unrelated subset (without
relatives closer than third cousins) following existing procedures (Bycroft et al., 2018). This
gives the cases of the discovery set. We match each case subject with five control subjects
with same age and gender to complete the discovery set. In addition, we avoid picking
controls who are relatives of any selected individuals. We use the remaining 40% cases and
the same 1:5 matching rule for controls to generate the validation set. In the end, after
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sample quality control, we obtain a discovery set with 5,653 cases and 28,241 controls, and
a validation set with 3,724 cases and 18,620 controls. There are 150 and 95 male cases
included in discovery and validation set, respectively, and in total 1,470 male samples in
combined datasets.

Simulation setup

In the simulation, we use the SNP data on Chromosome 17 from UK Biobank breast cancer
dataset because there is no significant signal identified on this chromosome from this
dataset. We randomly sample 10,000 subjects from the controls of discovery dataset. We
then randomly sample 30 SNP sets and 500 random SNPs (with minor allele frequency
(MAF) > 0.01) from each set to form the whole synthetic genetic dataset. The physical order
of selected 15,000 (=500 x 30) SNPs is kept. The disease status is generated according to the
following model: Y;~ Bernoulli(y;), and

Pi
log(l —lpi) = - 2+1(x,-31_1 > 0) + I(X,'Bz_l > 0) - I(x[Bg_l +XiB3_301 > 0)

+1(xipa_1+xB4 301 >0)+I((x;B5_1+xiB5_201+XiB5_401) > 0)
— I((xiB6_1+ XiB6_201 + XiB6_401) > 0),

where Xjg; xis the kth SNP in SNP set jfor subject / 1 < /< 10,000, 1 </<30,and 1 < k<
500. Therefore, have 12 true signals in total from six different SNP sets with three different
structures, individual signal, interactive signal with group sizes 2 and 3, respectively. After
the disease status generation, the whole dataset is divided into two sets, one for discovery
and one for validation to mimic the procedure we adopt in the real data application. Each set
consists of 5,000 samples and the case-control ratio is kept close. We apply the traditional
single SNP-based association method and the proposed method with transformation based
on the dominant mode of transmission to detect associations. The whole process is repeated
100 times.

Analysis of UK Biobank breast cancer dataset

To calculate the depth importance score of SNPs in each SNP set in the discovery dataset,
we construct a forest with 3,000 trees, given the average size of one SNP set is about 15,000
SNPs, and each tree is constructed with randomly selected one sixtieth of total SNPs in the
given set with RTEE (Zhang & Singer, 2010). Transformations based on both dominant and
recessive modes of transmission are considered. We use 3.66 x 107° (i.e., 0.1/2,734) as the
threshold for supervariant-level association as we consider 2,734 SNP sets. We use 0.1/2,734
instead of 0.05/2,734 to limit false-positive errors while being more inclusive of potentially
important SNPs. The association between any of the discovered supervariants is assessed by
a univariate logistic regression with age and gender properly controlled.

To demonstrate the potential of supervariant, we also conduct the traditional single SNP-
based association analysis as a benchmark for comparison. We consider the same discovery,
verification, and combined sets for fair comparison. Age and gender are included as control
variables.
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3| RESULTS

3.1| Simulation results

We first provide a summary of the simulation setup. The average case-control ratio of 100
repetitions is about 0.225 (close to 1-to-5 ratio which is used in breast cancer data analysis).
On average, 3.44 out of 12 signal SNPs have its MAF less than 0.05 in the simulation
repetitions.

For the use of the traditional single SNP-based association method, an SNP is considered to
be significant on discovery set if its pvalue is less than 3.33 x 1076 (i.e., 0.05/15,000), and a
supervariant is significant if its p value on discovery set is less than .0017 (i.e., 0.05/30 as
there are in total 30 supervariants, one for each set).

We first consider the number of SNP sets that each method selects. In total, there are six sets
with true signals and 24 sets without signal. On average, on the discovery dataset, the
traditional single SNP-based association method covers 5.40 (out of six) sets with true
signals, while the proposed method identified 5.94 supervariants from six sets with true
signals. At the same time, on the discovery set, there are on average 9.78 identified
supervariants coming from 24 sets without signal, and only 0.07 such sets are selected by the
traditional single SNP-based association method. However, if we also require p value of a
supervariant to be less than .01 on the validation set, then on average the number of verified
supervariants coming from sets without signal is less than 1, and there are still 5.82
supervariants covering six sets with true signals.

Because some SNPs are in LD with others, for both methods, if any SNP in the
neighborhood of the true signal SNP is selected, we consider this signal SNP as being
identified. In the simulation, we take 60 nearby SNPs, 30 SNPs on the left and 30 on the
right, as the neighborhood. The frequency of true signal identification for two methods is
shown in Table 1. Supervariant clearly outperforms the traditional single SNP-based
association method.

The concept of supervariant is proposed to enhance the association study of rare variants and
interactions. The power of identifying rare variants and their interactions is given in Tables 2
and 3, respectively. Here, we consider an interaction being identified if all true signal SNPs
within the same set, such as the two B3_1 and B3_301 on SNP set 3, are identified at the
same time. From Table 2, the proposed method is much more powerful than the traditional
single SNP-based association method, even when a rare variant is inside a group signal.
Similarly, in terms of interaction, Table 3 shows that the proposed method outperforms the
traditional single SNP-based association method by a large margin.

3.2 | Breast cancer dataset analysis results

3.2.1| Traditional single SNP-based association results—The Manhattan plot
based on the discovery dataset is shown in Figure 1, and details of verified top SNPs in each
LD block are given in Table 4. Here, an SNP is verified if its pvalue is less than 5 x 1078 on
discovery set and is less than .01 on validation set. Regional plots of verified regions with
multiple SNPs are shown in Figure 2, and the plots are based on the combined dataset.
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3.2.2| Significant supervariants associated with breast cancer—We find 510
supervariants with pvalues below 3.66 x 107> (96 from recessive model and 414 from
dominant model), and 24 of them has p value less than .01 in the validation dataset (7 from
recessive model and 17 from dominant model). We also assess the association of these 24
supervariants in the combined dataset (discovery plus validation datasets), and all of them
have p values in the range of 107 (see Table 5). The specific formation of the 24 verified
supervariants are given in Table 6 where the odds ratio and corresponding p values are
calculated on the combined dataset. The LD heat maps of the SNPs in the verified
supervariants involving multiple SNPs are displayed in Figure 3.

3.2.3| Comparison with single SNP-based association results—We find that
our verified supervariants cover SNP signals in all LD blocks identified by the traditional
single SNP-based association method. Moreover, we identify 13 additional supervariants
that are verified. In addition, we find that there exist specific studies that provide support for
associations between some SNPs in the supervariants we identified and the breast cancer or
cancer in general (see Table 7). The confirmation of the known genes demonstrates the
validity of the supervariants and its capability of unifying existing results. Moreover, we find
several novel loci in gene LOC107985979 on Chromosome 2, LOC105374655,
LOC105377739, LINC01411, and LINCO01485 on Chromosome 5, and LOC107987084 on
Chromosome 9, and a novel SNP rs11836367 on Chromosome 12 and have not yet been
previously associated to breast cancer.

DISCUSSION

In this study, we introduce the concept of supervariant, similar to but different from the
classic concept of the gene, to group any number of loci together as the basis of genetic risk
factor. Supervariant is designed to enhance the risk detection, and its associations with the
disease are expected to be more stable than that of single SNP as there are usually (but not
necessarily) a collection of SNPs involved in a supervariant. We propose a ranking and
aggregation method to facilitate the search of disease-associated supervariants. We
demonstrate in simulations that supervariant can be more powerful than the traditional single
SNP-based association method in detecting rare variants and signals with interactive
structure. We apply our method to a UK Biobank breast cancer dataset, and are able to
replicate several previously reported breast cancer-associated genes documented in the
literature as well as to identify several novel genes for further investigation.

Our results show that supervariants usually manifest stronger association signals than
individual SNPs. As can be seen from Tables 5 and 6, SNPs on Chromosome 7 have p values
at most at the level of 1072 individually on the combined dataset while the supervariant
Chr7_156 has a pvalue of level 10~7. The same is true for Chr2_218, Chr5_13, Chr5_56,
and Chr5_174 where the supervariants have p values smaller than that of any contributing
SNPs. This means that if a given significance level is used to detect association, a
supervariant is more likely to be retained than the contributing SNPs. Of note, the number of
candidate supervariants is much smaller than the number of SNPs, and therefore, in terms of
the control of false-discovery, the use of supervariants is advantageous over the use of SNPs.
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Furthermore, we demonstrate that supervariants are able to group SNPs in multiple genetic
regions together. For instance, on Chromosome 6, SNPs located in CCDC170 and those that
may participate in the regulation of ESR1 are grouped together. The same is true for
Chr7_156 where SNPs in INSIG1, CNPY1, and BLACE are components of the same
supervariant, and it also happens for Chr16_53 where SNPs in TOX3 and CASC16 are
components of the same supervariant. Thus, not only can several risk loci be detected at the
same time, but it may also indicate the existence of interactive effects between those SNPs.
Such interactions may have implications to the underlying mechanisms involving multiple
genes. It is also interesting to observe that supervariant captures the association between
breast cancer and gene INSIG1 and CNPY1 on Chromosome 7, which is previously
discovered via gene expression analysis (Jiang et al., 2017; Sadanandam et al., 2011).

All supervariants identified by our method pass the tests with Bonferroni correction on a
combined dataset including several novel SNPs in gene LOC107985979 on Chromosome 2,
in gene LOC105374655, LOC105377739, LINCO01411, and LINCO01485 on Chromosome 5,
and gene LOC107987084 on Chromosome 9, and a novel SNP rs11836367 on Chromosome
12. Although there is limited knowledge on these SNPs and genes, it points to a direction for
further investigation.

Certainly, there are genes in the literature that we are not able to identify with the proposed
method by using this particular dataset. In a recent large breast cancer GWAS analysis,
122,977 number of cases and 105,974 number of controls (Ferreira et al., 2019) were used.
It would be useful to apply the proposed method to this large sample of breast cancer
dataset.

SNPs in a supervariant may be in high LD if the initial SNP sets are selected by their
physical distance. However, whether SNPs are in high LD or not, their associations are not
assessed individually, even though they are ranked by their individual effects.

It is worth noting that there is a critical difference between supervariant and haplotype. For
haplotype analysis, we need to first infer the haplotypes through possible origins of the
transmitted alleles. Supervariants are simply a combination of genotypes in multiple loci and
do not depend on the origins of the transmission.

While highly promising, the use and identification of supervariants warrant further
investigation. One aspect could be considered is how to best segment genotypes on all
chromosomes to form SNP sets. In this study, we set the initial SNP sets to be physically
close for convenience. However, LD, gene or pathway information may be considered to
form more informative SNP sets for identification. Another aspect to consider is how to best
rank the SNPs within the sets. In general, ranking variables is a challenging task in its own
right.

The concept of supervariant and the ranking and aggregation method are proposed to
identify sets of SNPs or mutations that can be used in the future for causal inference beyond
association analysis or prediction. The ideas in the related literature such as polygenic risk
scores, which involves two datasets but is largely prediction oriented, may be useful to
improve our method. This is another possible direction for future work.
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Manhattan plot of single SNP-based association analysis on discovery dataset. SNP, single-
nucleotide polymorphism
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TABLE 2
Frequency of rare variant signal identification in simulation
SingleSNP signal ~ Within group signal ~ Within group of two ~ Within group of three

GWAS 0.729 0.199 0.228 0.181
Supervariant  0.833 0.284 0.376 0.225

Abbreviations: GWAS, Genome-wide association studies; SNP, single-nucleotide polymorphism.
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TABLE 3
Frequency of interaction identification in simulation
Overall Group of two  Group of three

Genome-wide association studies  0.22 0.36 0.08

Supervariant 0.38 0.53 0.24
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